
The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2010, Elsevier Inc. All rights Reserved

Chapter 5

Shared Memory Programming
with OpenMP

An Introduction to Parallel Programming
Peter Pacheco

2Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap

 Writing programs that use OpenMP.

 Using OpenMP to parallelize many serial for
loops with only small changes to the source
code.

 Task parallelism.

 Explicit thread synchronization.

 Standard problems in shared-memory
programming.

C
hapter S

ubtitle

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 2

3

OpenMP

 An API for shared-memory parallel
programming.

 MP = multiprocessing

 Designed for systems in which each thread
or process can potentially have access to
all available memory.

 System is viewed as a collection of cores
or CPU’s, all of which have access to main
memory.

Copyright © 2010, Elsevier Inc. All rights Reserved

4

A shared memory system

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 3

5

Pragmas

 Special preprocessor instructions.

 Typically added to a system to allow
behaviors that aren’t part of the basic C
specification.

 Compilers that don’t support the pragmas
ignore them.

Copyright © 2010, Elsevier Inc. All rights Reserved

#pragma

6Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 4

7Copyright © 2010, Elsevier Inc. All rights Reserved

gcc −g −Wall −fopenmp −o omp_hello omp_hello . c

. / omp_hello 4

compiling

running with 4 threads

Hello from thread 0 of 4

Hello from thread 1 of 4

Hello from thread 2 of 4

Hello from thread 3 of 4 Hello from thread 1 of 4

Hello from thread 2 of 4

Hello from thread 0 of 4

Hello from thread 3 of 4

Hello from thread 3 of 4

Hello from thread 1 of 4

Hello from thread 2 of 4

Hello from thread 0 of 4

possible
outcomes

8

OpenMp pragmas

Copyright © 2010, Elsevier Inc. All rights Reserved

 # pragma omp parallel

 Most basic parallel directive.

 The number of threads that run
the following structured block of code
is determined by the run-time system.

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 5

9

A process forking and joining
two threads

Copyright © 2010, Elsevier Inc. All rights Reserved

10

clause

 Text that modifies a directive.

 The num_threads clause can be added to
a parallel directive.

 It allows the programmer to specify the
number of threads that should execute the
following block.

Copyright © 2010, Elsevier Inc. All rights Reserved

pragma omp parallel num_threads (thread_count)

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 6

11

Of note…

 There may be system-defined limitations on the
number of threads that a program can start.

 The OpenMP standard doesn’t guarantee that
this will actually start thread_count threads.

 Most current systems can start hundreds or even
thousands of threads.

 Unless we’re trying to start a lot of threads, we
will almost always get the desired number of
threads.

Copyright © 2010, Elsevier Inc. All rights Reserved

12

Some terminology

 In OpenMP parlance the collection of
threads executing the parallel block — the
original thread and the new threads — is
called a team, the original thread is called
the master, and the additional threads are
called slaves.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 7

13

In case the compiler doesn’t
support OpenMP

Copyright © 2010, Elsevier Inc. All rights Reserved

include <omp.h>

#ifdef _OPENMP

include <omp.h>

#endif

14

In case the compiler doesn’t
support OpenMP

Copyright © 2010, Elsevier Inc. All rights Reserved

ifdef _OPENMP

int my_rank = omp_get_thread_num ();

int thread_count = omp_get_num_threads ();

e l s e

int my_rank = 0;

int thread_count = 1;

endif

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 8

15

THE TRAPEZOIDAL RULE

Copyright © 2010, Elsevier Inc. All rights Reserved

16

The trapezoidal rule

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 9

17

Serial algorithm

Copyright © 2010, Elsevier Inc. All rights Reserved

18

A First OpenMP Version

1) We identified two types of tasks:
a) computation of the areas of individual

trapezoids, and

b) adding the areas of trapezoids.

2) There is no communication among the
tasks in the first collection, but each task
in the first collection communicates with
task 1b.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 10

19

A First OpenMP Version

3) We assumed that there would be many
more trapezoids than cores.

 So we aggregated tasks by assigning a
contiguous block of trapezoids to each
thread (and a single thread to each core).

Copyright © 2010, Elsevier Inc. All rights Reserved

20

Assignment of trapezoids to threads

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 11

21Copyright © 2010, Elsevier Inc. All rights Reserved

Unpredictable results when two (or more)
threads attempt to simultaneously execute:

global_result += my_result ;

22

Mutual exclusion

Copyright © 2010, Elsevier Inc. All rights Reserved

pragma omp critical

global_result += my_result ;

only one thread can execute

the following structured block at a time

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 12

23Copyright © 2010, Elsevier Inc. All rights Reserved

24Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 13

25

SCOPE OF VARIABLES

Copyright © 2010, Elsevier Inc. All rights Reserved

26

Scope

 In serial programming, the scope of a
variable consists of those parts of a
program in which the variable can be used.

