PUMPS Summer School

Programming and tUning Massively Parallel
Systems

Lecture 2
Introduction to CUDA

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Overview

« CUDA programming model — basic concepts
and data types

 CUDA application programming interface -
simple examples to illustrate basic concepts and
functionalities

e Performance features will be covered later

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Many Language/API Choices

I

C/C++
OpenCL
DirectX Compute

Fortran

Java
Python
.Net

(GPU HW, Driver, ISA...)

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

CUDA C - with no shader limitations

e Integrated host+device app C program
— Serial or modestly parallel parts in host C code
— Highly parallel parts in device SPMD kernel C code

Serial Code (host) g
Parallel Kernel (device) D || Y | | D e
KernelA<<< nBlk, nTid >>>(args); ||s > || 5 > || ¢ S|...[S S
Serial Code (host) g

> S) DO

Parallel Kernel (device)

KernelB<<< nBIk, nTid >>>(args);

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

CUDA Devices and Threads

A compute device
— Is a coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel
— Is typically a GPU but can also be another type of parallel
processing device
« Data-parallel portions of an application are expressed as
device kernels which run on many threads

 Differences between GPU and CPU threads

— GPU threads are extremely lightweight
e Very little creation overhead

— GPU needs 1000s of threads for full efficiency
* Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

A GPU — Graphics Mode

 The future of GPUs Is programmable processing
e SO0 — build the architecture around the processor

!

[seIl sl s eI sl sl eI seIC) W (sel el) B el) fiseIl]
N o N
N O O
N | 0 T

v

v

VL e

Spain, July 5-9, 2010

CUDA mode — A Device Example

 Processors execute computing threads
 New operating mode/HW interface for computing

Host

L

Input Assembler

\ 4 VL VL VL V‘ \ 4
N N N | |
T O { I T N I
T O { I T N O { I
T | I BT N N | R
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data

Cache Cache Cache Cache Cache Cache Cache Cache

[[Texture | [rexure| | |§{ {{rexwre | | | |rexture | |W|| | rexcure | [|§ | |rexture | |§} | |rexture | [§ | rexture[|}

II &/ /UVIUV INIINNI VILZI\ANUNIU VVUILTTTHICT VV. T 1IVVU Uurveiviiun,

Spain, July 5-9, 2010

CUDA C - extensions

e Declspecs
p __device__ float filter[N];

— global, device,
shared, constant __global __ void convolve (float *image) {

__shared__ float region[M];
 Keywords

— threadldx, blockldx region[threadldx] = image[i];
e |ntrinsics __syncthreads()
— __syncthreads

image[j] = result;

}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

e Runtime API

— Memory, symbol,
execution
management

Function launch // 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Arrays of Parallel Threads

« A CUDA kernel is executed by an array of
threads

— All threads run the same code (SPMD)

— Each thread has an index that it uses to compute
memory addresses and make control decisions

threads o|l1{2|3|4|5]|6|7

Tfloat a = input[threadldx];
float b = func(a);

output[threadldx] = b;

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Thread Blocks: Scalable Cooperation

« Divide monolithic thread array into multiple blocks

— Threads within a block cooperate via shared memory,
atomic operations and barrier synchronization

— Threads in different blocks cannot cooperate

Thread Block O Thread Block 1 Thread Block N - 1

threads O 1| 2] 3] 4| 5| 6] 7

7 Ol 1| 2| 3] 4] 5| 6| 7

of 1| 2| 3] 4] 5| 6

float a = input[threadldx]; float a = input[threadldx];
float b = func(a); float b = func(a);
output[threadldx] = b;

float a = input[threadldx];

float b = func(a);

output[threadldx] = b; output[threadldx] = b;

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

blockldx and threadldx

Host Device

e Each thread uses indices to Grid 1

decide what data to work on p— | T o

— blockldx: 1D or 2D i 00 | (10

— threadldx: 1D, 2D, or 3D Block”(| Block

of | (&

« Simplifies memory oz S

addressing when processing Kemel -5 A

multidimensional data
— Image processing
— Solving PDEs on volumes

Block (1, 1

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition

__global

vord vecAdd(float* A, float* B, float* C, Int n)

{
t_i_L_Ihxeadev X+ hblockDim.x * blockldx.x;

n
f(i<n) CIi1] = Ali] + Bli]:

