
1

EPL372
Lab Exercise 5:
Introduction to OpenMP

References:
https://computing.llnl.gov/tutorials/openMP/
http://openmp.org/wp/openmp-specifications/
http://openmp.org/mp-documents/OpenMP-4.0-C.pdf
http://openmp.org/mp-documents/OpenMP4.0.0.Examples.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/omp_tutorial2.pdf

2

What is OpenMP

OpenMP: An API for Writing Multithreaded
Applications

• A set of compiler directives and library routines for parallel
application programmers

• Greatly simplifies writing multi-threaded (MT) programs in
Fortran, C and C++

• Standardizes last 20 years of SMP practice
• Current Version 4.0 (http://openmp.org/wp/openmp-

specifications/)

3

OpenMP Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,
Compiler OpenMP library Environment

variables

Application

End User

Shared Address Space

Proc3Proc2Proc1 ProcN

4

History of OpenMP

Today version 4.0 http://openmp.org/mp-documents/OpenMP-4.0-C.pdf

5

Programming Execution Model
Shared Memory, Thread Based Parallelism:
OpenMP is based upon the existence of multiple threads in the shared memory
programming paradigm. A shared memory process consists of multiple threads.
Explicit Parallelism:
OpenMP is an explicit (not automatic) programming model, offering the programmer
full control over parallelization.
Fork - Join Model:
- OpenMP uses the fork-join model of parallel execution
- All OpenMP programs begin as a single process: the master thread. The master
thread executes sequentially until the first parallel region construct is encountered
- FORK: the master thread then creates a team of parallel threads
- The statements in the program that are enclosed by the parallel region construct are
then executed in parallel among the various team threads
- JOIN: When the team threads complete the statements in the parallel region
construct, they synchronize and terminate, leaving only the master

thread

6

The essence of OpenMP
• Create threads that execute in a shared address space:
– The only way to create threads is with the “parallel construct”
– Once created, all threads execute the code inside the construct.

• Split up the work between threads by one of two means:
– SPMD (Single program Multiple Data) … all threads execute the same
code and you use the thread ID to assign work to a thread.
– Workshare constructs split up loops and tasks between threads.

• Manage data environment to avoid data access conflicts
– Synchronization so correct results are produced regardless of how
threads are scheduled.
– Carefully manage which data can be private (local to each thread) and
shared.

7

OpenMP core syntax
 Most of the constructs in OpenMP are compiler directives.

#pragma omp construct [clause [clause]…]
 Example

#pragma omp parallel num_threads(4)

 Function prototypes and types in the file:
#include <omp.h>

 Most OpenMP* constructs apply to a “structured block”.
 Structured block: a block of one or more statements with one point

of entry at the top and one point of exit at the bottom.
 It’s OK to have an exit() within the structured block.

C / C++ - General Code Structure
#include <omp.h>
main () {
int var1, var2, var3;
Serial code

.
Beginning of parallel section. Fork a team of threads.
Specify variable scoping
#pragma omp parallel private(var1, var2) shared(var3)

{
Parallel section executed by all threads

.
Other OpenMP directives

.
Run-time Library calls

.
All threads join master thread and disband
}

Resume serial code
.

}

8

Specifying the number of threads

The number of threads is controlled by an internal control
variable (ICV) called nthreads-var.
When a parallel construct is found a parallel region with a
maximum of nthreads-var is created
Parallel constructs can be nested creating nested
parallelism
The nthreads-var can be modified through

the omp_set_num_threads API called (omp_set_num_threads (2))
the OMP_NUM_THREADS environment variable

Additionally, the num_threads clause causes the
implementation to ignore the ICV and use the value of the
clause for that region.

9

Other useful routines – API calls

int omp_get_num_threads()
Returns the number of threads in the current team

int omp_get_thread_num()
Returns the id of the thread in the current team

int omp_get_num_procs()
Returns the number of processors in the machine

int omp_get_max_threads()
Returns the maximum number of threads that will be used

in the next parallel region
double omp_get_wtime()

Returns the number of seconds since an arbitrary point in
the past

10

Data environment

shared the variable inside the construct is the same as
the one outside the construct.
private the variable inside the construct is a new variable
of the same type with an undefined value
Firstprivate the variable inside the construct is a new
variable of the same type but it is initialized to the original
variable value.

11

12

REDUCTION Clause
Purpose:
The REDUCTION clause performs a reduction on the variables that appear in its list.
A private copy for each list variable is created for each thread. At the end of the reduction, the reduction variable
is applied to all private copies of the shared variable, and the final result is written to the global shared variable.

13

#include <omp.h>
main () { int i, n, chunk;
float a[100], b[100], result;
/* Some initializations */
n = 100; chunk = 10; result = 0.0;
for (i=0; i < n; i++)
{ a[i] = i * 1.0; b[i] = i * 2.0; }
#pragma omp parallel for \
default(shared) private(i) \
schedule(static,chunk) \
reduction(+:result)
for (i=0; i < n; i++)
result = result + (a[i] * b[i]);
printf("Final result= %f\n",result); }

14

OpenMP Examples

Compile and Run ExampleOMP1.c
Compile and Run ExampleOMP2.c
Compile and Run ExampleOMP3.c

Debuging OpenMP Threads

gcc -fopenmp -Wall -Werror example3OMP.c -g -o a.out
gdb ./a.out
b 47
r
thread
info threads

15

