CS451 — Software Analysis

Lecture 14
Dynamic Taint Analysis

Elias Athanasopoulos
elathan@cs.ucy.ac.cy

Dynamic Taint Analysis (DTA)

 DTA is an analysis for determining the influence of a
specific program state to other parts of the program
state

— Imagine that you can mark all data coming from the
network

— These marked bytes will be processed by the program
logic, and new data that are somehow based on the
marked bytes, will be also marked

— If the program counter attempts to execute marked data,
then raise an alert

* This marking is called tainting

 DTA can be also called data-flow tracking (DFT), taint
tracking, or taint analysis

DTA on binaries

* Implemented over a DBl framework, such as Pin

e DTA instruments all instructions that handle data
(registers or memory)

— Most instructions can influence memory, so DTA
instruments almost every instruction leading to high
overheads

— DTA is applied on off-line analysis and not on
production code

 DTA can be also applied statically when source
code is available

— The compiler emits the intrumentation

Sources, sinks and propagation

 For a DTA we need to define what is an
interesting state, and how data influence other
data

 DTA can be used to solve different problems so
what is interesting in each case may be very
different

* For a DTA, we need to define three elements
— Taint sources (defined by the analyst)

— Taint sinks (defined by the analyst)

— Taint propagation (implemented by the engine, but
can be customizable)

Taint sources

* Program locations where we taint the data
that is interesting for the analysis
— arguments that are passed in system calls
— arguments that are passed in specific functions
— data that is the output of a read() call

* The DTA engine allows you to declare which
data are going to be tainted

Taint sinks

* Locations in the program that can be
influenced by tainted data

— Consider indirect jumps, which use memory to
direct the control flow of the program

— An analysis can declare all indirect call/jumps as
sinks

— The DTA engine will instrument all such
calls/jumps and infer if the values used (register,
memory) are tainted

Taint propagation

* Tainted data is processed with other data, and

taint can flow from already tainted data to
untainted data

— Consider a mov instruction that copies a tainted value
to a new memory location

— The new location now is also tainted

* Tracking taint is complicated and needs

instrumentation in the majority of the program’s
Instructions

e Different taint policies dictate different taint
propagation rules

DTA and the Heartbleed bug

 Heartbleed is a buffer overread bug

— Allows any client to exfiltrate sensitive data from a web server
by crafting a very specific request

— The bug is in the OpenSSL library, which is used for
cryptographic operations

— Many web servers use OpenSSL to implement TLS
* Heartbleed exploits a bad implementation of the Heartbeat
protocol

— A client sends a special request with a string and its length to a
server, which should be echoed back to the client

— A buggy implementation of the Heartbeat protocol, allows an
attacker to insert an arbitrary length in the request

— A large length value coerces the server to copy much more than
it is needed for the reply (overread)

Heartbleed code

buffer = OPENSSL malloc(l + 2 + payload + padding);
bp = buffer;

*bp++ = TLS1 HB RESPONSE;
s2n(payload, bp);

memcpy (bp, pl, payload);
bp += payload;

RAND pseudo byteds(bp, padding);
r = ssl3 write bytes(s,
TLS1 RT HEARTBEAT,
buffer, 3 + payload + padding);

How bad can it be?

 Heartbleed coerces the server to copy a large
buffer to a network buffer that is sent to the

attacker
* This is not a buffer overflow bug, but an overread

— The destination buffer is big enough to hold the data

— The source buffer can be very small, and the copy will
eventually read other data close to the source buffer

— If there is a sensitive cryptographic key (private key)
then the key is copied to the network buffer

Detecting Heartbleed with DTA

e Taint sources

— Sensitive data in memory (e.g., a private key)

* Taint sinks
—send () and sendto()

In action

pl

strlen(pl) = 6, payload = 21

bp

Y

memcpy

12

DTA Design

* Granularity
— The unit of information that taint is applied (bit,
byte, word, etc.)
* Colors
— Taint may have different levels of marking
* Policies
— How taint propagates when data is part of an
expression

Taint granularity

Taint can be applied to different levels of information

Bit-level example (red is tainted)
00101101 & 00000100 = 00000100

— If the attacker controls the entire byte the only bit that can
change is the tainted one

Byte-level example (red is tainted)
00101101 & 00000100 = 00000100

— The system considers that the attacker can affect all
computation, which is not true

Important trade-off

— Tracking taint at the bit level is more accurate, but more
expensive

Taint colors

 Some DTA applications may need to differentiate
tainted data originating from taint sources
— Taint sources may use a different taint color to mark data

— Taint sinks may conclude in different decisions based on
the taint color

* Colors require the DTA to store more information per
byte (not just a bit for taint/no taint)

* A byte could store 256 different colors, however, colors
can be mixed

— Data from different sources may contribute to an
expression

Taint colors example

* Assume that we have 1 byte for storing taint
information

— We can support 8 colors: 0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80

* |f a data value is tainted by both 0x01 and
0x02, then we can use bitwise OR to derive a
new color

— 0x01 OR 0x02 = 0x03

Taint propagation policies

* Tainted values participate and contribute to
expressions

* The way taint propagates, when data is
orocessed, defines the DTA engine’s policies

* For the following example we assume a byte-
evel DTA engine that supports two colors
“red” (R) and “blue” (B), and we assume
expressions that support 4-byte operands
(typical for 32-bit architectures)

Example of taint propagation “f"

Operation x86 a b (o Op
c=a mov [R][B][R][B] [R][B][R][B] =
c=axorb xor [R][1[0 1IR] [B][RB][B][RB] [RB][RB][B][RB] U
c=a+b add [R][R][]I[R] [1[1[B][B] [R][R][B] [RB] U
c=axora xor [R][RB][B][RB] [10 10 10 1] ?

18

Overtainting and undertainting

* Depending on the policy, the DTA engine may
suffer from overtainting or undertainting
* Undertainting

— Values that should be tainted, are not

— For instance, some CPU instructions may not be
instrumented for propagating taint

* Overtainting
— Values end up tainted, although they should not
— This can lead to false positives

Control dependencies

e Memory can influence other memory, implicitly

— In that case, taint is not propagated

 Example of implicit flow
var = 0;
while (cond--) var++;
An attacker that controls cond can influence var, but
the two variables do not directly interact

* One solution is to propagate tainting in loops, but
this can lead to massive overtainting

Shadow memory

1 shadow bit/byte
Virtual Memory (1 color)

01104 | 0 | 20 1 shadow byte/byte

ok oA 42 1 " i - ° (8 colors)
A [01|00]| 00|00
B (01|00 |00 | OO0
c loolsoloolool 2 shadow byte/byte
(32 colors)
D | 00|00 | 02|00

