
University of Cyprus

Computer Science Department

Homework 1: Weather Dashboard using

HTML/CSS/JavaScript/PHP/MySQL + Open APIs

EPL425: Internet Technologies

Lab instructor: Pavlos Antoniou

Spring 2024

Announced Date: Friday, 01/03/2024

Submission Date: Sunday, 31/03/2024 (23:59)

1. Introduction

The goal of this exercise is to develop a weather dashboard to give appealing information to the users

related to current and forecasted weather conditions (temperature, humidity, etc) for any city in Cyprus.

Through this exercise, which you will obtain hands-on experience in web technologies such as HTTP,

CSS, JavaScript, AJAX, PHP, MySQL and JSON as well as in open APIs (OpenWeatherMap,

OpenStreetMap) and third-party libraries such as Bootstrap Open Layers (for displaying browsable,

dynamic maps) and Chart.js (for displaying charts) to enhance the user experience.

More specifically, you are to implement a web application that takes as input user location information

(address, region, city) and unit preference (Celsius, Fahrenheit) via a search dashboard, and then obtains

and displays current and weather forecast conditions in terms of tables, maps and charts.

2. Background

In this exercise you will use the following technologies/libraries:

2.1. Bootstrap 5 Library

Bootstrap is a free collection of tools for creating responsive websites and web applications. It contains

HTML and CSS-based design templates for typography, forms, buttons, navigation and other interface

components, as well as optional JavaScript extensions. To learn more details about Bootstrap please

refer to Lab 6 and to the official website: https://getbootstrap.com/.

2.2. OpenWeatherMap REST API

OpenWeatherMap provides a RESTful API service to provide current weather, daily forecast for 16

days, and 3-hourly forecast 5 days for any city on Earth by proving any of the following inputs: city

name, city id1, geographic coordinates or zip code.

1 List of city ID city.list.json.gz can be downloaded here http://bulk.openweathermap.org/sample/

https://www.cs.ucy.ac.cy/courses/EPL425/labs/LAB06.pdf
https://getbootstrap.com/
https://openweathermap.org/api
http://bulk.openweathermap.org/sample/

2.3. Nominatim REST API

OpenStreetMap (OSM)2 is a collaborative project to create a free editable map of the world. Nominatim

is a search engine for OpenStreetMap data. Nominatim API provides functionality for converting

addresses to geographic coordinates (latitude, longitude). This functionality is called geocoding. For

more information, refer to the following link: https://nominatim.org/release-docs/latest/api/Overview/

and more specifically the search API.

2.4. AJAX and JSON

Your web application will use AJAX (Asynchronous JavaScript + XML) for asynchronous data

retrieval using XMLHttpRequest (XHR) objects or Fetch API as described in Lab 8 in order to connect

to the aforementioned REST APIs and retrieve data. Data will be returned in JSON which is a

lightweight data interchange format. JSON main application is in AJAX web application programming,

where it serves as an alternative to the use of the XML format for data exchange between client and

server. For JSON you can refer to Lab 7.

2.5. Open Layers JavaScript Library

OpenLayers makes it easy to put a dynamic map in any web page. It can display map tiles, vector data

and markers loaded from any source. OpenLayers has been developed to further the use of geographic

information of all kinds. It is free, Open Source JavaScript and released under the 2-clause BSD

License. Open Layers will be used to display maps (obtained from OpenStreetMap) and weather map

layers (obtained from OpenWeatherMap) as mentioned in Sections 5.1 and 6.2.3.

2.6. Chart.js Chart Library

Chart.js is a free JavaScript library for making HTML-based charts. It is one of the simplest

visualization libraries for JavaScript, and comes with the following built-in chart types: Scatter Plot,

Line Chart, Bar Chart, Pie Chart, Donut Chart, Bubble Chart, Area Chart, Radar Chart and Mixed

Chart. Chart.js will be used to display charts using the weather-related data obtained from the

OpenWeatherMap as mentioned in Section 6.3.

