
1

EPL372
Lab Exercise 5: (MPI Lecture)
Introduction to MPI

References:
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/exercise.html
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Why MPI?

2

 It is NOT a library - but rather the specification of what
such a library should be.

 An MPI library is the most important piece of software in
parallel programming.

 All the world’s largest supercomputers are programmed
using MPI

Message Passing Programming Paradigm

3

Message Passing Programming Paradigm

4

 All variables are private
 Processes communicate with messages using:

 Special subroutine calls

 Typically:
 A single program is running on each processor

General MPI Program Structure

5

Communicators and Groups

MPI uses objects called communicators and groups to define which
collection of processes may communicate with each other.
Most MPI routines require you to specify a communicator as an
argument.
MPI_COMM_WORLD is the predefined communicator that includes
all of your MPI processes.

6

MPI Syntax

7

 Header file:
 #include <mpi.h>

 Function Format:
 error = MPI_Xxxxx(parameter, ...);

 MPI_Xxxxx(parameter, ...);

Rank

Within a communicator, every process has its own
unique, integer identifier assigned by the system when
the process initializes. A rank is sometimes also called a
"task ID". Ranks are contiguous and begin at zero
(MASTER).
Rank is used by the programmer to specify the source
and destination of messages. Often used conditionally by
the application to control program execution (if rank=0 do
this / if rank=1 do that).

8

MPI_Comm_rank(MPI_COMM_WORLD,&taskid);

MPI_Init

Initializes the MPI execution environment. This function
must be called in every MPI program, must be called
before any other MPI functions and must be called only
once in an MPI program.
For C programs, MPI_Init may be used to pass the
command line arguments to all processes, although this
is not required by the standard and is implementation
dependent.

9

MPI_Init(&argc, &argv);

MPI_Comm_size

Returns the total number of MPI processes in the
specified communicator, such as MPI_COMM_WORLD.
If the communicator is MPI_COMM_WORLD, then it
represents the number of MPI tasks available to your
application.

10

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

MPI_Get_processor_name

Returns the processor name. Also returns the length of
the name. The buffer for "name" must be at least
MPI_MAX_PROCESSOR_NAME characters in size.
What is returned into "name" is implementation
dependent - may not be the same as the output of the
"hostname" or "host" shell commands.

11

MPI_Get_processor_name(hostname, &len);

MPI_Finalize

Terminates the MPI execution environment. This function
should be the last MPI routine called in every MPI
program - no other MPI routines may be called after it.

12

MPI_Finalize();

Environment Management Routines Example

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
int numtasks, rank, len, rc;
char hostname[MPI_MAX_PROCESSOR_NAME];

rc = MPI_Init(&argc,&argv);
if (rc != MPI_SUCCESS) {

printf ("Error starting MPI program. Terminating.\n");
MPI_Abort(MPI_COMM_WORLD, rc);
}

MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Get_processor_name(hostname, &len);
printf ("Number of tasks= %d My rank= %d Running on %s\n",

numtasks,rank,hostname);

/******* do some work *******/

MPI_Finalize();
}

13

Sending Messages

A system buffer area is reserved to hold data in transit

Petros Panayi 14

Point-to-Point Operations - Blocking vs. Non-blocking:

Blocking:
 A blocking send routine will only "return" after it is safe to modify the

application buffer (your send data) for reuse. Safe means that
modifications will not affect the data intended for the receive task.
Safe does not imply that the data was actually received - it may very
well be sitting in a system buffer.

 A blocking send can be synchronous which means there is
handshaking occurring with the receive task to confirm a safe send.

 A blocking send can be asynchronous if a system buffer is used to
hold the data for eventual delivery to the receive.

 A blocking receive only "returns" after the data has arrived and is
ready for use by the program.

Petros Panayi 15

Point-to-Point Operations - Blocking vs. Non-blocking:

Non-blocking:
 Non-blocking send and receive routines behave similarly -

they will return almost immediately. They do not wait for any
communication events to complete, such as message
copying from user memory to system buffer space or the
actual arrival of message.

