
CS451 – Software Analysis

Lecture 12
Binary Instrumentation

Elias Athanasopoulos
elathan@cs.ucy.ac.cy

What is binary
instrumentation?
• Inserting new code to an existing binary is called binary

instrumentation
– This code can just observe or even modify the binary’s

behavior
• The point where the new code is inserted is called

instrumentation point
• The new code is called instrumentation code
• Examples
– Profiling: add code for logging the time each function is

executing
– Security defense: modify all function epilogues to check

the stack for integrity violation

2

Static vs dynamic

• Static Binary Instrumentation (SBI)
– Use of binary re-writing to permanently modify

binaries on the disk

• Dynamic Binary Instrumentation (DBI)
– Insert instrumentation code while a process is

executing
– Debuggers do this for software breakpoints
– A DBI engine may be much more generic and

richer in functionality

3

DBI vs SBI

4

Dynamic Instrumentation Static Instrumentation

- Relatively slow (4 times or more) + Relatively fast (10% to 2 times)

- Depends on DBI library and tool + Stand-alone binary

+ Transparently instruments libraries - Must explicitly instrument libraries

+ Handles dynamically generated code - Dynamically generated code unsupported

+ Can dynamically attach/detach - Instruments entire execution

+ No need for disassembly - Prone to disassembly errors

+ Transparent, no need to modify binary - Error-prone binary re-writing

+ No symbols needed - Symbols preferable to minimize errors

SBI’s main problem

• Code incorporates data accesses and code
transfers that use relative addresses

• Adding new code to an existing block of code
will shift all addresses

• Adapting all addresses in large binaries is
practically impossible

5

Example

• Add code to a new section in the binary
– E.g., modify the ELF binary to include a new

section with name .text_instrumented

6

31 f6 xor esi,esi
41 83 c4 01 add r12d,0x1
b9 c1 8a 41 00 mov ecx,0x42
ba 01 00 00 00 mov edx,0x1
48 83 c5 08 add rbp,0x8

Original code

31 f6 xor esi,esi
41 83 c4 01 add r12d,0x1
b9 c1 8a 41 00 mov ecx,0x42
e9 de ad be ef jmp instrum
48 83 c5 08 add rbp,0x8

; pre-instrumentation
mov edx, 0x1 # instrum
; post-instrumentation
jmp instrum_site

Instrumented code Instrumentation code

The instruction jmp is 5 bytes, therefore
the operands of mov will be affected.

Using int3

• The main issue is that a jmp instruction,
including the target at the instrumentation
site is a multibyte injection

• Ideally, we want a 1-byte instruction to change
the opcode at the instrumentation site

• int3 is such a 1-byte an instruction
– However, int3 needs the process to be traced

using ptrace()

7

Trampoline

• Do not instrument the original code
• Copy the original code and instrument the new

copy
• Use trampolines (jump instructions) to redirect

the original code to the instrumented copy
• The binary does not break, since the copy of the

code is instrumented
– Control may be transferred to the original code, but a

new trampoline will transfer control back to the
instrumented code

8

Example

9

<f1>:
test edi, edi
jne _ret
xor eax, eax
call f2

_ret:
ret

<f2>:
...

Original code

.text .text

<f1>:
jmp f1_copy
; junk bytes

<f2>:
jmp f2_copy

<f1_copy>:
; nop
test edi, edi
jne _ret
; nop
xor eax, eax
call f2_copy

_ret:
call hook_ret
ret

<f2_copy>:
...