2.7. Web server and database (MySQL) server

Your web application will be served by a web server (mainly because of the use of PHP, see next

section). In addition, a database server is needed to store user interaction with the web application

(address, region, city of each request). You will use the Apache web server and the MySQL database

server of the Department of Computer Science. Your web application must be located in your personal

space given to you by the Department of Computer Science. Your personal space can be accessed using

the following URL:

https://www.cs.ucy.ac.cy/~username

2 The creation and growth of OSM has been motivated by restrictions on use or availability of map information across

much of the world, and the advent of inexpensive portable satellite navigation devices. OSM is considered a prominent

example of volunteered geographic information.

https://www.openstreetmap.org/
https://nominatim.org/release-docs/latest/api/Overview/
https://nominatim.org/release-docs/latest/api/Search/
https://www.cs.ucy.ac.cy/courses/EPL425/labs/LAB08.pdf
https://www.cs.ucy.ac.cy/courses/EPL425/labs/LAB07.pdf
https://www.chartjs.org/
https://www.cs.ucy.ac.cy/~username

For example, the personal space of a user with username apanep01 is accessible at:

https://www.cs.ucy.ac.cy/~apanep01

In order to activate your personal space, follow the steps shown below:

1. Use Putty, or X2Go or MobaXterm to login via a terminal to your account on CS web Server

(ada.cs.ucy.ac.cy). Create a sub directory in your home directory and name it:

public_html. The command for this is: mkdir ~/public_html. Next you have to set

the permissions of this new directory to 755 (rwxr-xr-x), using command chmod 755

~/public_html. All sub-directories that you will create later should have the same

permissions. Also set the permissions of your HOME directory to 701 using the command:
chmod 701 ~

2. Create your webpages in this new directory. In order someone to be able to access your page,

knowing only your login name is essentially to name your home page as index.html. On this

way, your webpage can be accessed from the URL: https://www.cs.ucy.ac.cy/~username

3. Be sure that files are public readable. (UNIX permission form should be rwxr--r—- for all

files). Don´t put other permissions than those. On your home directory you can set

permissions at least rwx..S..x. Be sure that you know what you are doing, if you don´t follow

those permissions. If you give more loose permissions you will enable other users to see and

maybe to destroy your job (not only your webpage).

4. Create a subfolder within public_html, namely epl425 that will host all the files of the

web application you will develop in this assignment. The command to create this folder is

mkdir ~/public_html/epl425. In this way, your application can be accessed from the

URL https://www.cs.ucy.ac.cy/~username/epl425

Be careful: Any file that you put on public_html will be visible through public_http so don´t put

there, any files that you don´t want other users to see them.

More detailed descriptions on available servers, methods and functions for the webpage development

is available to Web Development.

2.8. PHP

PHP is a server-side scripting language which is mostly used to enable interactions between web

applications and databases to store/retrieve data as described in Lab 9 and Section 9.

3. Prerequisites

To be able to carry out this assignment you will need to:

• Sign up for a free account with OpenWeatherMap. Once you register, you will receive

an APPID, essentially your key for using the service. Without an APPID you will not be able

to access any API endpoint. It takes up to 1 hour to activate your API key. You will receive a

confirmation email as your API key is ready to work. The How to start page tells how to include

the APIID and id in a request. Unless you care to convert from Kelvin to degrees Celsius in

your code, be sure to request ‘metric’ units from the server.

https://www.cs.ucy.ac.cy/~apanep01
https://www.cs.ucy.ac.cy/~username
https://www.cs.ucy.ac.cy/~username/epl425
http://its.cs.ucy.ac.cy/images/stories/uploads/guides/www.pdf
https://www.cs.ucy.ac.cy/courses/EPL425/labs/LAB09.pdf
https://home.openweathermap.org/users/sign_up
https://openweathermap.org/appid

4. Description of Work

In this exercise you are asked to create a webpage that allows users to search for the current and

forecasted weather information using the Nominatim Search API, the OpenWeatherMap API and

OpenStreetMap maps and display the results on the same page below the form.

A user will first open a page (index.html) as shown below in Figure 1, where he/she can enter the

location information such as Street address, Region and City (mandatory – indicated by a red asterisk

symbol after each title) and select the preferred degree unit or keep the default Celsius and execute the

search. The description of the Search Form is given in Section 5.1. Instructions on how to use the APIs

are given in Section 6.

Figure 1: Web Application initial page

Once the user has provided data and clicks on the Search button, validation must be done to check that

the entered data is valid. Form validation rules along with screenshots are given in Section 5.2. The

webpage must use JavaScript to make the requests to the API endpoints described in Section 6, receive

and extract data from the received JSON and display the results. Description on how to display the

results is given in Section 7.

Your webpage should follow the structure of the provided screenshots. However, you can choose any

font-family, background image and colors you like. Margin, border and padding widths can be

approximately set to resemble those shown in screenshots. The webpage shown in the screenshots uses

the Roboto font-family from Google Fonts and the background image is given below.

