{ {
sya

EMA323 - Oswplo kat MpoKTkn
MeToyAWTTIOTWV

Lecture /a
Syntax Analysis

Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

Operator-precedence Parsing

* A class of shift-reduce parsers that can be
written by hand

* No e-productions, no two adjacent non-
terminals on the right side

E =>EAE| (E)|-E|id X
E D+|-[*|/]"

Operator Grammar /
E =»E+E|E-E|E*E|E/E|E"E| (E)|-E|id

Operation Relation Table

RELATION MEANING
a< B a “yields precedence to” 8
a=p a “has the same precedence”
o> B a “takes precedence over”
id + *
id > >
+ < > <
* < > >
$ < < <

E =E+E|E*E|id

Example

STACK INPUT ACTION
S id+id*idS$S | shift (push)
Sid +id*id$ | reduce (pop)
S +id*idS$ | shift (push)
S+ id*id$ | shift (push)
S+id *id$ | reduce (pop)
S+* ids$ | shift (push)
$+*id $ | shift (push)
S+* $ | reduce (pop)
S+ S | reduce (pop)
S S | reduce (pop)

stack < input: shift (push)
stack > input: reduce (pop)

id + * S
id > > >
+ < > < >
* < > > >
S < < <

- . &
Compression of Parsing Table A‘Y’A

8id f..
+ * id $
f 2 4 4 0
g 1 3 5 0

Left-to-right scanning of the input.

/ Number of symbols for taking a decision (lookahead).

LR(k) parsers

Construction of a rightmost derivation in reverse

LR parsers

* LR parsers can be constructed to recognize virtually all
programming-language constructs for which context-
free grammars can be written.

* The LR parsing method is the most general
nonbacktracking shift-reduce parsing method known,
yet it can be implemented as efficiently as other shift-
reduce methods.

* The class of grammars that can be parsed using LR
methods is a proper superset of the class of grammars
that can be parsed with predictive parsers (e.g., LL(1)).

* An LR parser can detect a syntactic error as soon as it is
possible to do so on a left-to-right scan of the input.

Recall LL(1)

INPUT al+]pls

|

STACK — -
Tk Predictive Parsing . OUTPUT
Program
Y
: l
S .
Parsing Table
M

S end symbol :
X, Y Z: non-terminals or terminals :

LR parser

INPUT (g, |..|a; |.. |a,|$

STACK :
.’ LR Parsing S OUTPUT
i Program
Xm
Sm-1 ... -
Xm-l :
So parsing table

Algorithm (for actionls,,, a;])

1. shift s, where s is state

2. reduce by a grammar production
3. accept, and

4. error.

LR Parsers

LR(0) SLR(1) LALR(1) CLR(1)

(Simple LR) (Look Ahead LR) (Canonical LR)

Power >
< Simplicity

Constructing an
SLR parsing table

LR(O) item

We hope to see a string derivable
from XYZ next on the input.

We have just seen on the input a
string derivable from X and that
we hope next to see a string
derivable from YZ

V=

\

We saw all input.

A ST i SR = i

A

> XYZ

- - XYZ
> X-YZ
> XY-Z
> XYZ -

= four items

Closure

If | is a set of items for a grammar G, then closure(/)
is the set of items constructed from / by the two
rules:

* Initially, every itemin / is added to the closure(l).

e If A=¥»a +Bbisin closure(l) and B=»C is a
production, then add the item B=» -C to /, if it is
not already there. We apply this rule until no
more new items can be added to closure(l).

Example

Grammar
E’'2E

E DE+T|T
T D>T*F|F
F >(E)|id

I = {[E’>-E]}

closure(I)

R I I~ T e

Goto

goto(/, X) is defined to be the closure of the set

of all items [A—=2>oX:B] such that [A2a-XB] is in /.
Grammar I = {[E'2E*], [E2E-+T]}
E’2FE goto(I,+)
E DE+T|T E DE+-T
T D>T*F|F T =>-+T*F
F > (E)|id T >-F
F =+ (E)
F —->-id

How goto(l,+) is computed?

We computed goto(/, +) by examining / for items with + immediately to the right of the
dot. E/—>E- is not such an item, but E—2>E-++Tis. We moved the dot over the + to get
{E->E+- T} and then took the closure of this set.

Canonical collection of
LR(O) items

 Augment the grammar with a new symbol
that produces the starting symbol of the
grammar: S’—=2>S

* Compute the closure of the new production, C
.= closure({[S’=2+S]})

* For each set of items /in C, and each grammar
symbol X, add goto(l, X) to C

Canonical collection of
LR(O) items

IO I4
E’>E F 2(°*E)
E > «E+T E = +«E+T
E 2T E 2 T
T = +T*F T = «T*F
T 2°F T 2°F
F 2 -(E) F 2 -(E)
F 2 -id F > -id
I, I,
E’'DJE F —2id
E DE-+T
I, s
E ST E 2E+-T
T STk F T =+ T*F
T 9+F
I, T >+ (E)
T 9F T 2-+id

Transition Diagram

> to/,

> to /,
~> to I

—

SLR Parsing Table

STATE action goto

id | + * () $ T | F
0 s5 s4 2 3
1 | s6 acc
2 r2 s7 r2 r2
3 r4 ré r4 r4
4 ‘35 s4 2 3
5 | re ro re ro
6 ‘S5 s4 9 3
7 | ss5 s4 10
8 | s6 sll
9 rl s7 rl ril
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Parsing Algorithm

set

ip to point the first symbol of w$;

repeat forever begin

end

let s be the state on top of the stack and
a the symbol pointed to by ip;

if (action[s, a] = shift s’ then begin
push a then s’ on top of the stack;
advance ip to the next input symbol

end

else if action[s, a] = reduce A->b then begin
pop 2x|b| symbols off the stack;
let s’ be the state now on top of the stack;
push A then goto[s’, A] on top of the stack;
output the production A->b

end

else if action[s, a] = accept then
return

else error()

id*id+id

Productions

(1)
(2)
(3)
(4)
(3)
(6)

E 2E+T
E 2T
T > T*F
T OF
F 2 (E)
F 2id

STACK INPUT ACTION

(1) O id*id+ids | shift
(2) 0id5 *id+id$ | reduce by F>id
(3) OF3 *id+id$ | reduce by T2 F
(4) 0T2 *1d+idS | shift
(5) 0T2*7 id+ids | shift
(6) 0T2*7id5 +id$ | reduce by F>id
(7) 0OT2*7F10 +idS$ | reduce by T2 T*F
(8) 0T2 +id$ | reduce by E> T
(9) OE1 +id$ | shift

(10) 0E1+6 ids$ | shift

(11) OE1+6id5

reduce by F>id

(12) OE1+6F3

reduce by T2 F

(13) 0E1+6T9

E>E+T

(14) OE1

$
$
S
S

accept

