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A distributed memory system
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A shared memory system
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Hello World! 

Copyright © 2010, Elsevier Inc. All rights Reserved

(a classic)

6

Identifying MPI processes

 Common practice to identify processes by 
nonnegative integer ranks.

 p processes are numbered 0, 1, 2, .. p-1

Copyright © 2010, Elsevier Inc. All rights Reserved
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Our first MPI program
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8

Compilation

Copyright © 2010, Elsevier Inc. All rights Reserved

mpicc -g  -Wall  -o  mpi_hello mpi_hello.c

wrapper script to compile

turns on all warnings

source file

create this executable file name

(as opposed to default a.out)

produce
debugging 

information
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Execution

Copyright © 2010, Elsevier Inc. All rights Reserved

mpiexec -n  <number of processes>   <executable>

mpiexec -n  1  ./mpi_hello

mpiexec -n  4  ./mpi_hello

run with 1 process

run with 4 processes

10

Execution

Copyright © 2010, Elsevier Inc. All rights Reserved

mpiexec -n  1  ./mpi_hello

mpiexec -n  4  ./mpi_hello

Greetings from process 0 of 1 !

Greetings from process 0 of 4 !

Greetings from process 1 of 4 !

Greetings from process 2 of 4 !

Greetings from process 3 of 4 !
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MPI Programs
 Written in C.

 Has main.

 Uses stdio.h, string.h, etc.

 Need to add mpi.h header file.

 Identifiers defined by MPI start with 
“MPI_”.

 First letter following underscore is 
uppercase.
 For function names and MPI-defined types.

 Helps to avoid confusion.

Copyright © 2010, Elsevier Inc. All rights Reserved

12

MPI Components

 MPI_Init
 Tells MPI to do all the necessary setup.

 MPI_Finalize
 Tells MPI we’re done, so clean up anything 

allocated for this program.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Basic Outline

Copyright © 2010, Elsevier Inc. All rights Reserved

14

Communicators 

 A collection of processes that can send 
messages to each other.

 MPI_Init defines a communicator that 
consists of all the processes created when 
the program is started.

 Called MPI_COMM_WORLD.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Communicators

Copyright © 2010, Elsevier Inc. All rights Reserved

number  of processes in the communicator

my rank 
(the process making this call)

16

SPMD

 Single-Program Multiple-Data

 We compile one program.

 Process 0 does something different.
 Receives messages and prints them while the 

other processes do the work.

 The if-else construct makes our program 
SPMD.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Communication

Copyright © 2010, Elsevier Inc. All rights Reserved

18

Data types
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Communication

Copyright © 2010, Elsevier Inc. All rights Reserved

20

Message matching

Copyright © 2010, Elsevier Inc. All rights Reserved

MPI_Send

src = q

MPI_Recv

dest  = r

r

q
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Receiving messages

 A receiver can get a message without 
knowing:
 the amount of data in the message,

 the sender of the message,

 or the tag of the message.

Copyright © 2010, Elsevier Inc. All rights Reserved

22

status_p  argument

Copyright © 2010, Elsevier Inc. All rights Reserved

MPI_SOURCE

MPI_TAG

MPI_ERROR

MPI_Status*

MPI_Status*  status;

status.MPI_SOURCE

status.MPI_TAG
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How much data am I receiving?

Copyright © 2010, Elsevier Inc. All rights Reserved

24

Issues with send and receive

 Exact behavior is determined by the MPI 
implementation.

 MPI_Send may behave differently with 
regard to buffer size, cutoffs and blocking.

 MPI_Recv always blocks until a matching 
message is received.

 Know your implementation;
don’t make assumptions!