5. Search Form

5.1. Description

You must replicate the form displayed as in Figure 2 using a Bootstrap 5 form. The form fields are

address, region (e.g. municipality, village), and city (district).

http://nominatim.org/release-docs/latest/api/Search/
https://openweathermap.org/api

Figure 2: Initial search form

The search form has 3 buttons:

1. SEARCH button: On the button click validations must be performed using JavaScript. If

validations fail, appropriate messages must be displayed under the appropriate text box (see

Figure 3), and further actions should NOT be made using the invalid data. If validations are

successful, then two operations are performed: (a) form data (address, region, city) are sent

via AJAX to a PHP file which will insert form data (along with the current server time) into a

database (see Section 9), and (b) an AJAX asynchronous request is made to Nominatim

Search API, providing it with the form data that was entered. When the response of the Search

API is successfully received, latitude and longitude are extracted from JSON file and the

following steps are executed: (1) AJAX call to get current weather conditions, (2) AJAX call

to get weather forecast conditions, (3) create map with weather map layers using Open Layers.

More details about Open Layer and weather maps are given in Section 6.2.3. After the second

step (getting weather forecast data), a set of charts will be displayed using the Chart.js library.

More details about Open Layer and weather maps are given in Section 6.3.

Figure 3: Error message after failed validations.

2. CLEAR button: This button must clear the result area, all text fields, reset the temperature

option to Celsius, clear all validation errors if present, remove weather map layers and map

and hide the results section. The clear operation is done either via a specific button type in

html or using a JavaScript function.

3. LOG button: Query the PHP file to retrieve information from MySQL database about the last

5 requests as shown in Figure 4 in reverse chronological order (from latest to earliest).

Figure 4: Modal to display last 5 requests information.

The following diagram shows an abstract level of the steps to be followed as discussed above:

The icons on the 3 buttons should be taken from Font Awesome icon set (we use free icons, which are

illustrated in bold). Font Awesome's CDN:

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-
awesome/6.5.1/css/all.min.css">

is the quickest and easiest way to get Font Awesome on your webpage. The icons used in search, clear

and log buttons are fa-search, fa-ban and fa-server respectively.

The webpage has a background image that spreads through the viewport. The background image can

be found at https://www.cs.ucy.ac.cy/courses/EPL425/assignments/sunset.jpg and it is highly

recommended to download it and place it in your webpage folder (instead of using the url in your code).

Feel free to use your own background image if you want to. The form is displayed with a transparent

background. Smooth horizontal lines can be used to separate (a) the search form and the weather results

section and (b) the weather results section and the attractions section. The horizontal line should

become visible along with the 2 results sections (not from the beginning).

User fills

the form
Form

validation

Nominatim

Search API

call

success

error

Display charts

with Charts.js

Search button

clicked

success Current Weather

API call

Weather Forecast

API call

Create map with

Open Layers

https://fontawesome.com/icons
https://cdnjs.com/libraries/font-awesome
https://www.cs.ucy.ac.cy/courses/EPL425/assignments/sunset.jpg

You need to make the search form responsive to different device screen sizes (smartphone, tablet,

desktop). If the page is loading on a smart phone or a tablet, the form should display according to the

width of the devices. One example is shown in the figure below.

Figure 5: Initial form page and form with validation errors on smartphone.

5.2. Validations

If the user does not provide any required piece of information (address, region or city) then a message

must be shown with appropriate text requesting the user to provide the missing information. Popups

and the alert() JavaScript function are not acceptable. The validations to be done along with the

messages (in red color) to be displayed are listed below:

Address – should not be empty or just be spaces. If it is, “Please enter your address!” should be

displayed below the text field.

Region – should not be empty or spaces. If it is, “Please enter your region!” should be displayed below

the text field.

City – should not be selected to “Select city”. If it is, “Please select your city!” should be displayed

below the select element.

These error messages are displayed if any one or more validation cases are not satisfied and the user

clicks on the search button. An example is shown in Figure 3 and Figure 5.

6. API Usage

In this exercise you will use the following API endpoints:

6.1. Nominatim Search REST API

The Nomimatim Search API request takes the following form:

https://nominatim.openstreetmap.org/search?q=query¶ms

where query is a free-form query string to search for. Free-form queries are processed first left-to-

right and then right-to-left if that fails. So you may search for leoforos panepistimiou,

aglantzia as well as for aglantzia, leoforos panespistimiou. Commas are optional

but improve performance by reducing the complexity of the search.

Some of the params which can be used in a geocoding search request are:

• format — can be one of the following html xml json jsonv2 geojson

geocodejson.

• addessdetails — can be set to 0 (default) or 1. If set (1) includes a breakdown of the

address into elements.

For a more detailed set of parameters please visit the Search API documentation.