 Non-blocking operations simply "request" the MPI library to
perform the operation when it is able. The user can not
predict when that will happen.

 It is unsafe to modify the application buffer (your variable
space) until you know for a fact the requested non-blocking
operation was actually performed by the library. There are
"wait" routines used to do this.

 Non-blocking communications are primarily used to overlap
computation with communication and exploit possible
performance gains.

Petros Panayi 16

Order and Fairness
Order:

 MPI guarantees that messages will not overtake each other.
 If a sender sends two messages (Message 1 and Message 2) in succession to the same

destination, and both match the same receive, the receive operation will receive Message
1 before Message 2.

 If a receiver posts two receives (Receive 1 and Receive 2), in succession, and both are
looking for the same message, Receive 1 will receive the message before Receive 2.

 Order rules do not apply if there are multiple threads participating in the communication
operations.

Fairness:
 MPI does not guarantee fairness - it's up to the programmer to prevent "operation

starvation".
 Example: task 0 sends a message to task 2. However, task 1 sends a competing

message that matches task 2's receive. Only one of the sends will complete.

Petros Panayi 17

MPI Message Passing Routine Arguments

Blocking sends MPI_Send(buffer,count,type,dest,tag,comm)

Non-blocking sends MPI_Isend(buffer,count,type,dest,tag,comm,request)

Blocking receive MPI_Recv(buffer,count,type,source,tag,comm,status)

Non-blocking receive MPI_Irecv(buffer,count,type,source,tag,comm,request)

Petros Panayi 18

Buffer
Program (application) address space that references the data that is to
be sent or received. In most cases, this is simply the variable name
that is be sent/received. For C programs, this argument is passed by
reference and usually must be prepended with an ampersand: &var1
Data Count
Indicates the number of data elements of a particular type to be sent.
Data Type
For reasons of portability, MPI predefines its elementary data types. The
table below lists those required by the standard. (i.e MPI_INT)
https://computing.llnl.gov/tutorials/mpi/#Routine_Arguments

MPI Message Passing Routine Arguments

Blocking sends MPI_Send(buffer,count,type,dest,tag,comm)

Non-blocking sends MPI_Isend(buffer,count,type,dest,tag,comm,request)

Blocking receive MPI_Recv(buffer,count,type,source,tag,comm,status)

Non-blocking receive MPI_Irecv(buffer,count,type,source,tag,comm,request)

Petros Panayi 19

MPI Message Passing Routine Arguments

Blocking sends MPI_Send(buffer,count,type,dest,tag,comm)

Non-blocking sends MPI_Isend(buffer,count,type,dest,tag,comm,request)

Blocking receive MPI_Recv(buffer,count,type,source,tag,comm,status)

Non-blocking receive MPI_Irecv(buffer,count,type,source,tag,comm,request)

Petros Panayi 20

Destination
An argument to send routines that indicates the process where a
message should be delivered. Specified as the rank of the receiving
process.

Source
An argument to receive routines that indicates the originating process
of the message. Specified as the rank of the sending process. This may
be set to the wild card MPI_ANY_SOURCE to receive a message from
any task.

MPI Message Passing Routine Arguments

Blocking sends MPI_Send(buffer,count,type,dest,tag,comm)

Non-blocking sends MPI_Isend(buffer,count,type,dest,tag,comm,request)

Blocking receive MPI_Recv(buffer,count,type,source,tag,comm,status)

Non-blocking receive MPI_Irecv(buffer,count,type,source,tag,comm,request)

Petros Panayi 21

Tag
Arbitrary non-negative integer assigned by the programmer to uniquely
identify a message. Send and receive operations should match message
tags. For a receive operation, the wild card MPI_ANY_TAG can be used
to receive any message regardless of its tag. The MPI standard
guarantees that integers 0-32767 can be used as tags, but most
implementations allow a much larger range than this.
Communicator
Indicates the communication context, or set of processes for which the
source or destination fields are valid. Unless the programmer is
explicitly creating new communicators, the predefined communicator
MPI_COMM_WORLD is usually used.