Copyright © 2010, Elsevier Inc. All rights Reserved
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TRAPEZOIDAL RULE IN MPI

Copyright © 2010, Elsevier Inc. All rights Reserved

26

The Trapezoidal Rule

Copyright © 2010, Elsevier Inc. All rights Reserved
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The Trapezoidal Rule

Copyright © 2010, Elsevier Inc. All rights Reserved

28

One trapezoid

Copyright © 2010, Elsevier Inc. All rights Reserved
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Pseudo-code for a serial 
program

Copyright © 2010, Elsevier Inc. All rights Reserved

30

Parallelizing the Trapezoidal Rule

1. Partition problem solution into tasks.

2. Identify communication channels between 
tasks.

3. Aggregate tasks into composite tasks.

4. Map composite tasks to cores.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Parallel pseudo-code

Copyright © 2010, Elsevier Inc. All rights Reserved

32

Tasks and communications for 
Trapezoidal Rule

Copyright © 2010, Elsevier Inc. All rights Reserved
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First version (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

34

First version (2)

Copyright © 2010, Elsevier Inc. All rights Reserved



The University of Adelaide, School of Computer Science 4 March 2015

Chapter 2 — Instructions: Language of the Computer 18

35

First version (3)

Copyright © 2010, Elsevier Inc. All rights Reserved

36

Dealing with I/O

Copyright © 2010, Elsevier Inc. All rights Reserved

Each process just
prints a message.
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Running with 6 processes

Copyright © 2010, Elsevier Inc. All rights Reserved

unpredictable output

38

Input 

 Most MPI implementations only allow 
process 0 in MPI_COMM_WORLD access 
to stdin.

 Process 0 must read the data (scanf) and 
send to the other processes.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Function for reading user input

Copyright © 2010, Elsevier Inc. All rights Reserved

40

COLLECTIVE 
COMMUNICATION

Copyright © 2010, Elsevier Inc. All rights Reserved
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Tree-structured communication

1. In the first phase: 
(a) Process 1 sends to 0, 3 sends to 2, 5 sends to 4, and 
7 sends to 6. 
(b) Processes 0, 2, 4, and 6 add in the received values. 
(c) Processes 2 and 6 send their new values to 
processes 0 and 4, respectively.
(d) Processes 0 and 4 add the received values into their 
new values.

2. (a) Process 4 sends its newest value to process 0.
(b) Process 0 adds the received value to its newest 
value.

Copyright © 2010, Elsevier Inc. All rights Reserved

42

A tree-structured global sum

Copyright © 2010, Elsevier Inc. All rights Reserved
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An alternative tree-structured 
global sum

Copyright © 2010, Elsevier Inc. All rights Reserved

44

MPI_Reduce

Copyright © 2010, Elsevier Inc. All rights Reserved
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Predefined reduction operators 
in MPI

Copyright © 2010, Elsevier Inc. All rights Reserved

46

Collective vs. Point-to-Point 
Communications

 All the processes in the communicator 
must call the same collective function. 

 For example, a program that attempts to 
match a call to MPI_Reduce on one 
process with a call to MPI_Recv on 
another process is erroneous, and, in all 
likelihood, the program will hang or crash.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Collective vs. Point-to-Point 
Communications

 The arguments passed by each process to 
an MPI collective communication must be 
“compatible.”

 For example, if one process passes in 0 as 
the dest_process and another passes in 1, 
then the outcome of a call to MPI_Reduce
is erroneous, and, once again, the 
program is likely to hang or crash.

Copyright © 2010, Elsevier Inc. All rights Reserved

48

Collective vs. Point-to-Point 
Communications

 The output_data_p argument is only used 
on dest_process. 

 However, all of the processes still need to 
pass in an actual argument corresponding 
to output_data_p, even if it’s just NULL.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Collective vs. Point-to-Point 
Communications

 Point-to-point communications are 
matched on the basis of tags and 
communicators. 

 Collective communications don’t use tags. 

 They’re matched solely on the basis of the 
communicator and the order in which 
they’re called.

Copyright © 2010, Elsevier Inc. All rights Reserved

50

Example (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

Multiple calls to MPI_Reduce
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Example (2)

 Suppose that each process calls 
MPI_Reduce with operator MPI_SUM, and 
destination process 0. 