In this example, the Search API requests a json response for a query on "Panepistimiou, Aglantzia,

Nicosia":

https://nominatim.openstreetmap.org/search?q=Panepistimiou,

Aglantzia, Nicosia&format=json

Below is a sample geocoding response, in JSON:

[

 {

 "place_id": 368263046,

 "licence": "Data © OpenStreetMap contributors, ODbL 1.0.

http://osm.org/copyright",

 "osm_type": "way",

 "osm_id": 1211279593,

 "lat": "35.1452253",

http://nominatim.openstreetmap.org/search?q=birmingham,+pilkington+avenue
http://nominatim.org/release-docs/latest/api/Search/

 "lon": "33.4067396",

 "class": "highway",

 "type": "secondary",

 "place_rank": 26,

 "importance": 0.10000999999999993,

 "addresstype": "road",

 "name": "Panepistimiou Avenue",

 "display_name": "Panepistimiou Avenue, Aglandjia, Aglangia, Nicosia,

Nicosia District, Cyprus, 2109, Cyprus",

 "boundingbox": [

 "35.1451900",

 "35.1452253",

 "33.4067091",

 "33.4067396"

]

 }

]

As you may see from the above json response, the result is provided as an array of possible places

matching the requesting address. In case the API returns more than one places, you can select the first

place. The information we need from that query is shown above in bold, red color. Please note that

latitude and longitude need to be converted to float (from string) to be used in Open Layers function

ol.proj.fromLonLat() (see Section 6.2.3).

Note: In case the given address is not found (i.e. it does not resolve to a registered place), Nominatim

Search API returns an empty json array []. In this case, you have to display an error message to the user

using alert() JavaScript function or any other visually appealing alert notification with the message “No

result for that location.”

6.2. OpenWeatherMap REST API

OpenWeatherMap provides a RESTful API service to provide (among other services) current weather

and 3-hourly forecast 5 days for any city on Earth by proving any of the following inputs: city name,

city id, geographic coordinates or zip code. Furthermore, OpenWeatherMap provides weather map

layers including precipitation, clouds, pressure, temperature and wind which can be used to visualize

the weather. In this exercise we will use:

6.2.1. Current weather: https://api.openweathermap.org/data/2.5/weather

Example of API endpoint with parameters:

https://api.openweathermap.org/data/2.5/weather?lat={location_latitu

de}&lon={location_longitude}&units={user_unit}&APPID={YOUR_APP_ID}

Parameters:

• lat, lon : coordinates of the location of your interest

• units: metric (temperature in Celsius, distance in kilometers), imperial (temperature in

Fahrenheit, distance in miles). When you do not use units parameter, format is Standard

(temperature in Kelvin, distance in kilometers) by default.

https://openweathermap.org/api
https://openweathermap.org/current

In this example, the current weather API requests a json response for a query on latitude 35.1463009

and longitude 33.4079103 using metric units.

https://api.openweathermap.org/data/2.5/weather?lat=35.1463009&lon=3

3.4079103&units=metric&APPID={YOUR_APP_ID}

Below is a sample current weather response, in JSON:

{

 "coord": {

 "lon": 33.4079,

 "lat": 35.1463

 },

 "weather": [

 {

 "id": 802,

 "main": "Clouds",

 "description": "scattered clouds",

 "icon": "03d"

 }

],

 "base": "stations",

 "main": {

 "temp": 15.91,

 "feels_like": 15.1,

 "temp_min": 15.84,

 "temp_max": 18,

 "pressure": 1005,

 "humidity": 59

 },

 "visibility": 10000,

 "wind": {

 "speed": 5.66,

 "deg": 260

 },

 "clouds": {

 "all": 40

 },

 "dt": 1707901691,

 "sys": {

 "type": 1,

 "id": 6370,

 "country": "CY",

 "sunrise": 1707885276,

 "sunset": 1707924406

 },

 "timezone": 7200,

 "id": 146769,

 "name": "Athalássa",

 "cod": 200

}

The information we need from that query is shown above in bold, red color. The icon parameter 03d

corresponds to an image () describing the current weather (scattered clouds). Examples of these

icons can be found here. The full url of the icon is https://openweathermap.org/img/w/03d.png.

https://openweathermap.org/weather-conditions
https://openweathermap.org/img/w/03d.png

6.2.2. 5 day / 3 hour forecast: https://api.openweathermap.org/data/2.5/forecast

Example of API endpoint with the same parameters as the previous call:

http://api.openweathermap.org/data/2.5/forecast?lat={location_latitu

de}&lon={location_longitude}&units={user_unit}&APPID={YOUR_APP_ID}

In this example, the 5-day/3-hour weather forecast API requests a json response for a query on latitude

35.1856 and longitude 33.3823 using metric units.

