The University of Adelaide, School of Comp

A

PARALLEL |
PROGRAMMING

uter Science

n Introduction to Parallel Programming
Peter Pacheco

Chapter 3

Distributed Memory
Programming with

MPI

Roadmap

s Performanc

Chapter 2 — Instructions: Language of the C

» Writing your first MPI program.

= Using the common MPI functions.
» The Trapezoidal Rule in MPI.

» Collective communication.

= MPI derived datatypes.

e evaluation of MPI programs.

n Parallel sorting.
n Safety in MPI programs.

omputer

ajngns Jeydeyd #

4 March 2015

The University of Adelaide, School of Computer Science

A distributed memory system

| CPU | | cPU | | cPU | CPU

| Memory | | Memory | | Memory |

| Interconnect |

A shared memory system

CPU CPU CPU CPU
[[j [
| Interconnect |
[
Memory

Chapter 2 — Instructions: Language of the Computer

4 March 2015

The University of Adelaide, School of Computer Science 4 March 2015

Hello World!

#include <stdio.h>

int main(void) {
printf("hello, world\n"):

return 0O;

(a classic)

Identifying MPI processes

» Common practice to identify processes by
nonnegative integer ranks.

m) processes are numbered O, 1, 2, .. p-1

Chapter 2 — Instructions: Language of the Computer 3

The University of Adelaide, School of Computer Science 4 March 2015

QOur first MPI program

Zinclude <stdio . h>
#lnclude <siring h= /+« For sirlen o/
ginclude <mpi.h- fe For MPl functions ., ctc =/

consl int MAX_STRING = 100;

Int main{vald) {

char eeting[MAX_STRING]:

b R L R LT

int < i f+ Number of processes «f
int ny i f= My process ramnk =

30 MPI_Finalize();
3 return 0;
32|} /= main =/

Compilation

wrapper script to compile

Y source file

mpicc -g -Wall -o mpi_hello mpi_hello.c

produce \x >create this executable file name

debugging
information

(as opposed to default a.out)

turns on all warnings

Chapter 2 — Instructions: Language of the Computer 4

The University of Adelaide, School of Computer Science 4 March 2015

Execution

mpiexec -n <number of processes> <executable>

mpiexec -n 1 ./mpi_hello

C/ run with 1 process

mpiexec -n 4 ./mpi_hello

run with 4 processes

Execution

mpiexec -n 1 ./mpi_hello

Greetings from process 0 of 1!

mpiexec -n 4 ./mpi_hello

Greetings from process 0 of 4 !
Greetings from process 1 of 4 !
Greetings from process 2 of 4 !
Greetings from process 3 of 4 !

Chapter 2 — Instructions: Language of the Computer 5

The University of Adelaide, School of Computer Science

MPI Programs

n Written in C.
= Has main.
= Uses stdio.h, string.h, etc.
= Need to add mpi.h header file.

= |dentifiers defined by MPI start with
“‘MPI1_".

m First letter following underscore is
uppercase.

= For function names and MPI-defined types.
= Helps to avoid confusion.

MPI Components

= MPI_Init

= Tells MPI to do all the necessary setup.
int MPI_Init(

ints* argo_p fx infout =/,
char=*s+ argv_p /% infout */);

= MPI_Finalize

= Tells MPI we’re done, so clean up anything
allocated for this program.

int MPI_Finalize(void);

Chapter 2 — Instructions: Language of the Computer

4 March 2015

The University of Adelaide, School of Computer Science 4 March 2015

Basic Outline

#include <mpi.h>
int main(int arge. chars argv[]) {

/= No MPI calls before this =/
MPI_Init(&argc, &argv);
MPI_Finalize ();

/= No MPI calls after this =/

return 0;

Communicators

» A collection of processes that can send
messages to each other.

s MPI_Init defines a communicator that

consists of all the processes created when
the program is started.

= Called MP|_COMM_WORLD.

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science 4 March 2015

Communicators

int MPI_Comm_size(
MPI_Comm comm f= 0in %/,
int# COmMm_SZ_p f out */);

number of processes in the communicator

int MPI_Comm_rank(

MPI_Comm comm F= 0in %/,
int# my_rank_p I out #/);
my rank g

(the process making this call)

SPMD

m Single-Program Multiple-Data
= \We compile one program.

m Process 0 does something different.

= Receives messages and prints them while the
other processes do the work.

m The if-else construct makes our program
SPMD.

Chapter 2 — Instructions: Language of the Computer 8

The University of Adelaide, School of Computer Science

Communication

int MPI_Send(

void# msg_buf_p /% in
int msg_size /% In
MPI_Datatype msg_type f% in
int dest [+ in
int tag /% in
MPI_Comm communicater /= in

#/,
#/
#/
#/
#/,
#/);

MPI_LONG_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_EYTE
MPI_PACKED

Data types
MPI datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

signed long long int

unsigned char
unsigned short
unsigned int

int

unsigned long int

float
double
long double

Chapter 2 — Instructions: Language of the Computer

4 March 2015

The University of Adelaide, School of Computer Science

Communication
int MPI_Recv(
void* msg_buf_p [out =/,
int buf_size f= in #/,
MPI_Datatype Dbuf_type [l in %/,
int source f= in #/,
int tag f# in %/,
MPI_Comm communicator /& in %/,
MPI_Statuss status_p [% out #/);

Message matching

MPI_sSend(send_buf_p, send_buf_sz, send_type, ,

r
MPI_Send

sc=q @ . -®

WPl_ReCV
dest =r

, &status):

MPI_Recv(recv_ buf_p, recv_buf_sz, recv_type, @.
q

Chapter 2 — Instructions: Language of the Computer

4 March 2015

10

The University of Adelaide, School of Computer Science 4 March 2015

Receiving messages

m A receiver can get a message without
knowing:
= the amount of data in the message,
= the sender of the message,
= or the tag of the message.

o

F e 4

status_p argument

MPI_Recv(recv_buf_p, recv_buf_sz, recv_type, src, recv_tag,
recv_comm, &status);

%MPI_Status* %

MPI_Status* status; MPI_SOURCE
MPI_TAG

MPI_ERROR

status.MPI_SOURCE
status.MPI_TAG

Chapter 2 — Instructions: Language of the Computer 11

The University of Adelaide, School of Computer Science 4 March 2015

How much data am | receiving?

int MPI Get count(
MPI_Status* status_p J/+ in =/,
MPI_Datatype type F in x=/,
ints* count_p f out =/);

Issues with send and receive

m Exact behavior is determined by the MPI
implementation.