 At first glance, it might seem that after the 
two calls to MPI_Reduce, the value of b 
will be 3, and the value of d will be 6. 

Copyright © 2010, Elsevier Inc. All rights Reserved

52

Example (3)

 However, the names of the memory 
locations are irrelevant to the matching of 
the calls to MPI_Reduce. 

 The order of the calls will determine the 
matching so the value stored in b will be 
1+2+1 = 4, and the value stored in d will 
be 2+1+2 = 5.

Copyright © 2010, Elsevier Inc. All rights Reserved
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MPI_Allreduce

 Useful in a situation in which all of the 
processes need the result of a global sum 
in order to complete some larger 
computation.

Copyright © 2010, Elsevier Inc. All rights Reserved

54Copyright © 2010, Elsevier Inc. All rights Reserved

A global sum followed
by distribution of the
result.
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A butterfly-structured global sum.

56

Broadcast

 Data belonging to a single process is sent 
to all of the processes in the 
communicator.

Copyright © 2010, Elsevier Inc. All rights Reserved
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A tree-structured broadcast.

58

A version of Get_input that uses 
MPI_Bcast

Copyright © 2010, Elsevier Inc. All rights Reserved



The University of Adelaide, School of Computer Science 4 March 2015

Chapter 2 — Instructions: Language of the Computer 30

59

Data distributions

Copyright © 2010, Elsevier Inc. All rights Reserved

Compute a vector sum.

60

Serial implementation of vector 
addition

Copyright © 2010, Elsevier Inc. All rights Reserved
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Different partitions of a 12-
component vector among 3 
processes

Copyright © 2010, Elsevier Inc. All rights Reserved

62

Partitioning options

 Block partitioning
 Assign blocks of consecutive components to 

each process.

 Cyclic partitioning
 Assign components in a round robin fashion.

 Block-cyclic partitioning
 Use a cyclic distribution of blocks of 

components.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Parallel implementation of 
vector addition

Copyright © 2010, Elsevier Inc. All rights Reserved

64

Scatter

 MPI_Scatter can be used in a function that 
reads in an entire vector on process 0 but 
only sends the needed components to 
each of the other processes.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Reading and distributing a vector

Copyright © 2010, Elsevier Inc. All rights Reserved

66

Gather

 Collect all of the components of the vector 
onto process 0, and then process 0 can 
process all of the components.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Print a distributed vector (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

68

Print a distributed vector (2)

Copyright © 2010, Elsevier Inc. All rights Reserved
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Allgather

 Concatenates the contents of each 
process’ send_buf_p and stores this in 
each process’ recv_buf_p. 

 As usual, recv_count is the amount of data 
being received from each process.

Copyright © 2010, Elsevier Inc. All rights Reserved

70

Matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

i-th component of y
Dot product of the ith
row of A with x.
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Matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

72

Multiply a matrix by a vector

Copyright © 2010, Elsevier Inc. All rights Reserved

Serial pseudo-code
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C style arrays

Copyright © 2010, Elsevier Inc. All rights Reserved

stored  as

74

Serial matrix-vector 
multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved
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An MPI matrix-vector 
multiplication function (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

76

An MPI matrix-vector 
multiplication function (2)

Copyright © 2010, Elsevier Inc. All rights Reserved
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MPI DERIVED DATATYPES

Copyright © 2010, Elsevier Inc. All rights Reserved

78

Derived datatypes

 Used to represent any collection of data items in 
memory by storing both the types of the items 
and their relative locations in memory.

 The idea is that if a function that sends data 
knows this information about a collection of data 
items, it can collect the items from memory 
before they are sent.

 Similarly, a function that receives data can 
distribute the items into their correct destinations 
in memory when they’re received.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Derived datatypes

 Formally, consists of a sequence of basic 
MPI data types together with a 
displacement for each of the data types.