http://api.openweathermap.org/data/2.5/forecast?lat=35.1463009&lon=3

3.4079103&units=metric&APPID={YOUR_APP_ID}

Below is a sample weather forecast response, in JSON:

{

 "cod": "200",

 "message": 0.0044,

 "cnt": 37,

 "list": [{

 "dt": 1553590800,

 "main": {

 "temp": 292.41,

 "temp_min": 291.642,

 "temp_max": 292.41,

 "pressure": 1009.81,

 "sea_level": 1009.81,

 "grnd_level": 1000.82,

 "humidity": 66,

 "temp_kf": 0.77

 },

 "weather": [{

 "id": 800,

 "main": "Clear",

 "description": "clear sky",

 "icon": "01d"

 }],

 "clouds": {

 "all": 0

 },

 "wind": {

 "speed": 3.21,

 "deg": 261.501

 },

 "sys": {

 "pod": "d"

 },

 "dt_txt": "2019-03-26 09:00:00"

 },...

],

 "city": {

 "id": 146769,

 "name": "Athalassa",

 "coord": {

 "lat": 35.1463,

 "lon": 33.41

https://openweathermap.org/forecast5

 },

 "country": "CY"

 }

}

This request returns a list of the weather conditions every 3 hours in the future for the next 5 days (we

show only the first forecast of the list due to the very long nature of this reply). We will use data for

the next 24 hours in the “Next 24h tab” (see Section 7.2 and Figure 10) as well as all 5-days data when

displaying the charts (see Section 7.3 and Figure 12, Figure 13). The information we need are shown

in bold, red color. Besides the weather forecast data we will use the name of the location (e.g. Athalassa

in the reply above).

6.2.3. Weather Maps 1.0: https://tile.openweathermap.org/map/{layer}/{z}/{x}/{y}.png

This endpoint refers to a tile server that does not return JSON data but a .png square image (tile) for a

specific position (x,y) and zoom level (z) displaying a predefined layer of weather conditions such as

clouds layer, precipitation layer, temperature layer, etc. Each weather layer provided by

OpenWeatherMap visualizes weather conditions only and needs to be combined with a map. Maps can

be obtained by a mapping service such as OpenStreetMap (we could consider Google Maps, but we

prefer open source and free solutions). In order to provide a dynamic, browsable map with weather map

layer(s) on top of it, a mapping library is needed. OpenLayers3 has long been the standard choice for

embedding a browsable OpenStreetMap view into webpages. It is a mature and comprehensive library,

with a moderate learning curve but is capable of many applications beyond rendering a simple map.

An example of putting a simple map on a webpage is given below:

map.html

<html lang="en">
 <head>
 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/ol@v8.2.0/ol.css" type="tex
t/css">
 <link rel="stylesheet" href="mystyle.css" type="text/css">
 <script src="https://cdn.jsdelivr.net/npm/ol@v8.2.0/dist/ol.js" defer></script>
 <script src="myscript.js" defer></script>
 </head>
 <body>
 <div id="map" class="map"></div>
 </body>
</html>

mystyle.css

.map {
 height: 400px;
 width: 100%;
}

3 Other map renderers (mapping libraries) are Leaflet and Mapnik.

https://wiki.openstreetmap.org/wiki/Tiles
https://leafletjs.com/
https://mapnik.org/

myscript.js

let map = new ol.Map({ // a map object is created
 target: 'map', // the id of the div in html to contain the map
 layers: [// list of layers available in the map
 new ol.layer.Tile({ // first and only layer is the OpenStreetMap tiled layer
 source: new ol.source.OSM()
 })
],
 view: new ol.View({ // view allows to specify center, resolution, rotation of the map
 center: ol.proj.fromLonLat([33.4079103, 35.1463009]), // center of the map
 zoom: 15 // zoom level (0 = zoomed out)
 })
});

In order to superimpose weather map layer(s) on top of the OpenStreepMap map you need to use the

OpenWeatherMap API endpoint:

https://tile.openweathermap.org/map/{layer}/{z}/{x}/{y}.png?

APPID={YOUR_APP_ID}

Parameters:

• layer : layer name which can take one of the: clouds_new (cloud layer), precipitation_new

(precipitation layer), pressure_new (sea-level pressure layer), wind_new (wind speed layer),

temp_new (temperature layer)

• z : number of zoom level

• x: number of x tile coordinate

• y: number of y tile coordinate

In order to add the temperature layer on top of the map you have to append the following source

code in myscript.js. DO NOT REPLACE {z}, {x} and {y} with numbers.

layer_temp = new ol.layer.Tile({
 source: new ol.source.XYZ({
 url: 'https://tile.openweathermap.org/map/temp_new/{z}/{x}/{y}.png?appid={your_
app_id}',
 })
});
map.addLayer(layer_temp); // a temp layer on map

Please note that in the aforementioned url you only need to replace {your_app_id} with your app id

provided by OpenWeatherMap. The parameters {z}, {x} and {y} must remain untouched.