= MPIl_Send may behave differently with
regard to buffer size, cutoffs and blocking.

= MPI_Recv always blocks until a matching
message is received.

= Know your implementation;
don’t make assumptions!

Chapter 2 — Instructions: Language of the Computer 12

The University of Adelaide, School of Computer Science

A
]

TRAPEZOIDAL RULE IN MPI

The Trapezoidal Rule

s

NN

a b

x V

=<V

(a) (b)

Chapter 2 — Instructions: Language of the Computer

4 March 2015

13

The University of Adelaide, School of Computer Science

The Trapezoidal Rule

/
Area of one trapezoid = %[f(xl-) + fxie1)]

Yo=a,xy=a+h,x,=a+2h, ..., x,_ 1 =a+(n—-1)h, x,=b

Sum of trapezoid areas = h[f(xg)/2+ f(x1)+ f(x2) 4+ + f(xn1) + f(xa) /2]

One trapezoid

y
f(x;) -

F(Xi1) 1

Chapter 2 — Instructions: Language of the Computer

4 March 2015

14

The University of Adelaide, School of Computer Science

Pseudo-code for a serial

program

/+ Input: a, b, n =/

h = (b—a)/n;

approx = (f(a) + £(b))/2.0:

for (i = 0; 1 <= n—1;: i++) |
X 1 = a + 1xh;
approx += f(x_1i):

f

approx = hxapprox.:

Parallelizing the Trapezoidal Rule

. Partition problem solution into tasks.

. Identify communication channels between
tasks.

. Aggregate tasks into composite tasks.
. Map composite tasks to cores.

Chapter 2 — Instructions: Language of the Computer

4 March 2015

15

The University of Adelaide, School of Computer Science

Parallel pseudo-code

L S

co ~1 >

L]

11
12
13
14
15
16
17

Get a, b, n;
h = (b—-a)/n:
local_n = n/comm_sz:
local_a = a + my_rankxlocal_nxh;
local_b = local_a + local_nxh;
local_integral = Trap(local_a, local_b, local_n, h):
if (my_rank != 0)
Send local_integral to process 0:

else /= my_rank == w/
total_integral = local_integral:
for (proc = 1; proc < comm_sz: proc++) {

Receive local _integral from proc;
total_integral += local_integral;

}

i
if (my_rank == 0)
print result;

Tasks and communications for

Trapezoidal Rule

Compute area
of trap 0

Compute area
of trap 1

Compute area
of trap n—1

Chapter 2 — Instructions: Language of the Computer

4 March 2015

16

The University of Adelaide, School of Computer Science

First version (1)

I S

int main(void) {
int my_rank, comm_sz, n = 1024, local_n;
double a = 0.0, b = 3.0, h, local_a, local_b:
double local int., total int:
int source:

MPI_Init (NULL, NULL):
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank):
MPI Comm_size(MPI_COMM_WORLD, &comm_SzZ):

h = (b-a)/n: /% h is the same for all processes
local n = n/comm_sz: /% So is the number of trapezoids
local_a = a + my_rank=local_nxh;

local b = local_a + local _n=xh:
local_int = Trap(local_a, local_b, local_n, h);

if (my_rank != 0) {
MPI_Send(&local_int, 1, MPI_DOUBLE. 0O, O,
MPI_COMM_WORLD);

x/
#/

First version (2)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Chapter 2 — Instructions:

} else |
total_int = local_int:
for (source = 1: source < comm_sz; Source++) |

MPI_Recv(&local_int, 1, MPI_DOUBLE, source, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
total_int 4= local_int;

if (my_rank == 0) {
printf("With n = %d trapezoids, our estimate‘\n", n);
printf("of the integral from %f to %f = %.15e\n",
a, b, total_int):
}
MPI_Finalize():
return 0;
b/« main %/

Language of the Computer

4 March 2015

17

The University of Adelaide, School of Computer Science

First version (3)

I |double Trap(

2 double left_endpt /% in =/,

3 double right_endpt /% in =/,

4 int trap_count /% in %/,

5 double hase_len /v in #/) |

6 double estimate, x:

7 int i:

8

9 estimate = (f(left_endpt) + f(right_endpt))/2.0;
10 for (i = l: i <= trap_count —1: i++) {
11 x = left_endpt + ixbase_len;

12 estimate += f(x);

13 }

14 estimate = estimatesxbase len;

15

16 return estimate;

17 |} 7/« Trap =/

Dealing with I/O

#include <stdio.h>
#include <mpi.h>

int main(void) { prints a message.