 Trapezoidal Rule example:

Copyright © 2010, Elsevier Inc. All rights Reserved

80

MPI_Type create_struct

 Builds a derived datatype that consists of 
individual elements that have different 
basic types.

Copyright © 2010, Elsevier Inc. All rights Reserved
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MPI_Get_address

 Returns the address of the memory 
location referenced by location_p.

 The special type MPI_Aint is an integer 
type that is big enough to store an address 
on the system.

Copyright © 2010, Elsevier Inc. All rights Reserved

82

MPI_Type_commit

 Allows the MPI implementation to optimize 
its internal representation of the datatype 
for use in communication functions.

Copyright © 2010, Elsevier Inc. All rights Reserved
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MPI_Type_free

 When we’re finished with our new type, 
this frees any additional storage used.

Copyright © 2010, Elsevier Inc. All rights Reserved

84

Get input function with a derived 
datatype (1)

Copyright © 2010, Elsevier Inc. All rights Reserved
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Get input function with a derived 
datatype (2)

Copyright © 2010, Elsevier Inc. All rights Reserved
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Get input function with a derived 
datatype (3)

Copyright © 2010, Elsevier Inc. All rights Reserved
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PERFORMANCE EVALUATION

Copyright © 2010, Elsevier Inc. All rights Reserved

88

Elapsed parallel time

 Returns the number of seconds that have 
elapsed since some time in the past.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Elapsed serial time

 In this case, you don’t need to link in the 
MPI libraries.

 Returns time in microseconds elapsed 
from some point in the past.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Elapsed serial time

Copyright © 2010, Elsevier Inc. All rights Reserved
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MPI_Barrier

 Ensures that no process will return from 
calling it until every process in the 
communicator has started calling it.

Copyright © 2010, Elsevier Inc. All rights Reserved

92

MPI_Barrier

Copyright © 2010, Elsevier Inc. All rights Reserved
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Run-times of serial and parallel 
matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

(Seconds)

94

Speedup

Copyright © 2010, Elsevier Inc. All rights Reserved
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95

Efficiency

Copyright © 2010, Elsevier Inc. All rights Reserved

96

Speedups of Parallel Matrix-
Vector Multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved
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Efficiencies of Parallel Matrix-
Vector Multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

98

Scalability

 A program is scalable if the problem size 
can be increased at a rate so that the 
efficiency doesn’t decrease as the number 
of processes increase.

Copyright © 2010, Elsevier Inc. All rights Reserved
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99

Scalability

 Programs that can maintain a constant 
efficiency without increasing the problem 
size are sometimes said to be strongly 
scalable.

 Programs that can maintain a constant 
efficiency if the problem size increases at 
the same rate as the number of processes 
are sometimes said to be weakly scalable.

Copyright © 2010, Elsevier Inc. All rights Reserved

100

A PARALLEL SORTING 
ALGORITHM

Copyright © 2010, Elsevier Inc. All rights Reserved
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Sorting

 n keys and p = comm sz processes.

 n/p keys assigned to each process.

 No restrictions on which keys are assigned 
to which processes.

 When the algorithm terminates:
 The keys assigned to each process should be 

sorted in (say) increasing order.

 If 0 ≤ q < r < p, then each key assigned to 
process q should be less than or equal to 
every key assigned to process r.

Copyright © 2010, Elsevier Inc. All rights Reserved

102

Serial bubble sort

Copyright © 2010, Elsevier Inc. All rights Reserved
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Odd-even transposition sort

 A sequence of phases.

