
CS451 – Software Analysis

Lecture 10
Custom Disassembly (Recursive)

Elias Athanasopoulos
elathan@cs.ucy.ac.cy

Linear vs recursive

• Linear disassembly has problems
– Instructions can be hidden using obfuscation
– The control flow of the program is not considered at al

• Recursive disassembly employs a different
strategy
– Use the control-flow of the program to discover basic

blocks that are used by the program
– Not always possible to find all destinations, since jump

transfers may be entirely dynamic

2

Obfuscated code

3

int overlapping(int i) {
int j = 0;

__asm__ __volatile__(
"cmp $0x0,%1 ; "
".byte 0x0f,0x85 ; " /* relative jne */
".long 2 ; " /* jne offset */
"xorl $0x04,%0 ; "
".byte 0x04,0x90 ; " /* add al,0x90 */
: "=r" (j)
: "r" (i)
:
);

return j;
}

int main(int argc, char *argv[]) {
srand(time(NULL));
printf("%d\n", overlapping(rand() % 2));
return 0;

}

Using objdump with
obfuscated code
$ objdump --start-address=0x400666 --stop-address=0x40068c -d overlapping_bb
0000000000400666 <overlapping>:
400666: 55 push %rbp
400667: 48 89 e5 mov %rsp,%rbp
40066a: 89 7d ec mov %edi,-0x14(%rbp)
40066d: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
400674: 8b 45 ec mov -0x14(%rbp),%eax
400677: 83 f8 00 cmp $0x0,%eax
40067a: 0f 85 02 00 00 00 jne 400682 <overlapping+0x1c>
400680: 83 f0 04 xor $0x4,%eax
400683: 04 90 add $0x90,%al
400685: 89 45 fc mov %eax,-0x4(%rbp)
400688: 8b 45 fc mov -0x4(%rbp),%eax
40068b: 5d pop %rbp

$ objdump --start-address=0x400682 --stop-address=0x40068c -d overlapping_bb
0000000000400682 <overlapping+0x1c>:
400682: 04 04 add $0x4,%al
400684: 90 nop
400685: 89 45 fc mov %eax,-0x4(%rbp)
400688: 8b 45 fc mov -0x4(%rbp),%eax
40068b: 5d pop %rbp

4

Recursive approach

• Hold a queue with addresses that can be starting
points of code
– Initially, those addresses can be function-entrance

points
• Process all addresses stored in the queue
– Each time an address is dequeued for processing,

update a map (hash) so that we are not processing the
same address in the future

• We use C++ for the data structures queue and
map

5

How disassembly proceeds

• We start at a given address and we decode
each instruction

• Instead of blindly decoding and printing each
instruction, we examine the instruction type
– In contrast with linear disassembly, where only

the end points matter, in recursive disassembly
each instruction may be significant

6

Instruction grouping

• Capstone has many macros that assist in
grouping instructions

• Recall that intel has several different opcodes
for jumps, so we need to target the group of
instructions

7

bool is_cs_cflow_group(uint8_t g) {
return (g == CS_GRP_JUMP) ||

(g == CS_GRP_CALL) ||
(g == CS_GRP_RET) ||
(g == CS_GRP_IRET);

}

How to check for control-flow
instructions
• We use the detailed mode of Capstone for

inspecting each instruction
• Each instruction has a detail structure,

where the groups field contains information
about the instruction

8

bool is_cs_cflow_ins(cs_insn *ins) {
for (size_t i = 0; i < ins->detail->groups_count; i++) {

if (is_cs_cflow_group(ins->detail->groups[i])) {
return true;

}
}
return false;

}

How to handle control-flow
instructions
• Once we reach a control-flow instruction we

need to check if we can parse the target
– For example, the target address of a jump
– This is not always possible

• If the target is immediate and can be parsed,
then the type of the instruction will be
X86_OP_IMM
– In such case, we put the target in the queue

9

Discovered addresses
bb_status
• UNSEEN
– This is a new address that has not been seen in

the past
• ENQUEUED
– This is an address that has been enqueued, but

has not been processed, yet
• SEEN
– This is an address that has been processed

10

Main loop

• Start disassembling the next address in the queue
• For each disassembled instruction, update the

map
• If we find a branch
– Get the target
– Check the map and if this address has not been

processed nor queued, already, store it in the queue
• Check if the instruction is a ret, which means we

reached the end of the function
– This is not always accurate (check homework)

11

High-level idea

12

Binary
Queue

Parse ELF and read
symbol table

map

address

disassemble

SEEN CF &&
not SEEN

and in
Q?

QUEUED

Homework

• Refactor the recursive disassembler
– Avoid the use of global g_text_start and
g_text_end

– The initial addresses are pushed in the queue but
are not updated in the map

– Disassembly of a basic block stops at the end of
the function, which is not checked that accurately

– What happens with stripped binaries?

13

