
1

PUMPS Summer School

Programming and tUning Massively Parallel
Systems

Lecture 3: CUDA Threads

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

2

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• Each thread uses IDs to
decide what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

3

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Matrix Multiplication Using
Multiple Blocks
• Break-up Pd into tiles
• Each block calculates one

tile
– Each thread calculates one

element
– Block size equal tile size

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

4

P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2

A Small Example

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

5

Pd1,0

A Small Example: Multiplication

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

6

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

7

// Setup the execution configuration
dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Revised Step 5: Kernel Invocation
(Host-side Code)

8

CUDA Thread Block
• All threads in a block execute the same

kernel program (SPMD)
• Programmer declares block:

– Block size 1 to 512 concurrent threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• Threads have thread id numbers within block
– Thread program uses thread id to select

work and address shared data

• Threads in the same block share data and
synchronize while doing their share of the
work

• Threads in different blocks cannot cooperate
– Each block can execute in any order relative

to other blocks!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls,
NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

9

Transparent Scalability
• Hardware is free to assigns blocks to any

processor at any time
– A kernel scales across any number of

parallel processors
Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to
other blocks.

time

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

10

Example: Executing Thread Blocks

• Threads are assigned to Streaming
Multiprocessors in block granularity
– Up to 8 (?) blocks to each SM as

resource allows
– Fermi SM can take up to 1536 threads

• Could be 256 (threads/block) * 6
blocks

• Or 512 (threads/block) * 3 blocks, etc.

• Threads run concurrently
– SM maintains thread/block id #s
– SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

11

Example: Thread Scheduling

• Each Block is executed as
32-thread Warps
– An implementation decision,

not part of the CUDA
programming model

– Warps are scheduling units
in SM

• If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
– Each Block is divided into

256/32 = 8 Warps
– There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31

…Block 1 Warps

Register File
(128 KB)

L1
(16 KB)

Shared Memory
(48 KB)

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

12

Example: Thread Scheduling (Cont.)

• SM implements zero-overhead warp scheduling
– At any time, 1 or 2 of the warps is executed by SM
– Warps whose next instruction has its operands ready for

consumption are eligible for execution
– Eligible Warps are selected for execution on a prioritized

scheduling policy
– All threads in a warp execute the same instruction when selected

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

13

Block Granularity Considerations
• For Matrix Multiplication using multiple blocks, should I

use 8X8, 16X16 or 32X32 blocks?

– For 8X8, we have 64 threads per Block. Since each SM can take
up to 1536 threads, there are 24 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each SM can
take up to 1536 threads, it can take up to 6 Blocks and achieve
full capacity unless other resource considerations overrule.

– For 32X32, we would have 1024 threads per Block. Each block
can only have up to 512 threads! This configuration will not work.

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

14

Some Additional API Features

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

15

Application Programming Interface

• The API is an extension to the C programming
language

• It consists of:
– Language extensions

• To target portions of the code for execution on the device

– A runtime library split into:
• A common component providing built-in vector types and a

subset of the C runtime library in both host and device
codes

• A host component to control and access one or more
devices from the host

• A device component providing device-specific functions
© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

16

Language Extensions:
Built-in Variables

• dim3 gridDim;
– Dimensions of the grid in blocks (gridDim.z

unused)
• dim3 blockDim;

– Dimensions of the block in threads
• dim3 blockIdx;

– Block index within the grid
• dim3 threadIdx;

– Thread index within the block
© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

17

Common Runtime Component:
Mathematical Functions

• pow, sqrt, cbrt, hypot
• exp, exp2, expm1
• log, log2, log10, log1p
• sin, cos, tan, asin, acos, atan, atan2
• sinh, cosh, tanh, asinh, acosh, atanh
• ceil, floor, trunc, round
• Etc.

– When executed on the host, a given function uses
the C runtime implementation if available

– These functions are only supported for scalar types,
not vector types

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

18

Device Runtime Component:
Mathematical Functions

• Some mathematical functions (e.g. sin(x))
have a less accurate, but faster device-only
version (e.g. __sin(x))
– __pow
– __log, __log2, __log10
– __exp
– __sin, __cos, __tan

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

19

Host Runtime Component
• Provides functions to deal with:

– Device management (including multi-device systems)
– Memory management
– Error handling

• Initializes the first time a runtime function is called

• A host thread can invoke device code on only one
device
– Multiple host threads required to run on multiple

devices
© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

20

Device Runtime Component:
Synchronization Function

• void __syncthreads();

• Synchronizes all threads in a block
• Once all threads have reached this point,

execution resumes normally
• Used to avoid RAW / WAR / WAW hazards

when accessing shared or global memory
• Allowed in conditional constructs only if the

conditional is uniform across the entire thread
block

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelona,
Spain, July 5-9, 2010