 In OpenMP, the scope of a variable refers
to the set of threads that can access the
variable in a parallel block.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 14

27

Scope in OpenMP

 A variable that can be accessed by all the
threads in the team has shared scope.

 A variable that can only be accessed by a
single thread has private scope.

 The default scope for variables
declared before a parallel block
is shared.

Copyright © 2010, Elsevier Inc. All rights Reserved

28

THE REDUCTION CLAUSE

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 15

29Copyright © 2010, Elsevier Inc. All rights Reserved

We need this more complex version to add each
thread’s local calculation to get global_result.

Although we’d prefer this.

30Copyright © 2010, Elsevier Inc. All rights Reserved

If we use this, there’s no critical section!

If we fix it like this…

… we force the threads to execute sequentially.

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 16

31Copyright © 2010, Elsevier Inc. All rights Reserved

We can avoid this problem by declaring a private
variable inside the parallel block and moving

the critical section after the function call.

32Copyright © 2010, Elsevier Inc. All rights Reserved

I don’t
like it.

Neither
do I.

I think we
can do
better.

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 17

33

Reduction operators

 A reduction operator is a binary operation
(such as addition or multiplication).

 A reduction is a computation that
repeatedly applies the same reduction
operator to a sequence of operands in
order to get a single result.

 All of the intermediate results of the
operation should be stored in the same
variable: the reduction variable.

Copyright © 2010, Elsevier Inc. All rights Reserved

34Copyright © 2010, Elsevier Inc. All rights Reserved

A reduction clause can be added to a parallel
directive.

+, *, -, &, |, ˆ, &&, ||

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 18

35

THE “PARALLEL FOR”
DIRECTIVE

Copyright © 2010, Elsevier Inc. All rights Reserved

36

Parallel for

 Forks a team of threads to execute the
following structured block.

 However, the structured block following the
parallel for directive must be a for loop.

 Furthermore, with the parallel for directive
the system parallelizes the for loop by
dividing the iterations of the loop among
the threads.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 19

37Copyright © 2010, Elsevier Inc. All rights Reserved

38

Legal forms for parallelizable for
statements

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 20

39

Caveats

 The variable index must have integer or
pointer type (e.g., it can’t be a float).

 The expressions start, end, and incr must
have a compatible type. For example, if
index is a pointer, then incr must have
integer type.

Copyright © 2010, Elsevier Inc. All rights Reserved

40

Caveats

 The expressions start, end, and incr must
not change during execution of the loop.

 During execution of the loop, the variable
index can only be modified by the
“increment expression” in the for
statement.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 21

41

Data dependencies

Copyright © 2010, Elsevier Inc. All rights Reserved

1 1 2 3 5 8 13 21 34 55

1 1 2 3 5 8 0 0 0 0this is correct

but sometimes
we get this

fibo[0] = fibo[1] = 1;
for (i = 2; i < n; i++)

fibo[i] = fibo[i – 1] + fibo[i – 2];

fibo[0] = fibo[1] = 1;
pragma omp parallel for num_threads(2)
for (i = 2; i < n; i++)

fibo[i] = fibo[i – 1] + fibo[i – 2];

note 2 threads

42

What happened?

1. OpenMP compilers don’t
check for dependences
among iterations in a loop
that’s being parallelized with
a parallel for directive.

2. A loop in which the results
of one or more iterations
depend on other iterations
cannot, in general, be
correctly parallelized by
OpenMP.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 22

43

 If the run-time system assign

 Fibo[2], Fibo[3], Fibo[4], Fibo[5] to Thread 0

 Fibo[6], Fibo[7], Fibo[8], Fibo[9] to Thread 1

 Then you get the 11 2358 0000

Copyright © 2010, Elsevier Inc. All rights Reserved

44

 1. OpenMP compilers don’t check for dependences
among iterations in a loop that’s being parallelized with a
parallel for directive. It’s up to us, the programmers, to
identify these dependences.

 2. A loop in which the results of one or more iterations
depend on other iterations cannot, in general, be
correctly parallelized by OpenMP.