MPI Message Passing Routine Arguments

Blocking sends MPI_Send(buffer,count,type,dest,tag,comm)

Non-blocking sends MPI_Isend(buffer,count,type,dest,tag,comm,request)

Blocking receive MPI_Recv(buffer,count,type,source,tag,comm,status)

Non-blocking receive MPI_Irecv(buffer,count,type,source,tag,comm,request)

Petros Panayi 22

Status
For a receive operation, indicates the source of the message and the tag of
the message. In C, this argument is a pointer to a predefined structure
MPI_Status (ex. stat.MPI_SOURCE stat.MPI_TAG). Additionally, the actual
number of bytes received are obtainable from Status via the
MPI_Get_count routine.
Request
Used by non-blocking send and receive operations. Since non-blocking
operations may return before the requested system buffer space is
obtained, the system issues a unique "request number". The programmer
uses this system assigned "handle" later (in a WAIT type routine) to
determine completion of the non-blocking operation. In C, this argument is
a pointer to a predefined structure MPI_Request.

Example of Blocked Send/Receive

Petros Panayi 23

MPI_Waitall

MPI_Waitall - Waits for all given communications to complete
int MPI_Waitall(

int count,
MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

INPUT PARAMETERS
count - lists length (integer)
array_of_requests - array of requests (array of handles)

OUTPUT PARAMETER
array_of_statuses - array of status objects (array of Status). May be MPI_STA-

TUSES_IGNORE

24

Example of Non-Blocked Send/Receive

Petros Panayi 25

Calculating the Value of Pi

26

Pseudo code solution

27

Collective Communication Routines

Petros Panayi 28

https://computing.llnl.gov/tutorials/mpi/

MPI_Barrier

Synchronization operation. Creates a barrier
synchronization in a group. Each task, when reaching the
MPI_Barrier call, blocks until all tasks in the group reach
the same MPI_Barrier call. Then all tasks are free to
proceed.

Petros Panayi 29

MPI_Barrier (MPI_COMM_WORLD)

https://www.open-mpi.org/doc/v1.8/man3/MPI_Barrier.3.php

Collective Communication Routines

MPI_Scatter
Data movement operation. Distributes distinct messages
from a single source task to each task in the group.

Petros Panayi 30

MPI_Scatter (&sendbuf,sendcnt,sendtype,&recvbuf,
recvcnt,recvtype,root,comm)

MPI_Scatter

Petros Panayi 31

https://computing.llnl.gov/tutorials/mpi/

https://www.open-mpi.org/doc/v1.8/man3/MPI_Scatter.3.php

MPI_Scatter Example

Petros Panayi 32

MPI_Scatter Example

Petros Panayi 33

MPI_Gather

Petros Panayi 34

https://computing.llnl.gov/tutorials/mpi/

https://www.open-mpi.org/doc/v1.8/man3/MPI_Gather.3.php

MPI_Allgather

Petros Panayi 35

https://computing.llnl.gov/tutorials/mpi/

https://www.open-mpi.org/doc/v1.8/man3/MPI_Allgather.3.php

MPI_Reduce

Petros Panayi 36

https://computing.llnl.gov/tutorials/mpi/

https://www.open-mpi.org/doc/v1.8/man3/MPI_Reduce.3.php

MPI_Reduce Example
Collective computation operation. Applies a reduction
operation on all tasks in the group and places the result in
one task.

Petros Panayi 37

MPI_Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm)

MPI_AllReduce

Petros Panayi 38

https://computing.llnl.gov/tutorials/mpi/

https://www.open-mpi.org/doc/v1.8/man3/MPI_Allreduce.3.php

MPI_Bcast on Matrix Multiplication

Petros Panayi 39

https://computing.llnl.gov/tutorials/mpi/

https://www.open-mpi.org/doc/v1.8/man3/MPI_Bcast.3.php

MPI_Bcast on Matrix Multiplication

Petros Panayi 40

https://computing.llnl.gov/tutorials/mpi/

Petros Panayi 41

