
1

EPL372
Lab Exercise 2:
Threads and pThreads

Εργαστήριο 2

Πέτρος Παναγή

Threads Vs Processes

2

Process

3

A process is created by the operating system, and requires a fair amount of "overhead".
Processes contain information about program resources and program execution state,
including:
 Process ID, process group ID, user ID, and group

ID
 Environment
 Working directory.
 Program instructions
 Registers
 Stack
 Heap
 File descriptors
 Signal actions
 Shared libraries
 Inter-process communication tools (such as

message queues, pipes, semaphores, or shared
memory).

Threads characteristics

Threads use and exist within these process resources,
yet are able to be scheduled by the operating system
and run as independent entities largely because they
duplicate only the bare essential resources that enable
them to exist as executable code.
Most operating systems support programs that have
multiple threads of execution. Although implementations
differ, they usually possess the following common
characteristics:
• Shared address space - threads can read/write

the same variables and execute the same code.
• Private execution context - every thread has its

own set of registers
• Private execution stack - every thread has

address space reserved for its stack
• Thread - process association - threads exist

within and use the resources of a process. They
cannot exist outside of a process

4https://computing.llnl.gov/tutorials/pthreads/

The independent flow of control is
accomplished because a thread maintains
its own:
• Stack pointer
• Registers
• Scheduling properties (such as policy or
priority)
• Set of pending and blocked signals
• Thread specific data.

In Summary
 In summary, in the UNIX environment a thread:

 Exists within a process and uses the process resources
 Has its own independent flow of control as long as its parent process exists and the OS

supports it
 Duplicates only the essential resources it needs to be independently schedulable
 May share the process resources with other threads that act equally independently (and

dependently)
 Dies if the parent process dies - or something similar
 Is "lightweight" because most of the overhead has already been accomplished through

the creation of its process.
 Because threads within the same process share resources:

 Changes made by one thread to shared system resources (such as closing a file) will be
seen by all other threads.

 Two pointers having the same value point to the same data.
 Reading and writing to the same memory locations is possible, and therefore requires

explicit synchronization by the programmer. (This is the big Problem with threads)

5

6

Linux POSIX threads library pthread_create

pthread_create - thread creation

SYNOPSIS
#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t
*attr, void *(*start_routine)(void*), void *arg);

The pthread_create() function is used to create a new thread, with
attributes specified by attr, within a process. If attr is NULL, the
default attributes are used. If the attributes specified by attr are
modified later, the thread's attributes are not affected. Upon
successful completion, pthread_create() stores the ID of the
created thread in the location referenced by thread.

http://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

http://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_create.html

pthread_join - wait for thread termination
SYNOPSIS
#include <pthread.h>
int pthread_join(pthread_t thread, void **value_ptr);

DESCRIPTION
The pthread_join() function shall suspend execution of the calling thread
until the target thread terminates, unless the target thread has already
terminated. On return from a successful pthread_join() call with a non-NULL
value_ptr argument, the value passed to pthread_exit() by the terminating
thread shall be made available in the location referenced by value_ptr. When
a pthread_join() returns successfully, the target thread has been terminated.

7

8

pthread_create: Example 1

gcc -lpthread -Werror -Wall thread-create.c -o thread-create

9

pthread_create: Example 2

Download and Run the Second Example:
Do the Changes in the code and explain why the results differ.