}
int main()
{

// Run ceirl(N/256) blocks of 256 threads each
vecAdd<<<ceirl(N/256), 256>>>(d_ A, d B, d C, N);

© Dyvid Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spai#, July 5-9, 2010

Example: Vector Addition Kernel

__global

void vecAdd(float* A, float* B, float* C, Int n)

{
INt 1 = threadldx.x + blockDim.x * blockldx.x;
iT(i<n) C[1] = A[i1] + B[1];

+

int main()

{

// Run ceitl(N/256) blocks of 256 threads each
vecAdd<<<ceill(N/256), 256>>>(d A, d B, d C, N);

© Dyvid Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spai#, July 5-9, 2010

“ Kernel execution in a nutshell

__host___ __global

blockldx.x blockDim.Xx

vecAdd<<<P,B>>>(n,a,X,Y); threadldx.x

CIE

© David Kirk/NVIDIA and Wen-mei W. HWy
Spain, July 5-9, 2010

CUDA Memory Model Overview

e Global memor

— Main means of
communicating R\W
Data between host\and
device

— Contents visible to all
threads

— Long latency access
 We will focus on

Grid

Host p

global memory for
now

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Block (0, 0)

Block (1, 0)

|

|

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

CUDA API Highlights:
Easy and Lightweight

e The API is an extension to the ANSI C
programming language

== Low learning curve

 The hardware is designed to enable lightweight
runtime and driver

== High performance

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

CUDA Device Memory Allocation

e cudaMalloc()

Grid

— Allocates object in the

device Global Memory, Block (0, 0 Block (1, 0)

— Requires two parameteys ﬂ ﬂ
 Address of a pointer to F F * F
the allocated object

Thread (0, 0) Thread (1, 0) | | Thread (0, 0) ' Thread (1, 0)

« Size of of allocated object

e cudaFree())

— Frees object from device
Global Memory

* Pointer to freed object

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

CUDA Device Memory Allocation (cont.)

e Code example:

— Allocate a 64 * 64 single precision float array
— Attach the allocated storage to Md

—“d” Is often used to indicate a device data
structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

CUDA Host-Device Data Transfer

e cudaMemcpy()
— memory data transfer

— Requires four parameters

« Pointer to destination
* Pointer to source
 Number of bytes copied
* Type of transfer

— Host to Host

— Host to Device

— Device to Host

— Device to Device

e Asynchronous transfer later

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Grid

Block (0, 0)

ks

Block (1, 0)

|

Thread (0, 0)

H(st)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

N\

=

N/

CUDA Host-Device Data Transfer
(cont.)

 Code example:
— Transfer a 64 * 64 single precision float array
— M is in host memory and Md is in device memory

— cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Example: Host code for vecAdd

int main(Q)

{
float *h_ A = .., *h B = ..;
float *d A, *d B, *d C;
cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d B, N * sizeof(float));
cudaMalloc((void**) &d C, N * sizeof(float));
cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice));
cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice));
vecAdd<<<ceil(N/256), 256>>>(d_A, d B, d C, n);
cudaMemcpy(h=C, d=C, N * sizeof(Float), cudaMemcpyDeviceToHost));
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
+

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

CUDA Keywords

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

CUDA Function Declarations

Executed | Only callable
on the: from the:
__device float DeviceFunc() device device
__global void KernelFunc(Q) device host
__host float HostFunc() host host
e global defines a kernel function
e Each®“ " consists of two underscore characters
e A kernel function must return void
e device and host can be used

together

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

CUDA Function Declarations (cont.)

e device functions cannot have their
address taken

e For functions executed on the device:
— NoO recursion

— No static variable declarations inside the
function

— No variable number of arguments

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Calling a Kernel Function — Thread

Creation

A kernel function must be called with an
execution configuration:

~_global voird KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64;//64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes
>>>(...);

 Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

A Simple Running Example
Matrix Multiplication

* A simple matrix multiplication example that
llustrates the basic features of memory and
thread management in CUDA programs
— Leave shared memory usage until later
— Register usage
— Thread index usage
— Memory data transfer API between host and device
— Assume sguare matrix for simplicity

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Programming Model: Square
Matrix-Matrix Multiplication Example

e P=M?*N of size WIDTH x WIDTH
e Without tiling:

— One calculates one element
of P

— M and N are loaded WIDTH times
from global memory

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelo/™
Spain, July 5-9, 2010

Memory Layout of a Matrix in C

|VIO,O Ml,O MZ,O |\/|3,0
MO,l Ml,l M2,1 M3,1
MO,Z M1,2 M2,2 M3,2

M0,3 M1,3 M2,3 M3,3

, MO,l Ml,l M2,1 M3,1 MO,Z Ml,2 M2,2 MS,Z M0,3 M1,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Step 1: Matrix Multiplication
A Simple Host Version in C

/I Matrix multiplication on the (CPU) host in double precision

void MatrixMulOnHost(float* M, float* N, float* P, int Width) k
{ .
for (inti = 0; i < Width; ++i) J
for (int j = 0;] < Width; ++j) {
double sum = 0;
for (int k = 0; k < Width; ++Kk) {
double a = M[i * width + k]; v
double b = N[k * width + j]; I
sum +=a * b; :
} |
P[i * Width + j] = sum;
) v

K

v

}

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelon
Spain, July 5-9, 2010

\ 4
A
\ 4

Step 2: Input Matrix Data Transfer

(Host-side Code)
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

Int size = Width * Width * sizeof(float);
float* Md, Nd, Pd:;

1. // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

[/l Allocate P on the device
cudaMalloc(&Pd, size);

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. [/ Kernel invocation code — to be shown later

3. // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

¥

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Step 4: Kernel Function

/I Matrix multiplication kernel — per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

/| Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = O;

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

}

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal, ¢

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadldx.y*Width+k];
float Nelement = Nd[k*Width+threadldx.x];
Pvalue += Melement * Nelement;

}

tx

Pd[threadldx.y*Width+threadldx.x] = Pvalue;

Ly

tX

Spain, July 5-9, 2010

Step 5: Kernel Invocation
(Host-side Code)

/I Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Need to Extend to Multiple Block

Nd

* One Block of threads compute
matrix Pd

Each thread computes one
element of Pd

e Each thread

Loads a row of matrix Md
Loads a column of matrix Nd

Perform one multiply and
addition for each pair of Md
and Nd elements

Compute to off-chip memory
access ratio close to 1:1 (not
very high)

e Size of matrix limited by the
number of threads allowed in a
thread block

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

A

WIDTH

Md

v

Pd

Step 7: Handling Arbitrary Sized Square
Matrices

 Have each 2D thread block to
compute a (TILE_ WIDTH)? sub-
matrix (tile) of the result matrix

— Each has (TILE_WIDTH)? threads

e Generate a 2D Grid of
(WIDTH/TILE_WIDTH)? blocks

You still need to put a loop by

around the kernel call for cases TILE_WIDTH
where WIDTH/TILE_WIDTH ty
IS greater than max grid size

(64K)! bx [tx

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal, ¢

Spain, July 5-9, 2010

A Small Example

e Have each 2D thread block to compute a (TILE_ WIDTH)?
sub-matrix (tile) of the result matrix

— Each has (TILE_WIDTH)? threads

e Generate a 2D Grid of (WIDTH/TILE_WIDTH)? blocks
Block(0,0) Block(1,0)

N\

Poo | Pro|Pao | Pso| TILE WIDTH =2

Block(0,1) Block(1,1)

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

A Small Example: Multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global _ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Calculate the row 1Index of the Pd element and M

iInt Row = blockldx.y*TILE WIDTH + threadldx.y;

// Calculate the column 1denx of Pd and N

int Col = blockldx.x*TILE WIDTH + threadldx.Xx;

float Pvalue = 0O;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

é David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Revised Step 5: Kernel Invocation
(Host-side Code)

/I Setup the execution configuration
dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

Compiling a CUDA Program

______ Target cod

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

« Parallel Thread
eXecution (PTX)

— Virtual Machine
and ISA

— Programming
model

— Execution
resources and
state

,$F3,$F5,$F7}, [$ro+0];
$f5, $f3, $f1;

42

Compilation

Any source file containing CUDA language
extensions must be compiled with NVCC

« NVCC is a compiler driver

— Works by invoking all the necessary tools and
compilers like cudacc, g++, cl, ...

« NVCC outputs:
— C code (host CPU Code)

Must then be compiled with the rest of the application using another tool

- PTX
e Object code directly

Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

43

Linking

* Any executable with CUDA code requires two
dynamic libraries:
— The CUDA runtime library (cudart)
— The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-mei W. Hwu Barcelonal,
Spain, July 5-9, 2010