In this exercise, you need to superimpose two weather map layers, namely precipitation_new and

temp_new on top of the map.

Hints:

• You will need to set the latitude and longitude of the center of the map using the JSON data

retrieved from Nominatim Search API

• Set the zoom value to 5 such that the location specified in the search form is properly displayed

in the map.

• When adding the temperature and precipitation layers, make sure the map is visible by adjusting

the opacity of these layers appropriately.

• When creating the map make sure that the results section (that contains the div of the map) is

visible. Alternatively, if the map is created while the results section is invisible, you will have

to call map.updateSize() (after results section becomes visible) to update the map size.

Otherwise, the map will remain invisible.

6.3. Chart.js

An example of displaying a simple line chart on a webpage is given below:

testchart.html

<html>
 <head>
 <script src="https://cdn.jsdelivr.net/npm/chart.js" defer></script>
 <script src="testchart.js" defer></script>
 </head>
 <body>
 <canvas id="myChart"></canvas>
 </body>
</html>

testchart.js

const ctx = document.querySelector('#myChart');

let chart = new Chart(ctx, { // a Chart object is created
 type: 'line', // type of Chart
 data: {
 labels: ['Red', 'Blue', 'Yellow', 'Green', 'Purple', 'Orange'], // label in x axis
 datasets: [{
 data: [12, 19, 3, 5, 2, 3] // array of values that will be plotted
 }]
 },
 options: {
 plugins: {
 legend: {
 display: false, // removes legend
 },
 title: {
 display: true, // display title
 text: 'Example chart title' // title content
 }
 }
 }
});

Hints:

• In case you want to delete a chart and create a new chart using the same variable name, you

need to destroy the previous chart using the command chartvriablename.destroy(). It is a good

idea to define that variable as a global variable (top of the JavaScript file).

The output of the source code given above is shown below:

Figure 6: Chart.js example line plot.

7. Results Section Display

The results should be displayed below the form as shown in Figure 7. You are supposed to display the

results responsive to mobile devices. If the page is loading on a smart phone or a tablet, the display

should be modified according to the width of the devices.

The display of the weather-related results is divided into two tabs, namely, Right Now, and Next 24

hours. The bootstrap tab color should be customized to match the current theme as shown in Figure 7.

The detailed description of all the tabs is given in the following sections. Note: If any of the field in

any of the tabs is unavailable in the returned JSON data, you should display “N.A.” instead.

The attraction related results will be provided in a card component. More information is given below.

Between the form and the first result section as well between the two result sections provide a smooth

horizontal line.

https://getbootstrap.com/docs/5.3/components/navs-tabs/#tabs
https://getbootstrap.com/docs/5.3/components/card/

Figure 7: Web application “Right Now” tab and charts section.

7.1. Right Now tab

The entire tab 1 area is divided into two sections. You must use Bootstrap for the area to make it

responsive for mobile devices. These two sections get stacked vertically on mobile screens, the Current

Weather table should be displayed at the top followed by the Weather Map section as shown below.

Figure 8: Web application “Right Now” tab in smartphone screen.

7.1.1. Current Weather Table

To the left of Figure 7, the current weather data is displayed. The top part consists for two subsections.

The left subsection displays the icon image whereas the right subsection displays the “current” weather

condition and location, current temperature and High/Low temperatures for the day. The table below it

displays additional current weather data. The mapping of the weather data is shown in Section 7.1.3. If

the page is loading on a smart phone, the information should be adjusted accordingly as shown in Figure

8 above.

7.1.2. Weather Map

To the right, the weather map is displayed. The details on how to use the OpenWeather API and the

Open Layers for displaying the weather map is explained in Section 6.2.3.

Figure 9: Weather map.

7.1.3. Weather data mapping

Table

Column

Data from the results of OpenWeatherMap API call (current weather)

Top Left

subsection

on Tab 1

The displayed icon depends the value of icon in the weather object of the JSON. The

images are available at https://openweathermap.org/img/w/{icon_name}

Top right

subsection

on Tab 1

The weather condition is the value of description in the weather object. The location

is the value of name object. The weather temperature is the value of temp in the main

object. The low temperature is the value of temp_min in the main object. The high

temperature is the value of temp_max in the main object The low and high temperature

should be displayed in blue and green color respectively.