Each process just
int my_rank, comm_sz:
MPI_Init (NULL. NULL):
MPI Comm size(MPI COMM WORLD, &comm sz);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank):

printf("Proc %d of %d > Does anyone have a toothpick?\n",
my_rank, comm_SZ);

MPI_Finalize ():
return 0:
[+ main =/

Chapter 2 — Instructions: Language of the Computer

4 March 2015

18

The University of Adelaide, School of Computer Science

Proc
Proc
Proc
Proc
Proc
Proc

Y R ™

of
of
of
of
of
of

o N> = = N> o}
VoV VIV VY

Does
Does
Does
Does
Does
Does

anyone
anyone
anyone
anyone
anyone
anyone

unpredictable output

have
have
have
have
have
have

Running with 6 processes

[SERVERR VT R E o]

toothpick?
toothpick?
toothpick?
toothpick?
toothpick?
toothpick?

Input

MPI_Comm_rank(MPI_COMM_WORLD. &my_rank):
MPI_Comm_size (MPI_COMM_WORLD, &comm_sz);

Get_data(my_rank,

h = (b-a)/n;

= Most MPI implementations only allow
process 0 in MPI_COMM_WORLD access
to stdin.

m Process 0 must read the data (scanf) and
send to the other processes.

comm_sz, &a, &b, &n);

Chapter 2 — Instructions: Language of the Computer

4 March 2015

19

The University of Adelaide, School of Computer Science

Function for reading user input

void Get_input(

int my_rank fxin =/,
int comm_sz Feoin =/
double= 2 _p feoour =/,
doubles b p fe out S
int=« n_p Feoout =/) |

int dest:

it (my_rank == 0) |
printf("Enter a, b, and n\n"):
scanf("%1f %1f %d", a_p. b_p. n_p):
for (dest = 1. dest < comm_sz; dest++) {
MPI_Send(a_p, |, MPI_DOUBLE, dest, 0, MPI_COMM_WORLD):
|, MPI_DOUBLE, dest, O, MPI_COMM_WORLD);
1, MPI_INT, dest, 0, MPI_COMM_WORLD}:

MPI_Send(b_p.
MPI_Send(n_p.
}
} oelse | /« my_rank = 0 +/
MPI_Recv(a_p, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE):
MPI_Recv(b_p, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGHORE);
MPI_Recv(n_p, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE):

} /= Getsinput o/

COLLECTIVE
COMMUNICATION

Chapter 2 — Instructions: Language of the Computer

4 March 2015

20

The University of Adelaide, School of Computer Science

Tree-structured communication

1. In the first phase:
(a) Process 1 sends to 0, 3 sends to 2, 5 sends to 4, and
7 sends to 6.
(b) Processes 0, 2, 4, and 6 add in the received values.
(c) Processes 2 and 6 send their new values to
processes 0 and 4, respectively.
(d) Processes 0 and 4 add the received values into their
new values.

2. (a) Process 4 sends its newest value to process 0.
(b) Process 0 adds the received value to its newest
value.

A tree-structured global sum

Processes

Chapter 2 — Instructions: Language of the Computer

4 March 2015

21

The University of Adelaide, School of Computer Science

An alternative tree-structured
global sum

Processes

MPI_Reduce

int MPI Reduce(
void = input_data_p [+ 0in %/,
void = cutput_data_p /= out =/,
int count [+ 0in %/,
MPI_Datatype datatype S o0n xS
MPI_Op operator [w0in xS,
int dest_process [in %/,
MPI Comm comm /= in ¥/)

MPI_Reduce(&local_int . &total_int., 1, MPI_DOUBLE. MPI_SUM. O,
MPI_COMM_WORLD):

double local_x[N]. sum[N]:

MPI_Reduce(local_x, sum, N, MPI_DOUBLE, MPI_SUM, O,
MPI_COMM_WORLD):

Chapter 2 — Instructions: Language of the Computer

4 March 2015

22

The University of Adelaide, School of Computer Science 4 March 2015

Predefined reduction operators
In MPI
| Operation Value | Meaning |

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPT_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or

MPI_MAXLOC Maximum and location of maximum

MPI_MINLOC Minimum and location of minimum

Collective vs. Point-to-Point
Communications

m All the processes in the communicator
must call the same collective function.

m For example, a program that attempts to
match a call to MP|_Reduce on one
process with a call to MPIl_Recv on
another process is erroneous, and, in all
likelihood, the program will hang or crash.

Chapter 2 — Instructions: Language of the Computer 23

The University of Adelaide, School of Computer Science 4 March 2015

Collective vs. Point-to-Point
Communications

m The arguments passed by each process to
an MPI collective communication must be
“‘compatible.”

= For example, if one process passes in 0 as
the dest_process and another passes in 1,
then the outcome of a call to MPI_Reduce
is erroneous, and, once again, the
program is likely to hang or crash.

Collective vs. Point-to-Point
Communications

m The output data p argument is only used
on dest_process.

= However, all of the processes still need to
pass in an actual argument corresponding
to output_data_p, even ifit's just NULL.

Chapter 2 — Instructions: Language of the Computer 24

The University of Adelaide, School of Computer Science

Collective vs. Point-to-Point
Communications

» Point-to-point communications are
matched on the basis of tags and
communicators.

m Collective communications don’t use tags.

= They’re matched solely on the basis of the
communicator and the order in which
they’re called.

Example (1)
[Time || Process 0 | Process 1 | Process 2
0 a=1; c=2 a=1; c=2 a=1; c=2
1 MPI_Reduce(&a, &b, ...) | MBI_Reduce(&c, &d, ...) | MPI_Reduce(&a, &b, ...)
2 MPI_Reduce(&c, &d, ...) | MPI_Reduce(&a, &b, ...) | MPI_Reduce(&c, &d, ...)

Multiple calls to MPI_Reduce

Chapter 2 — Instructions: Language of the Computer

4 March 2015

25

The University of Adelaide, School of Computer Science 4 March 2015

Example (2)

m Suppose that each process calls
MPI_Reduce with operator MPI_SUM, and
destination process 0.

