{ {
sya

EMA323 - Oswplo kat MpoKTkn
MeToyAWTTIOTWV

Lecture 5b
Syntax Analysis

Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

Regular Expressions vs
Context-Free Grammars

 Grammar for the regular expression (a/b)*abb
A, = aA, | bA, | aA,
A, bA,
A, = bA,
A, => €

Construct a grammar
from an NFA

 For each state i of the NFA, create a nonterminal
symbol A,

— |f state i has a transition to state j on symbol g, introduce
the production: A;=» aA,

— |f state i has a transition to state j on symbol g, introduce
the production: A;=> A,

— If state i is an accepting state: A, =>» €

— If i is the start state, then make A, be the start symbol of
the grammar

Recall the NFA version:
a

#(0)<(D)——(D)—()
s

REs are useful

1. The lexical rules of a language are frequently quite simple,
and to describe them we do not need a notation as
powerful as grammars.

2. Regular expressions generally provide a more concise and
easier to understand notation for tokens than grammars.

3. More efficient lexical analyzers can be construct
automatically from regular expressions than from
arbitrary grammars.

4. Separating the syntactic structure of the language into
lexical and nonlexical parts provides a convenient way of
modularizing the front end of a compiler into two
mangeable-sized components.

Eliminating Ambiguity

stmt = if expr then stmt |
if expr then stmt else stmt |
other

Valid Sentence
if E, then if E, then S, else S,

if £, then if E, then S, else S,

stmt

Parse Tree 1

if expr then stmt (preferred)
E, if expr then stmt else s:mt
£, 5 52
stmt
/N _ Parse Tree 2
if expr then stmt else stmt
E, if expr then stmt 5

VANVAN

Eliminating Ambiguity

e General rule

— Match each else with the closest previous
unmatched then.

Unambiguous Version

stmt = matched stmt|unmatched stmt
matched stmt = if expr then matched stmt else matched stmt
| other

unmatched stmt =» if expr then stmt
| if expr then matched stmt else unmatched stmt

The idea is that a statement appearing
between a then/else must be matched,
i.e., it must not end with an unmatched
then followed by any statement

Left Recursion

e Expressions where the leftmost symbol on the
right side is the same as the nonterminal in the
left side of the production are called left recursive

— expr =9 expr + term

 These productions can cause the parser to loop
forever
expr ()

{

expr(); match(’+’'); term();

}

Left Recursion Elimination

* A left-recursive production can be eliminated by
re-writing. Consider:

—A = Aa | b, where a, b aresequences of
terminals and nonterminals that do not start with A

* E.g., expr = expr + term | term
— A = expr, a = +term, b = term
* This production can be re-written as:

—A = bR
— R = aR |e (Risright-recursive)

Left Recursion Elimination

E=E+T| T
T = T *F | F
F = (E) | id

E = TE’
E’ = +TE’|¢
T =» FT’

T’ =» *FT’|¢
F = (E) |id

Generic Rule

* No matter how many A-productions there are,
we can eliminate immediate left recursion
from them by the following technique.

(1) We group the A-productions as:

A = Aa,|Aa,|...|Aa |b;|by|...|b,]
(where no b, begins with an A)

(2) We replace the A-productions:

A = bA’'|b,A"|...|b A’

A" = a,A’|la,A’|...|aA" e

Non-immediate Left Recursion

S = Aa b
A= Ac | sd | =€

The nonterminal S is left recursive because
S=>Aa=>Sda, butitis notimmediately
recursive

Eliminating left recursion
(any kind)

* |Input

— Grammar G with no cycles or e-productions (cycle
isA => A and e-production is A=>¢)

* Output
— An equivalent grammar with no left recursion

1. Arrange the nonterminals in some order A, , A,, ..., A
2 []

n
for i := 1 to n do begin

for j := 1 to j-1 do begin
replace each production of the form A; => Ay
by the productions A; =» 6,y |6,y | ... |6y
where A= 6,] 6,| ... |6, are all the current A-productions
end
eliminate the immediate left recursion among the A-productions
end

Example

S = Aa | b
A= Ac | sd | €
* We order the nonterminals S, A. There is no immediate left

recursion among the S-productions, so nothing happens
during step (2) for the case 1 = 1.

e For i = 2, we substitute the S-productionsin A = Sd
to obtain the following A-productions: A =» Ac | Aad
| bd | ¢

 The final grammar

S = Aa | b

A = bdA’ | A’

A’ = cA’ | adA’ | €

Left Factoring

* When we have two productions

stmt =» if expr then stmt else stmt |
if expr then stmt

* on seeing the input token i £, we cannot

immediately tell which production to use to
expand stmt

Left Factoring

In general, if A=<»ab, | ab, are two A-productions
and the input begins with a nonempty string
derived from a, we do not know whether to expand
A to ab, or ab,. However we may defer the
decision by expanding A to aA’. Then after seeing
the input derived from a, we expand A’ to b, or to
b,:

A = gA’

A’ = b,|b,

Left Factoring a Grammar

* |nput
— Grammar G
* Output
— An equivalent left-factored grammar
Method

— For each nonterminal A find the longest prefix a common
to two or more of its alternatives. If a<>¢g, i.e., thereis a
nontrivial common prefix, replace all the A productions A
= ab,|ab,|...|ab,|y, wherey represents all
alternatives that do not begin with a by
A = aA’'ly
A” D b, |b,|...|b,

' If expression then statement,
- If expression then statement else statememt

""""""""")’i """""""""""
-

= iEtS|iEtSeS |a
->

o)

Non-Context-Free Grammars
[oauuaTIKEC UE ZuuppalouEVO

* L,={wcw [orou w €(a|b)*}

— This language abstracts the problem of checking that
identifiers are declared before their use in the

program.
* L,={a"b™c"d™ | ormou n=1, m > 1}
— This language abstracts the problem of checking that
the number of formal parameters in the declaration of
a procedure agrees with the number of actual
parameters in a use of the procedure

* Properties that cannot be expressed using a CFG
are checked in Semantic Analysis