Pressure The value of pressure in the main object. You should display the double value along

with the proper measurement unit (see table below).

Humidity The value of humidity in the main object. You should display the integer value along

with the percentage “%” character.

Wind Speed The value of speed in the wind object. You should display the double value along with

the proper measurement unit (see table below).

Cloud Cover The value of all in the clouds object. You should display the integer value along with

the percentage “%” character.

Sunrise The value of sunrise in the sys object. The value is a Unix timestamp (UTC) so it

needs to be converted to the “two-digits-hour:two-digits-minute” format and

converted to local time (Hint: use the Date class, date = new

Date(sunrise_timestamp*1000);). The hour should be in 24- hour format.

Examples are 08:00,13:00.

Sunset The value of sunset in the sys object. The value is a Unix timestamp (UTC) so it needs

to be converted to the “two-digits-hour:two-digits-minute” format and converted to

local time. The hour should be in 24- hour format. Examples are 08:00,13:00.

https://openweathermap.org/img/w/

You need to display proper units beside each value. The following unit mapping should be done

according to the degree option (F or C) selected by the user.

Forecast metric Fahrenheit (units=en) Celsius (units=si)

Temperature oF oC

Pressure Mb hPa

Wind Speed miles / hour meters / sec

7.2. Next 24 hours tab

This tab displays the weather information for the next 24 hours in a table format as shown in Figure 10.

Figure 10: Web application “Next 24 hours” tab.

The table has 5 columns, the details of which are described in the following table.

Table

Column

Data from the results of OpenWeatherMap API call (5-days/3-hours)

Time The value of dt object of list data array. The value is a Unix timestamp so it needs to be

converted to the “two-digits-hour:two-digits-minute” format. The hour should be in 24-

hour format. Examples are 08:00,13:00.

Summary The displayed icon depends the value of icon in the list data array in the weather object.

The mapping of icon value to icon images is same as for tab1 given in Section 7.1.3.

Temp The value of temp in the list data array in the main object. The values are limited to two

decimals by default followed by the unit of temperature.

Cloud

Cover

The value of all in the list data array in the clouds object. You should display the value

in percentage followed by “%” character.

Details A bootstrap button, named “View” is displayed which on click displays a bootstrap

modal section below that row as shown in Figure 11. The details of the view details

modal are given in the table after Figure 11.

Figure 11: Modal to view more weather forecast information about a specific time in the future.

Table Column Data from the results of OpenWeatherMap API call (current weather)

Header of Modal The title should be a sentence “Weather in {location}on {datetime}” where

{location} is the value of name in city object. The value of {datetime} will

be based on the value of dt object of list data array. The value is a Unix

timestamp so it needs to be converted to the “1 or 2-digits-day 3-letter-month

4-digits-year two-digits-hour:two-digits-minute” format. The hour should be

in 24-hour format. It is recommended to use the Date JavaScript object and a

predefined array of months such as

['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'].

Footer of Modal A close button to dismiss modal when clicked

Top Left subsection

of Modal

The displayed icon depends the value of icon in the list data array in the

weather object (same as previous table).

Top right subsection

of Modal

The displayed text depends the value of main in the list data array in the

weather object followed by the value of description in the list data array in

the weather object in parenthesis.

Humidity The value of humidity in the list data array in the main object. You should

display the value in percentage followed by “%” character.

Pressure The value of pressure in the list data array in the main object. You should

display the double value along with the proper unit of pressure.

Wind Speed The value of speed in the list data array in the wind object. You should display

the double value along with the proper unit of wind speed.

Note: All the metric values are followed by the appropriate units. The units to be used are given in

Section 7.1.3.

7.3. Charts card

The last card displays 3 weather forecast parameters namely temperature, humidity and pressure for

the next 5 days. Data displayed in these charts are taken from the 5 day / 3 hour forecast API endpoint

which as presented in Section 6.2.2. There is no need to call this API endpoint twice. The first time this

API endpoint is called, received data must be stored in a proper JavaScript variable so as to be used

when preparing the charts.

Figure 12: Weather forecast charts section (desktop view).

The three charts need to follow a responsive design. The mobile view is shown below.

Figure 13: Weather forecast charts section (mobile view).

https://openweathermap.org/forecast5

8. MySQL Database server

A database server is needed to store user interaction with the web application (username, timestamp,

address, region, city, country of each request). You will use the departmental MySQL database server.