= At first glance, it might seem that after the
two calls to MP|_Reduce, the value of b
will be 3, and the value of d will be 6.

Example (3)

= However, the names of the memory
locations are irrelevant to the matching of
the calls to MP|_Reduce.

= The order of the calls will determine the
matching so the value stored in b will be
1+2+1 = 4, and the value stored in d will
be 2+1+2 = 5.

Chapter 2 — Instructions: Language of the Computer 26

The University of Adelaide, School of Computer Science

MPI1_Allreduce

in order to complete some larger

computation.
int MPI Allreduce(
void = input_data_p /#
void = output_data_p /=
int count /#
MPI_Datatype datatype /#
MPI_Op operator /#
MPI_ Comm comm VE:

» Useful in a situation in which all of the
processes need the result of a global sum

in
out
in
in
in
in

w/
#/
#/
*/
#/
#/)2

result.

Chapter 2 — Instructions: Language of the Computer

A global sum followed
by distribution of the

4 March 2015

27

The University of Adelaide, School of Computer Science

Processes

A butterfly-structured global sum.

Broadcast

to all of the processes in the
communicator.

int MPI_Bcast(

void data_p /#
int count /#
MPI_Datatype datatype /#
int source_proc /#
MPI_Comm comm /#

= Data belonging to a single process is sent

in/out
in
in
in
in

+/ .
*/
+/
+/
/)

Chapter 2 — Instructions: Language of the Computer

4 March 2015

28

The University of Adelaide, School of Computer Science

A tree-structured broadcast.

Processes

A version of Get_input that uses
MPI|_Bcast

void Get_input(

int my_rank /% in %/,
int comm_sz /¥ in /.
double+ 2z p /+ out /.
double+ b_p /v out /.,
int: n_p /# out /) {

if (my_rank == 0) {
printf("Enter a, b, and n\n");
scanf("%1f %$1f %d", a_p., b_p. n_p):

}

MPI_Bcast(a_p. 1. MPI_DOUBLE, O, MPI_COMM_WORLD):
MPI Bcast(b p, 1. MPI DOUBLE, O, MPI COMM WORLD):
MPI Bcast(n p, 1, MPI INT, 0, MPI COMM WORLD):

} /= Get_input «/

Chapter 2 — Instructions: Language of the Computer

4 March 2015

29

The University of Adelaide, School of Computer Science

Data distributions

X+Y = (x0,X1,--sXn—1) + (V0,14 Vn—1)
= (I{] +}T01x1 +}'13 R | +}’n—l)

(20,215---+2Zn—1)
— z

Compute a vector sum.

Serial implementation of vector

addition

void Vector_sum(double x[]. double y[], double z[]., int n) {
int i:

for (i = 0; i < n: i++)
z[i] = x[i] + y[i]:
} /= Vector_sum =/

Chapter 2 — Instructions: Language of the Computer

4 March 2015

30

The University of Adelaide, School of Computer Science

Different partitions of a 12-
component vector among 3

Processes
Components
Block-cyclic
Process Block Cyclic Blocksize =2
0 Ol 2 13]013]69 (0|16 7
1 41516 7T 1471023819
2 1911011258 11|4|5]10]11

each process.

Chapter 2 — Instructions: Language of the Computer

= Block partitioning
= Assign blocks of consecutive components to

m Cyclic partitioning
= Assign components in a round robin fashion.
» Block-cyclic partitioning

= Use a cyclic distribution of blocks of
components.

Partitioning options

4 March 2015

31

The University of Adelaide, School of Computer Science

vector addition

void Parallel vector_sum(

int local 1i:

double local =[] 7/« in =/,
double local y[] /= in =/,
double local z|[] /% outr =*/.
int local n f= in /) |

for (local i = 0; local i < local n:

Parallel implementation of

local i++)
local_z|local_i] = local_x|local_i] + local_ylleocal_il]:
} /#« Parallel_vector_sum =/

Scatter

int MPI_Scatter(
void = send_buf_p
int send count
MPI_Datatype send_type

void = recv_buf_p
int recv_count
MPI_Datatype recv_type
int src_proc
MPI Comm comm

Chapter 2 — Instructions: Language of the Computer

SN NN N N N N
W w w w w w

in
in
in
out
in
in
in
in

s MPI_Scatter can be used in a function that
reads in an entire vector on process 0 but
only sends the needed components to
each of the other processes.

Y
*/
EVAN
*/
#/
w/f
*/
#/);

4 March 2015

32

The University of Adelaide, School of Computer Science

Reading and distributing a vector

void Read_vector(

double local_al] /% out +/
int local_n leoin o#/
int n I+ in %/,
char vec_name[] /x in x/,
int my_rank Jeoin %/,
MPI_Comm comm feoin ox/)]

doublex a2 = NULL:
int i:

if (my_rank == 0) {
a = malloc(n=+sizeof (double)):
printf("Enter the vector %s\n", vec_name);
for (i = 0: i < n: i++)
scanf("$1lf"., &ali]):
MPI_Scatter(a, local_n, MPI_DOUBLE, local_a, local_n, MPI_DOUBLE,
0., comm);
free(z);
} else {
MPI_Scatter(a, local_n, MPI_DOUBLE, local_a, local _n, MPI_DQUBLE,
0, comm);

} /% Read_vector =/

Gather

» Collect all of the components of the vector
onto process 0, and then process 0 can
process all of the components.

int MPI Gather(

void = send_buf_p /% in */,
int send_count /= in */,
MPI_Datatype send_type VE N) I
void recv_buf_p /+ out */,
int recv_count /= in /.,
MPI_Datatype recv_type lwo0in xS,
int dest_proc [+ in #/,
MPI_Comm comm f= In #/):

