
CS451 – Software Analysis

Lecture 14
Dynamic Taint Analysis

Elias Athanasopoulos
elathan@cs.ucy.ac.cy

Dynamic Taint Analysis (DTA)
• DTA is an analysis for determining the influence of a

specific program state to other parts of the program
state
– Imagine that you can mark all data coming from the

network
– These marked bytes will be processed by the program

logic, and new data that are somehow based on the
marked bytes, will be also marked

– If the program counter attempts to execute marked data,
then raise an alert

• This marking is called tainting
• DTA can be also called data-flow tracking (DFT), taint

tracking, or taint analysis

2

DTA on binaries

• Implemented over a DBI framework, such as Pin
• DTA instruments all instructions that handle data

(registers or memory)
– Most instructions can influence memory, so DTA

instruments almost every instruction leading to high
overheads

– DTA is applied on off-line analysis and not on
production code

• DTA can be also applied statically when source
code is available
– The compiler emits the intrumentation

3

Sources, sinks and propagation

• For a DTA we need to define what is an
interesting state, and how data influence other
data

• DTA can be used to solve different problems so
what is interesting in each case may be very
different

• For a DTA, we need to define three elements
– Taint sources (defined by the analyst)
– Taint sinks (defined by the analyst)
– Taint propagation (implemented by the engine, but

can be customizable)

4

Taint sources

• Program locations where we taint the data
that is interesting for the analysis
– arguments that are passed in system calls
– arguments that are passed in specific functions
– data that is the output of a read() call

• The DTA engine allows you to declare which
data are going to be tainted

5

Taint sinks

• Locations in the program that can be
influenced by tainted data
– Consider indirect jumps, which use memory to

direct the control flow of the program
– An analysis can declare all indirect call/jumps as

sinks
– The DTA engine will instrument all such

calls/jumps and infer if the values used (register,
memory) are tainted

6

Taint propagation

• Tainted data is processed with other data, and
taint can flow from already tainted data to
untainted data
– Consider a mov instruction that copies a tainted value

to a new memory location
– The new location now is also tainted

• Tracking taint is complicated and needs
instrumentation in the majority of the program’s
instructions

• Different taint policies dictate different taint
propagation rules

7

DTA and the Heartbleed bug
• Heartbleed is a buffer overread bug

– Allows any client to exfiltrate sensitive data from a web server
by crafting a very specific request

– The bug is in the OpenSSL library, which is used for
cryptographic operations

– Many web servers use OpenSSL to implement TLS
• Heartbleed exploits a bad implementation of the Heartbeat

protocol
– A client sends a special request with a string and its length to a

server, which should be echoed back to the client
– A buggy implementation of the Heartbeat protocol, allows an

attacker to insert an arbitrary length in the request
– A large length value coerces the server to copy much more than

it is needed for the reply (overread)

8

Heartbleed code
buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);

/* pl, payload are both attacker controlled */
memcpy(bp, pl, payload);
bp += payload;

RAND_pseudo_byteds(bp, padding);
r = ssl3_write_bytes(s,

TLS1_RT_HEARTBEAT,
buffer, 3 + payload + padding);

9

How bad can it be?

• Heartbleed coerces the server to copy a large
buffer to a network buffer that is sent to the
attacker

• This is not a buffer overflow bug, but an overread
– The destination buffer is big enough to hold the data
– The source buffer can be very small, and the copy will

eventually read other data close to the source buffer
– If there is a sensitive cryptographic key (private key)

then the key is copied to the network buffer

10

Detecting Heartbleed with DTA

• Taint sources
– Sensitive data in memory (e.g., a private key)

• Taint sinks
– send() and sendto()

11

In action

12

f o o b a r

? ? ? ? ? ?

s e c r e t

k e y

f o o b a r

? ? ? ? ? ?

s e c r e t

k e y

f o o b a r

? ? ? ? ? ?

s e c r e t

k e y

bp

pl

strlen(pl) = 6, payload = 21
memcpy

DTA Design

• Granularity
– The unit of information that taint is applied (bit,

byte, word, etc.)

• Colors
– Taint may have different levels of marking

• Policies
– How taint propagates when data is part of an

expression

13

Taint granularity
• Taint can be applied to different levels of information
• Bit-level example (red is tainted)

00101101 & 00000100 = 00000100
– If the attacker controls the entire byte the only bit that can

change is the tainted one
• Byte-level example (red is tainted)

00101101 & 00000100 = 00000100
– The system considers that the attacker can affect all

computation, which is not true
• Important trade-off
– Tracking taint at the bit level is more accurate, but more

expensive

14

Taint colors

• Some DTA applications may need to differentiate
tainted data originating from taint sources
– Taint sources may use a different taint color to mark data
– Taint sinks may conclude in different decisions based on

the taint color
• Colors require the DTA to store more information per

byte (not just a bit for taint/no taint)
• A byte could store 256 different colors, however, colors

can be mixed
– Data from different sources may contribute to an

expression

15

Taint colors example

• Assume that we have 1 byte for storing taint
information
– We can support 8 colors: 0x01, 0x02, 0x04, 0x08,

0x10, 0x20, 0x40, 0x80

• If a data value is tainted by both 0x01 and
0x02, then we can use bitwise OR to derive a
new color
– 0x01 OR 0x02 = 0x03

16

Taint propagation policies

• Tainted values participate and contribute to
expressions

• The way taint propagates, when data is
processed, defines the DTA engine’s policies

• For the following example we assume a byte-
level DTA engine that supports two colors
”red” (R) and “blue” (B), and we assume
expressions that support 4-byte operands
(typical for 32-bit architectures)

17

Example of taint propagation

18

Operation x86 a b c Op

c = a mov [R][B][R][B] [R][B][R][B] :=

c = a xor b xor [R][][][R] [B][RB][B][RB] [RB][RB][B][RB] ⋃

c = a + b add [R][R][][R] [][][B][B] [R][R][B][RB] ⋃

c = a xor a xor [R][RB][B][RB] [][][][] ∅

Overtainting and undertainting

• Depending on the policy, the DTA engine may
suffer from overtainting or undertainting

• Undertainting
– Values that should be tainted, are not
– For instance, some CPU instructions may not be

instrumented for propagating taint
• Overtainting
– Values end up tainted, although they should not
– This can lead to false positives

19

Control dependencies

• Memory can influence other memory, implicitly
– In that case, taint is not propagated

• Example of implicit flow
var = 0;
while (cond--) var++;
An attacker that controls cond can influence var, but
the two variables do not directly interact

• One solution is to propagate tainting in loops, but
this can lead to massive overtainting

20

Shadow memory

21

Virtual Memory

DE 8A 42 1F
A B C D

1 1 0 1
A B C D

1 shadow bit/byte
(1 color)

01 04 0 20
A B C D

1 shadow byte/byte
(8 colors)

01 00 00 00

01 00 00 00

00 80 00 00

00 00 02 00

4 shadow byte/byte
(32 colors)

A

B

C

D