.text.instrum

<hook_ret>:
; save state
do something
; restore state
ret

The jmp command
may introduce
some junk bytes
but they are not
executed

Leave some space
for possible
instrumentation

instrumentation

Trampoline control flow

• When f1() is called, control will be transferred to
f1_copy()
– The jmp instruction may destroy some bytes in f1(), but

this is not a problem anymore, since all code of f1() is
copied to f1_copy()

• The SBI engine inserts several nop instructions in every
possible instrumentation point of f1_copy()
– Notice, there is some analysis here, for instance, the

combo test edi,edi; jne _ret is preserved as is
• All direct jumps are replaced
– call f2 becomes call f2_copy

10

Handling indirect control flow

• All direct calls in the new section
(.text.instrument) point to the copied
functions

• Indirect calls cannot be changed, therefore
they will point back to the original code

• When such indirect jumps are executed,
control flow is transferred to the original code
– But a trampoline will transfer the flow back to the

instrumented code

11

Example of an indirect call

12

<f1>:
...
; assume rax
; has f2
call rax

<f2>:
...

Original code

.text .text

<f1>:
jmp f1_copy
; junk bytes

<f2>:
jmp f2_copy

<f1_copy>:
...
call rax
...

<f2_copy>:
...

.text.instrum

Instrumented code

Indirect jumps
• A program may contain indirect jumps

– E.g., C/C++ implements the switch statement with a jump table
• By default, the addresses of the jump table point to the

original code
– This is a code location in the middle of the function, where no

trampoline code is near by
• Option 1: patch the jump table so that addresses point to

the instrumented code
– Dangerous, since valid data can be modified unintentionally

• Option 2: insert additional trampoline code in the middle of
the function at every switch() case
– Hard to find the exact location, which may in turn destroy code

of other switch() cases

13

SBI reliability

• Indirect jumps, in the general case, may not
be handled correctly

• Disassembly may have errors
• Some functions may be small to

accommodate a 5-byte jump
• Inline data and code may cause some

trampolines to overwrite valid data

14

Dynamic binary
instrumentation (DBI)
• DBI monitors the binary as it executes with

the form of a process
• No need for accurate disassembly or for

patching the existing code on disk
– Less error-prone compared to SBI
– Slower compared to SBI

• Available systems
– Intel PIN, DynamoRIO

15

DBI internals
• The DBI engine is also based on debugging techniques
– For instance, in Linux ptrace() will be used to monitor the

executing engine
• Compared to a debugger, the DBI engine is much more

complicated and richer in features to facilitate
instrumentation

• The DBI engine exports an API for programmers to
write their instrumentation code
– The instrumentation code is compiled usually in a shared

library
– The API provides functions for handling various elements

of the executing code (basic blocks, opcodes, etc.)

16

DBI Architecture

17

instrument_bb(bb):
bb.after.invoke(
bb_callback

)

bb_callback(bb):
counter++

init():
register(

instrument_bb
)
start_dbi()

DBI tool
Data

Code
Process

Code fetcher

Instrumentation
engine

JIT compiler

Code cacheDispatcher

Emulator
AP

I

OS - Machine

Remarks

• The programmer writes the DBI tool using the DBI API
– Compiled as a shared library and loaded by the DBI engine

• The tool initialized the engine by registering a callback
function for every basic block processed
– The DBI engine will execute the callback whenever a

conditional instruction is processed (end of a basic block)
• The DBI does not run the code directly, but fetches the

code and instruments it before execution
• After instrumentation the code is optimized by the JIT

compiler and is executed through the code cache

18

Executing the code
• The instrumented code lies in the code cache, and it is

executed natively
• Some parts of the code may be emulated
– For instance, system calls that can interfere with the

instrumentation and process handling (such as
execve())

• The instrumented code contains additional code that is
executed in parallel with the original code
– For instance, a callback is executed at the end of each basic

block
– The DBI engine modifies each callback so that the state of

the program is preserved

19

Homework

• Download PIN
– https://www.cs.ucy.ac.cy/courses/EPL451/src/pin-

3.6-97554-g31f0a167d-gcc-linux.tar.gz
– Try to build and run a simple PIN tool

20

https://www.cs.ucy.ac.cy/courses/EPL451/src/pin-3.6-97554-g31f0a167d-gcc-linux.tar.gz