Chapter 2 — Instructions: Language of the Computer

4 March 2015

33

The University of Adelaide, School of Computer Science

Print a distributed vector (1)

void Print vector(

double local b[] /« in %/,
int local n J 0in %/,
int n l 0in %/,
char title|] J 0in %/,
int my_rank I in x/
MPI Comm comm [in x/) |

double+ b = NULL:

int 1i:

t /= Print_vector */

Print a distributed vector (2)

Chapter 2 — Instructions: Language of the Computer

if (my_rank == 0) {
b = mallocinxsizeof (double)):
MPI_Gather(local_b, local_n., MPI_DOUBLE. b, lccal_n., MPI_DCUBLE.
0, comm);
printf("$s\n", title):
for (i = 0; 1 < n: i++)
printf("%f ", blil]);
printf("\n");
free(b):
} else {
MPI_Gather(local_b., local n., MPI_DOUBLE, b, local_n, MPI_DCUBLE.
0, comm);
i

4 March 2015

34

The University of Adelaide, School of Computer Science

Allgather

m Concatenates the contents of each
process’ send buf p and stores this in
each process’ recv_buf p.

m As usual, recv_count is the amount of data
being received from each process.

int MPI_Allgather(

void = send_buf_p /% in =/,

int send count /% in /),
MPI_Datatype send_type /s in =/,
void = recv_buf_p /% out */,
int recv_count /% in /.,
MPI_Datatype recv_type I in =/
MPI_Comm comm f 0in x/):

Matrix-vector multiplication

A = (a;j) 1s an m x n matrix

o~

X 18 a vector with n components

e

Yy =AX is a vector with m components

\

Vi = djoXp +dj1X] +djpXy + - dip_1Xp_1
N '

i-th component of y

Dot product of the ith
row of A with x.

Chapter 2 — Instructions: Language of the Computer

4 March 2015

35

The University of Adelaide, School of Computer Science

Matrix-vector multiplication

400 aor | vt | don-l)0
apn dp dip—1 X0 Vi
. 3 N :
4io dil |t Yin-d 3 Vi = aipXo tajxy + - dip_1Xp—1
: : Xn—1 | .
Am—1,0 | dm—11| - | dm—1n—1 Ym—1

Multiply a matrix by a vector

/+ For each row of A «/

for (1 = 0; 1 < m: i++) {
/+ Form dot product of ith row with x «/
vl[i]l = 0.0:

for (7 = 0: 7 < n: j++)
ylil += A[i][3]*x[]1:

Serial pseudo-code

Chapter 2 — Instructions: Language of the Computer

4 March 2015

36

The University of Adelaide, School of Computer Science

C style arrays

1 2 =
56?/—ﬁ

0 11 stored as

o0 = O

9 1

01234567891011

Serial matrix-vector

multiplication
void Mat _vect _mult(
double A[] /+ in +/,
double x[] /+« in «/.
double y[] /% out =/,
int m /= in %/,
int n /e in o =/) |
int i, 7§,

for (i = 0: 1 < m: i++4) {
y[i] = 0.0;
for (3 = 0; 3 < n: j++4)
yIi] += Alisn+3]*x[]]:

} /% Mat_vect_mult +/

Chapter 2 — Instructions: Language of the Computer

4 March 2015

37

The University of Adelaide, School of Computer Science

An MPI matrix-vector

multiplication function (1)

vold Mat _vect _mult(

double local A[] /= in #/,
double local x[]1 /% in */,
double local_y[] /= out */,
int local_m l in %/,
int n l= in xS,
int local_n l in %/,
MPI Comm comm /= in /)

doublesx x:
int local_ i, 7j:
int local ok = 1;

An MPI matrix-vector

}

Chapter 2 — Instructions:

multiplication function (2)

¥ = malloc(nxsizeof (double)):
MPI_Allgather(local_x., local_n, MPI_DOUBLE,
X, local_n, MPI_DOUBLE, comm);

for (local i = 0; local_i < local_m: local i++) |
local y|llocal i] = 0.0;
for (3 = 0: 3 < n: j++)
local_yllocal_i] += local_Allocal_i=n+jl=x[7]:
1
free(x):
/[« Mat_vect_mulr «/

Language of the Computer

4 March 2015

38

The University of Adelaide, School of Computer Science

Y.

MPI DERIVED DATATYPES

Derived datatypes

= Used to represent any collection of data items in
memory by storing both the types of the items
and their relative locations in memory.

s The idea is that if a function that sends data
knows this information about a collection of data
items, it can collect the items from memory
before they are sent.

= Similarly, a function that receives data can
distribute the items into their correct destinations
in memory when they’re received.

Chapter 2 — Instructions: Language of the Computer

4 March 2015

39

The University of Adelaide, School of Computer Science

| Variable | Address |

a

24

b

0

n

48

Derived datatypes

{(MPT_DOUBLE, (), (MPT_DOUBLE, 16), (MPT_TNT,24)}

= Formally, consists of a sequence of basic
MPI data types together with a
displacement for each of the data types.

= Trapezoidal Rule example:

MPI_Type create_struct

int MPI_Type_create_struct(
int
int
MPI_Aint
MPI_Datatype
MPI_Datatypes=

count
array_of_blocklengths|[]
array_of_displacements]|]
array_of_types|]
new_type_p

Ve
VE:
/o
/o
Ve

= Builds a derived datatype that consists of
individual elements that have different
basic types.

in
in
in
in
out

+/
Y
*/
*/ .
#/)]

Chapter 2 — Instructions: Language of the Computer

4 March 2015

40

The University of Adelaide, School of Computer Science 4 March 2015

MPI_Get_address

» Returns the address of the memory
location referenced by location_p.