 The dependence of the computation of fibo[6] on the
computation of fibo[5] is called a data dependence.
Since the value of fibo[5] is calculated in one iteration,
and the result is used in a subsequent iteration, the
dependence is sometimes called a loop-carried
dependence.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 23

45

Finding loop-carried dependencies

for (i = 0; i < n; i++) {

x[i] = a + i∗h;

y[i] = exp(x[i]);

}

 There is a data dependence between Lines 2 and 3. However, there
is no problem with the parallelization

pragma omp parallel for num threads(thread count)

for (i = 0; i < n; i++) {

x[i] = a + i∗h;

y[i] = exp(x[i]);

}

 The computation of x[i] and its subsequent use will always be
assigned to the same thread.

opyright © 2010, Elsevier Inc. All rights Reserved

46

Estimating π

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 24

47

OpenMP solution #1

Copyright © 2010, Elsevier Inc. All rights Reserved

loop dependency

48

OpenMP solution #2

Copyright © 2010, Elsevier Inc. All rights Reserved

Insures factor has
private scope.

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 25

49

The default clause

 Lets the programmer specify the scope of
each variable in a block.

 With this clause the compiler will require
that we specify the scope of each variable
we use in the block and that has been
declared outside the block.

Copyright © 2010, Elsevier Inc. All rights Reserved

50

The default clause

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 26

51

MORE ABOUT LOOPS IN
OPENMP: SORTING

Copyright © 2010, Elsevier Inc. All rights Reserved

52

Bubble Sort

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 27

53

Serial Odd-Even Transposition Sort

Copyright © 2010, Elsevier Inc. All rights Reserved

54

Serial Odd-Even Transposition Sort

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 28

55

First OpenMP Odd-Even Sort

Copyright © 2010, Elsevier Inc. All rights Reserved

Odd-even transposition sort is a
sorting algorithm that’s similar to
bubble sort, but that has
considerably more opportunities
for parallelism.

56

Second OpenMP Odd-Even Sort

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 29

57Copyright © 2010, Elsevier Inc. All rights Reserved

Odd-even sort with two parallel for directives and two for directives.

(Times are in seconds.)

58

SCHEDULING LOOPS

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 30

59Copyright © 2010, Elsevier Inc. All rights Reserved

We want to parallelize

this loop.

Assignment of work
using cyclic partitioning.

t = number of
threads

60Copyright © 2010, Elsevier Inc. All rights Reserved

Our definition of function f.

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 31

61

Results

 f(i) calls the sin function i times.

 Assume the time to execute f(2i) requires
approximately twice as much time as the
time to execute f(i).

 n = 10,000
 one thread

 run-time = 3.67 seconds.

Copyright © 2010, Elsevier Inc. All rights Reserved

62

Results

 n = 10,000
 two threads

 default assignment

 run-time = 2.76 seconds

 speedup = 1.33

 n = 10,000
 two threads

 cyclic assignment

 run-time = 1.84 seconds

 speedup = 1.99

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 32

63

The Schedule Clause

 Default schedule:

 Cyclic schedule:

Copyright © 2010, Elsevier Inc. All rights Reserved

64

schedule (type , chunksize)

 Type can be:
 static: the iterations can be assigned to the

threads before the loop is executed.

 dynamic or guided: the iterations are assigned
to the threads while the loop is executing.

 auto: the compiler and/or the run-time system
determine the schedule.

 runtime: the schedule is determined at run-
time.

 The chunksize is a positive integer.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 33

65

The Static Schedule Type

Copyright © 2010, Elsevier Inc. All rights Reserved

twelve iterations, 0, 1, . . . , 11, and three threads

66

The Static Schedule Type

Copyright © 2010, Elsevier Inc. All rights Reserved

twelve iterations, 0, 1, . . . , 11, and three threads

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 34

67

The Static Schedule Type

Copyright © 2010, Elsevier Inc. All rights Reserved

twelve iterations, 0, 1, . . . , 11, and three threads

68

The Dynamic Schedule Type

 The iterations are also broken up into chunks
of chunksize consecutive iterations.

 Each thread executes a chunk, and when a
thread finishes a chunk, it requests another
one from the run-time system.

 This continues until all the iterations are
completed.

 The chunksize can be omitted. When it is
omitted, a chunksize of 1 is used.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 35

69

The Guided Schedule Type

 Each thread also executes a chunk, and when a
thread finishes a chunk, it requests another one.

 However, in a guided schedule, as chunks are
completed the size of the new chunks
decreases.

 If no chunksize is specified, the size of the
chunks decreases down to 1.

 If chunksize is specified, it decreases down to
chunksize, with the exception that the very last
chunk can be smaller than chunksize.

Copyright © 2010, Elsevier Inc. All rights Reserved

70Copyright © 2010, Elsevier Inc. All rights Reserved

Assignment of trapezoidal rule iterations 1–9999 using
a guided schedule with two threads.

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 36

71

The Runtime Schedule Type

 The system uses the environment variable
OMP_SCHEDULE to determine at run-
time how to schedule the loop.

 The OMP_SCHEDULE environment
variable can take on any of the values that
can be used for a static, dynamic, or
guided schedule.