 Even phases, compare swaps:

 Odd phases, compare swaps:

Copyright © 2010, Elsevier Inc. All rights Reserved

104

Example

Start:  5, 9, 4, 3

Even phase:  compare-swap (5,9) and (4,3)
getting the list  5, 9, 3, 4

Odd phase:  compare-swap (9,3)
getting the list  5, 3, 9, 4

Even phase:  compare-swap (5,3) and (9,4)
getting the list  3, 5, 4, 9

Odd phase:  compare-swap (5,4)
getting the list  3, 4, 5, 9

Copyright © 2010, Elsevier Inc. All rights Reserved
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105

Serial odd-even transposition 
sort

Copyright © 2010, Elsevier Inc. All rights Reserved

106

Communications among tasks in 
odd-even sort

Copyright © 2010, Elsevier Inc. All rights Reserved

Tasks determining a[i] are labeled with a[i].
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Parallel odd-even transposition 
sort

Copyright © 2010, Elsevier Inc. All rights Reserved
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Pseudo-code

Copyright © 2010, Elsevier Inc. All rights Reserved
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Compute_partner

Copyright © 2010, Elsevier Inc. All rights Reserved

110

Safety in MPI programs

 The MPI standard allows MPI_Send to 
behave in two different ways: 
 it can simply copy the message into an MPI 

managed buffer and return, 

 or it can block until the matching call to 
MPI_Recv starts.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Safety in MPI programs

 Many implementations of MPI set a 
threshold at which the system switches 
from buffering to blocking. 

 Relatively small messages will be buffered 
by MPI_Send.

 Larger messages, will cause it to block.

Copyright © 2010, Elsevier Inc. All rights Reserved

112

Safety in MPI programs

 If the MPI_Send executed by each process 
blocks, no process will be able to start 
executing a call to MPI_Recv, and the 
program will hang or deadlock.

 Each process is blocked waiting for an 
event that will never happen.

Copyright © 2010, Elsevier Inc. All rights Reserved

(see pseudo-code)
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Safety in MPI programs

 A program that relies on MPI provided 
buffering is said to be unsafe. 

 Such a program may run without problems 
for various sets of input, but it may hang or 
crash with other sets.

Copyright © 2010, Elsevier Inc. All rights Reserved

114

MPI_Ssend

 An alternative to MPI_Send defined by the 
MPI standard.

 The extra “s” stands for synchronous and 
MPI_Ssend is guaranteed to block until the 
matching receive starts.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Restructuring communication

Copyright © 2010, Elsevier Inc. All rights Reserved

116

MPI_Sendrecv

 An alternative to scheduling the 
communications ourselves. 

 Carries out a blocking send and a receive 
in a single call. 

 The dest and the source can be the same 
or different. 

 Especially useful because MPI schedules 
the communications so that the program 
won’t hang or crash.
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MPI_Sendrecv

Copyright © 2010, Elsevier Inc. All rights Reserved

118

Safe communication with five 
processes

Copyright © 2010, Elsevier Inc. All rights Reserved
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Parallel odd-even transposition sort

Copyright © 2010, Elsevier Inc. All rights Reserved

120

Run-times of parallel odd-even 
sort

Copyright © 2010, Elsevier Inc. All rights Reserved

(times are in milliseconds)
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Concluding Remarks (1)

 MPI or the Message-Passing Interface is a 
library of functions that can be called from 
C, C++, or Fortran programs.

 A communicator is a collection of 
processes that can send messages to 
each other.

 Many parallel programs use the single-
program multiple data or SPMD approach.

Copyright © 2010, Elsevier Inc. All rights Reserved

122

Concluding Remarks (2)

 Most serial programs are deterministic: if 
we run the same program with the same 
input we’ll get the same output. 

 Parallel programs often don’t possess this 
property.

 Collective communications involve all the 
processes in a communicator.
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Concluding Remarks (3)

 When we time parallel programs, we’re 
usually interested in elapsed time or “wall 
clock time”.

 Speedup is the ratio of the serial run-time 
to the parallel run-time.

 Efficiency is the speedup divided by the 
number of parallel processes.
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Concluding Remarks (4)

 If it’s possible to increase the problem size 
(n) so that the efficiency doesn’t decrease 
as p is increased, a parallel program is 
said to be scalable.

 An MPI program is unsafe if its correct 
behavior depends on the fact that 
MPI_Send is buffering its input.
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