= The special type MPI_Aint is an integer
type that is big enough to store an address
on the system.

int MPI Get address(
void « location_p /% in x/,
MPI_Aint+ address_p lx out /)

MPI_Type commit

= Allows the MPI implementation to optimize
its internal representation of the datatype
for use in communication functions.

int MPI_Type_commit (MPI_Datatype* new_mpi_t_p /+ in/out +/).

Chapter 2 — Instructions: Language of the Computer 41

The University of Adelaide, School of Computer Science

MPI_Type_free

= When we’re finished with our new type,
this frees any additional storage used.

int MPI Type free(MPI_ Datatype= old mpi_t_p /= in/out #/);

Get input function with a derived
datatype (1)

void Build_mpi_type(
[oin o/,

double = a_p
double = b_p /+ in %=/,
intx n_p [in %/,

MPI Datatypex input mpi t p /+ out =/) {

int array_of_blocklengths([3] = {1, 1. 1}:

MPI_Datatype array_of_types[3] = {MPI_DOUBLE, MPI_DOUBLE, MPI_INT}:
MPI_Rint a_addr, b_addr., n_addr:

MPI_Aint array_of_displacements[3] = {0}:

Chapter 2 — Instructions: Language of the Computer

4 March 2015

42

The University of Adelaide, School of Computer Science

Get input function with a derived

datatype (2)

MPI_Get_address(a_p. &a_addr):

MPI_Get_address(b_p, &b_addr):

MPI_Get_address(n_p. &n_addr):

array_of displacements|[l] = b_addr—a_addr:

array_of_displacements|[2] = n_addr—a_addr:

MPI_Type_create_struct(3, array_of blocklengths,
array_of_displacements., array_of_types,
input_mpi_t_p);

MPI_Type_commit(input_mpi_t_p);
} /= Build_mpi_type «/

Get input function with a derived

datatype (3)

void Get_input(int my_rank. int comm_sz. doublex a_p. doublex b_p.
int+ n p) {
MPI_Datatype input_mpi_t;

Build mpi_type(a_p. b_p, n_p. &input_mpi_t):

if (my_rank == 0) {
printf("Enter a, b, and n\n"):
scanf("%1f %1f %d", a p, b_p, n_p):
t

MPT_Bcast(a_p, |, input_mpi_t, 0, MPI_COMM_WORLD);

MPI_Type_free(&input_mpi_t);
v /= Get_inputr =/

Chapter 2 — Instructions: Language of the Computer

4 March 2015

43

The University of Adelaide, School of Computer Science

PERFORMANCE EVALUATION

Elapsed parallel time

double MPI _wWtime(void):

m Returns the number of seconds that have
elapsed since some time in the past.

double start, finish:

start = MPI_Wtime ():
/+ Code to be timed +/

finish = MPI_Wtime ():

printf("Proc %d > Elapsed time = %e seconds\n"
my_rank, finish—start);

Chapter 2 — Instructions: Language of the Computer

4 March 2015

44

The University of Adelaide, School of Computer Science

Elapsed serial time

= |n this case, you don’t need to link in the
MPI libraries.

» Returns time in microseconds elapsed
from some point in the past.

#include "timer.h"

double now:

M

GET_TIME(now):;

Elapsed serial time

#include "timer.h"
double start, finish:

GET_TIME(start):
/= Code to be timed =/

GET_TIME(finish):
printf("Elapsed time = %e seconds\n", finish—start):

Chapter 2 — Instructions: Language of the Computer

4 March 2015

45

The University of Adelaide, School of Computer Science

MPI_Barrier

» Ensures that no process will return from
calling it until every process in the
communicator has started calling it.

int MPI Barrier(MPI Comm comm Je0in /)

MPI_Barrier

MPI Barrier(comm);
local start = MPI_Wtime ();
/+ Code to be rimed +/

local_finish = MPI_Wtime ():

local_elapsed = local_finish — local_start:

MPT_Reduce(&local_elapsed, &elapsed, |, MPI_DOUBLE,
MPI_MAX, 0O, comm):

if (my_rank == 0)
printf("Elapsed time = %e seconds\n", elapsed);

Chapter 2 — Instructions: Language of the Computer

double local_start, local finish, local_elapsed, elapsed;

4 March 2015

46

The University of Adelaide, School of Computer Science

Run-times of serial and parallel
matrix-vector multiplication

Order of Matrix

comm_sz || 1024 | 2048 | 40906 | 8192 | 16,384
1 411 160 | 64.0| 270 1100

2 2.3 8.5 33.0 140 560

4 2.0 5.1 | 18.0 70 280

8 1.7 3.3 0.8 36 140

16 1.7 2.6 5.9 19 71
(Seconds)

Speedup

S(n, p) =

Tserial(n)

Tparallel(”= P)

Chapter 2 — Instructions: Language of the Computer

4 March 2015

47

The University of Adelaide, School of Computer Science

Efficiency

S(n,p) Tserial ()

p P Toarallel (- 1)

Speedups of Parallel Matrix-
Vector Multiplication

Order of Matrix
comm_sz || 1024 ‘ 2048 | 4096 ‘ 8192 | 16,384
1 1.0 1.0 1.0 1.0 1.0
2 1.8 1.9 1.9 1.9 2.0
4 2.1 3.1 3.6 3.9 3.9
8 24 4.8 6.5 7.5 1.9
16 2.4 6.2 10.8 | 14.2 15.5

Chapter 2 — Instructions: Language of the Computer

4 March 2015

48

The University of Adelaide, School of Computer Science

Efficiencies of Parallel Matrix-
Vector Multiplication

Order of Matrix
comm_sz || 1024 \ 2048 \ 4006 \ 8192 | 16,384
1 1.00 | 1.00 | 1.00 | 1.00 1.00
2 0.890 | 094 | 0.97 | 0.96 0.98
4 0.51 | 078 | 0.89 | 0.96 0.98
8 0.30 | 0.61 | 0.82 | 0.94 0.98
16 0.15] 039 | 0.68 | 0.89 0.97

Scalability

m A program is scalable if the problem size
can be increased at a rate so that the
efficiency doesn’t decrease as the number
of processes increase.

