{ {
sya

EMA323 - Oswplo kat MpoKTkn
MeToyAWTTIOTWV

Lecture 10a
Type Checking

Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

Static Checking

* Ensures that certain kids of programming errors will be
detected and reported at compile-time:

— Type checks. An array variable and a function variable are
added together.

— Flow-of-control checks. A break statement in C causes
control to leave the smallest enclosingwhile, for, or
switch statement, while the smallest enclosing
statement does not exist.

— Uniqueness checks. Labels in a case statement must be
distinct.

— Name-related checks. In Ada, a loop or block may have a

name that appears in the beginning and end of the
construct.

Dynamic Checking

* Checks performed by the program at run-time.

* |n principle, all checks can be performed at run-time, but
this is not efficient.

— A sound type system allows us to determine statically that these
errors cannot occur when the target program runs.

* Alanguage is strongly typed if its compiler can guarantee
that a compiled program will execute without errors.

* Not always possible.
table: array[0..255] of char;
1: 1nteger

X := table[i];

Type Systems

* Based on information about the syntactic
constructs, the notion of types, and the rules
for assigning types to language constructs.

— “If both operands of the arithmetic operators of
addition, subtraction and multiplication are of
type integer, then the result is of type integer.”

— “The result of the unary & operator is a pointer of
the object referred to by the operand. If the type
of the operand is .../, the type of the result is

»n

‘pointer to....

Basic and Constructed Types

e Basic types are atomic types with no internal
structure,

— C: char, int, float, doube, etc.

— Pascal: boolean, character, integer, real, ranges
(1..10), enums, etc.

* Constructed types,
— C: struct, arrays.
— Pascal: arrays, records, sets.

Type Expressions

e Basic type (boolean, char, integer, and real), and special
basic types, type error, which signals an error during
type checking, and void, which denotes the absence of

value.
* Type names.

* Type constructors.
— Arrays.
— Products.
— Records.
— Pointers.
— Functions.

e Variables holding values that are type expressions.

Simple Type Checker

D | id : T
char | integer | array [num | of T | "T
literal | num | id | Emod E | E[E] | E *

IR
N2 2\ Z
Sl

Examples

key: integer;

key mod 1999

array [256] of char

“integer

Translation Scheme

N33 00N

- D : E

- D ; D

2> id : T { addtype(id.entry, T.type) }
- char { T.type := char }

- integer { T.type := integer }

2> T, { T.type := pointer(T,;.type) }
- array [num] of T,

{ T.type := array(l..num.val, T,.type) }

Type Checking of Expressions

M &HEE

- literal { E.type := char }

- num { E.type := integer }

- id { E.type := lookup(id.entry) }
- E, mod E, { E.type :=

if E,.type = integer and
E,.type = integer then integer
else type error }
E,;[E,] { E.type :=
if E,.type = integer and
E,.type = array(s,t) then t
else type error }
- E;” { E.type :=
if E,.type = pointer(t) then t
else type error }

\%

Type Checking of Statements

S 2> id : E {

S 2> if E then S; {

S > while E do S,{

T 2> S; ; S {

S.type :=
if id.type = E.type then void
else type error }
S.type :=
if E.type = boolean then S,.type
else type error }
S.type :=
if E.type = boolean then S,;.type
else type error }
S.type :=
if S,.type = void and
S,.type = void then void
else type error }

Type Checking of Functions

E =2 E (E) { S.type :=

if id.type = E.type then void

else type error }
T > T, ‘»' T, { T.type := T,.type 2> T,.type }
E =2 E,(E,) { E.type :=

if E,.type = s and

E,.type = s>t then t
else type error }