In order to connect to the MySQL server you need the following information:

Server IP/domain name: dbserver.in.cs.ucy.ac.cy

Username: student

Password: gtNgMF8pZyZq6l53

Database name: epl425

It must be noted, that the database server is only accessible within cs internal network or through the

departmental VPN. So, when you test your web application from your own machine (at your local

premises e.g. your home) you need to setup a VPN connection to the CS department in advance. On

the other hand, when you upload your web application to the CS department web server, no action

needed since the web server is within the local network of the database server. The table requests

which is created in the MySQL database for the purposes of this exercise is shown below.

Figure 14: Table reguests to store web application information.

Note: Access to the database to create extra table(s). See Bonus section at the end of the assignment.

You can preview the data you send to database using the php code shown below which is based on Lab 9.

<?php

$conn = mysqli_connect("dbserver.in.cs.ucy.ac.cy", "student",

"gtNgMF8pZyZq6l53") or die("Could not connect: " . mysqli_error($conn));

echo "Connected succesfully
";

mysqli_select_db($conn , "epl425") or die ("db will not open" .

mysqli_error($conn));

$query = "SELECT * FROM requests WHERE username='YOUR USERNAME HERE'";

$result = mysqli_query($conn, $query) or die("Invalid query");

$num = mysqli_num_rows($result);

for($i=0; $i<$num; $i++) {

 $row = mysqli_fetch_row($result);

 echo $row[0] . " " . $row[1] . " " . $row[2] . " " . $row[3] . " " .

$row[4] . " " . $row[5] . " " . $row[6] . "
";

}

?>

9. PHP

You will have to develop a PHP program which will serve as the middleware between the web

application and the MySQL database. The PHP program will provide 2 services:

(a) accept POST messages with Content-type: 'application/json' header: the body

of the POST message will contain a JSON string in message body carrying the user input as

shown in the example below:

{

 "username": "cpanep01",

 "address": "Panepistimiou",

 "region": "Aglantzia",

 "city": "Nicosia",

 "country": "Cyprus",

}

All fields are mandatory, especially the username field, in order to identify the user that provides

this information to the server. You should send your real UCY username. Also, we need to

provide the country name even if this information is not available from the form (you can set it

manually). You are welcome to modify the form in order to provide another one option to the

user. See the bonus section.

If the POST message has empty body or the JSON string is invalid the program will reply with

a “400 Bad Request” message. Otherwise, the program will connect to MySQL DB server and

insert a new tuple on the requests table. The INSERT INTO sql query will contain the 5 values

obtained from the JSON string as well as the current server UNIX timestamp (see the time()

function). If the insertion is successful, the program will reply with “201 Created” message or

a “500 Server Error” message otherwise.

(b) accept GET messages: every time a GET message is received, the program will connect to

MySQL DB server and SELECT the latest 5 tuples of the user that makes the request (username

must be sent from browser). If the data retrieval is successful, the program will reply with a

“200 OK” message with Content-type: 'application/json' header, or a “500

Server Error” message otherwise. If no username was provided, a “400 Bad Request” message

should be sent.

In both cases, the program must close the connection to MySQL DB prior terminating.

10. Submission

1. Your application must be accessible at https://www.cs.ucy.ac.cy/~yourusername/epl425 in order to

be able to grade your application.

2. At the same time, you need to submit all the files of your application to Moodle but prior submitting

it check the following instructions,

3. Provide a readme.txt file which refers to:

https://www.cs.ucy.ac.cy/~yourusername/epl425

• requested functionality that was not implemented

• any modifications/additions you have done over and above the requested functionalities,

• credentials (username, password) needed to connect to the system in case you implemented

login form and related functionality

• any bonus functionality/ies that you may have implemented (see below for bonus)

• the full url to your web application on the CS webserver

so as to know what to expect when running your application.

Create a .zip file that will contain all the files of the webpage plus the readme.txt and submit it to

Moodle.

BONUS (up to 10%): You can add any functionalities you want on top of those described above,

as for example, a user login form with a supporting table of registered users in MySQL, interaction

with other APIs, etc.

Examples:

1. Add country option on form (you can use an API to obtain the names of all countries). In this

case you will send the selected country name to database in table requests.

2. Add user registration and login form. A table named registered_users is also created in the

epl425 database with the following schema:

Figure 15: Table registered_users to store web application information.

In case you need to add your own table into the epl425 database you can login to phpMyAdmin

dashboard at: https://phpmyadmin.in.cs.ucy.ac.cy/ (via VPN or cs internal network only) using

the credentials mentioned in Section 8.

3. Add datepicker on form (see bootstrap datepicker here https://codepen.io/milz/pen/xbXpWw)

https://phpmyadmin.in.cs.ucy.ac.cy/
https://codepen.io/milz/pen/xbXpWw