Chapter 2 — Instructions: Language of the Computer

4 March 2015

49

The University of Adelaide, School of Computer Science 4 March 2015

Scalability

m Programs that can maintain a constant
efficiency without increasing the problem
size are sometimes said to be strongly
scalable.

m Programs that can maintain a constant
efficiency if the problem size increases at
the same rate as the number of processes
are sometimes said to be weakly scalable.

A PARALLEL SORTING
ALGORITHM

Chapter 2 — Instructions: Language of the Computer 50

The University of Adelaide, School of Computer Science 4 March 2015

Sorting

= N keys and p = comm sz processes.
= nN/p keys assigned to each process.

= No restrictions on which keys are assigned
to which processes.

= When the algorithm terminates:
= The keys assigned to each process should be
sorted in (say) increasing order.

= If 0 < q <r<p, then each key assigned to
process q should be less than or equal to
every key assigned to process r.

Serial bubble sort

void Bubble sort(
int a[] /+ in/out +/,
int n J# in w/) |
int list_length, i, temp;

for (list_length = n; list_length >= 2; list_length——)

for (1 = 0; 1 < list_length—1; i++)
if (za[1i] > al[i+1]) {

temp = alil: _ 4

ali] = ali+1]: -

ali+l] = temp: 5 <@
} @R e ®
EID e
} 7/« Bubble_sort «/ N _‘)-JL\, \'}j

Chapter 2 — Instructions: Language of the Computer 51

The University of Adelaide, School of Computer Science 4 March 2015

Odd-even transposition sort

= A sequence of phases.
= Even phases, compare swaps:

([0}, a[1]). (a[2],a[3]). (a[4]. a[3)). ..

= Odd phases, compare swaps:

(al1].a[2). (a[3).a[4]), (a[S], a[6). ...

Example

Start: 5,9,4,3

Even phase: compare-swap (5,9) and (4,3)
getting the list 5, 9, 3, 4

Odd phase: compare-swap (9,3)
getting the list 5, 3, 9, 4

Even phase: compare-swap (5,3) and (9,4)
getting the list 3, 5,4, 9

Odd phase: compare-swap (5,4)
getting the list 3,4, 5,9

Chapter 2 — Instructions: Language of the Computer 52

The University of Adelaide, School of Computer Science 4 March 2015

Serial odd-even transposition
Sort void 0dd _even sort(

int a[] /+ in/out =/,
int n /% in /) 1
int phase., i, temp:

for (phase = 0: phase < n: phase++)
if (phase % 2 == 0) { /+ Even phase =/
for (i = 1; i < n; 1 += 2)
if (ali—-1] > ali]) {
temp = alil:
ali] = ali—1]:
ali—1] = temp:

1
} else { /« Odd phase +/
for (i = 1: i < n—1; i += 2)

if (ali] = al[i+1]) {
temp = alil:
ali] = ali+1]:
ali+l] = temp:

!

}

} /= Odd_even_sort +/

Communications among tasks in
odd-even sort

ali-1] ali] ali+1] ___ phase

ali-1] alil] ali+1] phase j+1

i

Tasks determining a[i] are labeled with a[i].

Chapter 2 — Instructions: Language of the Computer

53

The University of Adelaide, School of Computer Science

Parallel odd-even transposition

sort
Process
Time 0 | 1 | 2 | 3

Start 15,11,9,16 3.14.8.7 4,6.12.10 5.2.13.1
After Local Sort || 9. 11. 15,16 3,7,8, 14 4,6.10,12 1.2.5. 13
After Phase 0 3.7.8,9 11, 14,15, 16 1,2,4.5 6,10,12,13
After Phase 1 3.7.8.9 1.2,4,5 11,14, 15. 16| 6,10,12.13
After Phase 2 1.2.3.4 5.7.8.9 6,10, 11,12 | 13,14, 15. 16
After Phase 3 1.2.3.4 5.6,7.8 0.10,11,12 | 13, 14,15. 16

Pseudo-code

Sort local keys:
for (phase = 0; phase < comm_sz; phase++) {
partner Compute_partner(phase, my_rank);
if (I'm not idle) {
Send my keys to partner;
Receive keys from partner;
if (my_rank < partner)
Keep smaller keys;
else

Keep larger keys;

Chapter 2 — Instructions: Language of the Computer

4 March 2015

54

The University of Adelaide, School of Computer Science 4 March 2015

Compute_partner

if (phase % 2 == 0) /= Even phase =«/
if (my_rank % 2 != 0) /+ 0Odd rank +/
partner = my_rank — 1;
else /= Even rank +/
partner = my_rank + 1;
else /+ Odd phase =/
if (my_rank % 2 != 0) /+ 0dd rank +/
partner = my_rank + 1;
else /+ Even rank =/
partner = my_rank — 1;
if (partner == —1 || partner == comm_sz)

partner = MPI_PROC_NULL;

Safety in MPI programs

= The MPI standard allows MPI|_Send to
behave in two different ways:

= it can simply copy the message into an MPI
managed buffer and return,

= or it can block until the matching call to
MPI_Recv starts.

Chapter 2 — Instructions: Language of the Computer 55

The University of Adelaide, School of Computer Science 4 March 2015

Safety in MPI programs

= Many implementations of MPI set a
threshold at which the system switches
from buffering to blocking.