Copyright © 2010, Elsevier Inc. All rights Reserved

72

PRODUCERS AND
CONSUMERS

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 37

73

Queues

 Can be viewed as an abstraction of a line of
customers waiting to pay for their groceries in a
supermarket.

 A natural data structure to use in many
multithreaded applications.

 For example, suppose we have several
“producer” threads and several “consumer”
threads.
 Producer threads might “produce” requests for data.

 Consumer threads might “consume” the request by
finding or generating the requested data.

Copyright © 2010, Elsevier Inc. All rights Reserved

74

Message-Passing

 Each thread could have a shared message
queue, and when one thread wants to
“send a message” to another thread, it
could enqueue the message in the
destination thread’s queue.

 A thread could receive a message by
dequeuing the message at the head of its
message queue.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 38

75

Message-Passing

Copyright © 2010, Elsevier Inc. All rights Reserved

76

Sending Messages

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 39

77

Receiving Messages

Copyright © 2010, Elsevier Inc. All rights Reserved

78

Termination Detection

Copyright © 2010, Elsevier Inc. All rights Reserved

each thread increments this after
completing its for loop

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 40

79

Startup (1)

 When the program begins execution, a
single thread, the master thread, will get
command line arguments and allocate an
array of message queues: one for each
thread.

 This array needs to be shared among the
threads, since any thread can send to any
other thread, and hence any thread can
enqueue a message in any of the queues.

Copyright © 2010, Elsevier Inc. All rights Reserved

80

Startup (2)

 One or more threads may finish allocating
their queues before some other threads.

 We need an explicit barrier so that when a
thread encounters the barrier, it blocks
until all the threads in the team have
reached the barrier.

 After all the threads have reached the
barrier all the threads in the team can
proceed.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 41

81

The Atomic Directive (1)

 Unlike the critical directive, it can only
protect critical sections that consist of a
single C assignment statement.

 Further, the statement must have one of
the following forms:

Copyright © 2010, Elsevier Inc. All rights Reserved

82

The Atomic Directive (2)

 Here <op> can be one of the binary operators

 Many processors provide a special load-
modify-store instruction.

 A critical section that only does a load-modify-
store can be protected much more efficiently
by using this special instruction rather than
the constructs that are used to protect more
general critical sections.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 42

83

Critical Sections

 OpenMP provides the option of adding a
name to a critical directive:

 When we do this, two blocks protected
with critical directives with different names
can be executed simultaneously.

 However, the names are set during
compilation, and we want a different critical
section for each thread’s queue.

Copyright © 2010, Elsevier Inc. All rights Reserved

84

Locks

 A lock consists of a data structure and
functions that allow the programmer to
explicitly enforce mutual exclusion in a
critical section.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 43

85

Locks

Copyright © 2010, Elsevier Inc. All rights Reserved

86

Using Locks in the Message-
Passing Program

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 44

87

Using Locks in the Message-
Passing Program

Copyright © 2010, Elsevier Inc. All rights Reserved

88

Some Caveats

1. You shouldn’t mix the different types of
mutual exclusion for a single critical
section.

2. There is no guarantee of fairness in
mutual exclusion constructs.

3. It can be dangerous to “nest” mutual
exclusion constructs.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 45

89

Matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

90

Matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

Run-times and efficiencies
of matrix-vector multiplication
(times are in seconds)

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 46

91Copyright © 2010, Elsevier Inc. All rights Reserved

Thread-Safety

92

Concluding Remarks (1)

 OpenMP is a standard for programming
shared-memory systems.

 OpenMP uses both special functions and
preprocessor directives called pragmas.

 OpenMP programs start multiple threads
rather than multiple processes.

 Many OpenMP directives can be modified
by clauses.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 47

93

Concluding Remarks (2)

 A major problem in the development of
shared memory programs is the possibility
of race conditions.

 OpenMP provides several mechanisms for
insuring mutual exclusion in critical
sections.
 Critical directives

 Named critical directives

 Atomic directives

 Simple locks

Copyright © 2010, Elsevier Inc. All rights Reserved

94

Concluding Remarks (3)

 By default most systems use a block-
partitioning of the iterations in a
parallelized for loop.

 OpenMP offers a variety of scheduling
options.

 In OpenMP the scope of a variable is the
collection of threads to which the variable
is accessible.

Copyright © 2010, Elsevier Inc. All rights Reserved

The University of Adelaide, School of Computer Science 29 April 2014

Chapter 2 — Instructions: Language of the Computer 48

95

Concluding Remarks (4)

 A reduction is a computation that
repeatedly applies the same reduction
operator to a sequence of operands in
order to get a single result.

Copyright © 2010, Elsevier Inc. All rights Reserved