= Relatively small messages will be buffered
by MPI_Send.

» Larger messages, will cause it to block.

Safety in MPI programs

= If the MPIl_Send executed by each process
blocks, no process will be able to start
executing a call to MPI_Recv, and the
program will hang or deadlock.

m Each process is blocked waiting for an
event that will never happen.

(see pseudo-code)

Chapter 2 — Instructions: Language of the Computer 56

The University of Adelaide, School of Computer Science

Safety in MPI programs

= A program that relies on MPI provided
buffering is said to be unsafe.

m Such a program may run without problems
for various sets of input, but it may hang or
crash with other sets.

MPI_Ssend

MPI standard.

int MPI_Ssend(
void =
int
MPI_Datatype
int
int
MFI Comm

Chapter 2 — Instructions: Language of the Computer

msg_buf_p
msg_size
msqg_type
dest

tag
communicator

/
/
/
/%
/
[+

= In
0N
£ 0n

in

£ 0N

in

= An alternative to MPI_Send defined by the

m The extra “s” stands for synchronous and
MPI_Ssend is guaranteed to block until the
matching receive starts.

%/,
%/,
#/
%/,
#/
TAR

4 March 2015

57

The University of Adelaide, School of Computer Science 4 March 2015

Restructuring communication

MPI_Send(msg, size, MPI_INT, (my_rank+l) % comm_sz, 0, comm);
MPI_Recv(new_msg, size, MPI_INT, (my_rank+comm_sz—1) % comm_sz,
0, comm, MPI_STATUS_IGNORE.

=

if (my_rank % 2 == 0) {
MPI_Send(msg, size, MPI_INT, (my_rank+1) % comm sz, 0, comm);
MPI_Recv(new_msg, size, MPI_INT, (my_rank+comm_sz—1) % comm_sz,
0. comm, MPI_STATUS_IGNORE.
} else {
MPTI_Recv(new_msg, size, MPI_INT, (my_rank+comm_sz—1) % comm_sz,
0, comm, MPI_STATUS_IGNORE.
MPI_Send(msg, size, MPI_INT, (my_rank+1l) % comm sz, 0, comm);

1

MPI_Sendrecv

= An alternative to scheduling the
communications ourselves.

m Carries out a blocking send and a receive
in a single call.

s | he dest and the source can be the same
or different.

m Especially useful because MPI schedules
the communications so that the program
won’t hang or crash.

Chapter 2 — Instructions: Language of the Computer 58

The University of Adelaide, School of Computer Science

MPI_Sendrecv

int MPI Sendrecv(

void send_buf p /v in o/,
int send _buf size / in #/,
MPI_Datatype send_buf_type /+ in «/.
int dest /+ in %/,
int send_tag VAT T Y
void = recv_buf_p /¥ out =/,
int recv_buf size /¥ in #/,
MPI_Datatype recv_buf_ type /+ in «/,
int source /v in o/,
int recv_tag [+ in o/,
MPI_ Comm communicator [in #/,
MPI Statuss# status_p I+ In #/);

Safe communication with five

processes

Lo

Time 0 Time 1

©

©

©

O—®

Time 2

Chapter 2 — Instructions: Language of the Computer

4 March 2015

59

The University of Adelaide, School of Computer Science

Parallel odd-even transposition sort

void Merge_low(

mi=1ri=1t_1i=0;

int my_keys|[], /+ in/out w/
int recv_keys|[], [+ in */
int temp_keys]|[], /+ scratch */

int local_n /v = n/p, in =/) |
int m_i, r_ i, t_i:

while (t_i < local_n) {
if (my_keys|m_i] <= recv_keys|[r_i]) {
temp_keys[t_i] = my_keys|[m_1i];
t_i++; m_i++;

} else {
temp_keys[t_i] = recv_keys[r_il];
t_i++; r_i++:
}
}
for (m_i = 0:; m_i < local_n; m_i++)

my_keys[m_i] = temp_keys[m_1i];
} /= Merge_low «/f

Run

sort

-times of parallel odd-even

Number of Keys (in thousands)

Processes || 200 | 400 | 800 | 1600 | 3200
1 88 | 190 | 390 | 830 | 1800

2 43 | 91 | 190 | 410 | 860

4 22 | 46 | 96 | 200 | 430

8 12 | 24 | 5l 110 | 220

16 75 14 | 29 60 130

(times are in milliseconds)

Chapter 2 — Instructions: Language of the Computer

4 March 2015

60

The University of Adelaide, School of Computer Science 4 March 2015

Concluding Remarks (1)

= MPI or the Message-Passing Interface is a
library of functions that can be called from
C, C++, or Fortran programs.

= A communicator is a collection of
processes that can send messages to
each other.

= Many parallel programs use the single-
program multiple data or SPMD approach.

Concluding Remarks (2)

» Most serial programs are deterministic: if
we run the same program with the same
input we’'ll get the same output.

m Parallel programs often don’t possess this
property.

m Collective communications involve all the
processes in a communicator.

Chapter 2 — Instructions: Language of the Computer 61

The University of Adelaide, School of Computer Science 4 March 2015

Concluding Remarks (3)

= WWhen we time parallel programs, we’re
usually interested in elapsed time or “wall
clock time”.

m Speedup is the ratio of the serial run-time
to the parallel run-time.

n Efficiency is the speedup divided by the
number of parallel processes.

Concluding Remarks (4)

m [f it’s possible to increase the problem size
(n) so that the efficiency doesn’t decrease
as p is increased, a parallel program is
said to be scalable.

= An MPI program is unsafe if its correct
behavior depends on the fact that
MPI_Send is buffering its input.

Chapter 2 — Instructions: Language of the Computer 62

