

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

Lecture 5b

Syntax Analysis

Elias Athanasopoulos eliasathan@cs.ucy.ac.cy

Regular Expressions vs Context-Free Grammars

Grammar for the regular expression (a/b)*abb

$$A_0 \rightarrow aA_0 \mid bA_0 \mid aA_1$$

$$A_1 \rightarrow bA_2$$

$$A_2 \rightarrow bA_3$$

$$A_3 \rightarrow \epsilon$$

Construct a grammar from an NFA

- For each state i of the NFA, create a nonterminal symbol A_i
 - If state *i* has a transition to state *j* on symbol a_i , introduce the production: $A_i \rightarrow aA_i$
 - If state *i* has a transition to state *j* on symbol ε , introduce the production: $A_i \rightarrow A_i$
 - If state *i* is an accepting state: $A_i \rightarrow \epsilon$
 - If i is the start state, then make A_i be the start symbol of the grammar

Recall the NFA version:

REs are useful

- 1. The lexical rules of a language are frequently quite simple, and to describe them we do not need a notation as powerful as grammars.
- 2. Regular expressions generally provide a more concise and easier to understand notation for tokens than grammars.
- 3. More efficient lexical analyzers can be construct automatically from regular expressions than from arbitrary grammars.
- 4. Separating the syntactic structure of the language into lexical and nonlexical parts provides a convenient way of modularizing the front end of a compiler into two mangeable-sized components.

Eliminating Ambiguity


```
stmt → if expr then stmt |
    if expr then stmt else stmt |
    other
```

Valid Sentence

```
if E_1 then if E_2 then S_1 else S_2
```

if E_1 then if E_2 then S_1 else S_2

Eliminating Ambiguity

- General rule
 - Match each else with the closest previous unmatched then.

Unambiguous Version

The idea is that a statement appearing between a **then/else** must be matched, i.e., it must not end with an unmatched **then** followed by any statement

Left Recursion

 Expressions where the leftmost symbol on the right side is the same as the nonterminal in the left side of the production are called *left recursive*

```
-expr → expr + term
```

These productions can cause the parser to loop forever

```
expr()
{
   expr(); match('+'); term();
}
```

Left Recursion Elimination

- A left-recursive production can be eliminated by re-writing. Consider:
 - A → Aa | b, where a, b are sequences of terminals and nonterminals that do not start with A
- E.g., expr → expr + term | term
 -A = expr, a = +term, b = term
- This production can be re-written as:
 - $-A \rightarrow bR$
 - $-R \rightarrow aR \mid \epsilon \text{ (R is right-recursive)}$

Left Recursion Elimination

Generic Rule

- No matter how many A-productions there are, we can eliminate immediate left recursion from them by the following technique.
 - (1) We group the A-productions as:
 - $A \rightarrow Aa_1 | Aa_2 | \dots | Aa_m | b_1 | b_2 | \dots | b_m |$ (where no b_1 begins with an A)
 - (2) We replace the A-productions:
 - $A \rightarrow b_1 A' | b_2 A' | \dots | b_m A'$
 - $A' \rightarrow a_1 A' | a_2 A' | \dots | a_m A' | \varepsilon$

Non-immediate Left Recursion

$$S \rightarrow Aa \mid b$$
 $A \rightarrow Ac \mid Sd \mid \epsilon$

The nonterminal S is left recursive because S=>Aa=>Sda, but it is not immediately recursive

Eliminating left recursion (any kind)

- Input
 - Grammar G with no cycles or ε-productions (cycle is $A \stackrel{\pm}{=} > A$, and ε-production is $A \rightarrow \epsilon$)
- Output
 - An equivalent grammar with no left recursion

- 1. Arrange the nonterminals in some order A_1 , A_2 , ..., A_n
- 2. **for** i := 1 **to** n **do begin for** j := 1 **to** j-1 **do begin**replace each production of the form $A_i \rightarrow A_j \gamma$ by the productions $A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \dots \mid \delta_k \gamma$ where $A_j \rightarrow \delta_1 \mid \delta_2 \mid \dots \mid \delta_k$ are all the current A_j -productions **end**eliminate the immediate left recursion among the A_j -productions **end**

Example

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid \epsilon$

- We order the nonterminals S, A. There is no immediate left recursion among the S-productions, so nothing happens during step (2) for the case i = 1.
- For i = 2, we substitute the S-productions in $A \rightarrow Sd$ to obtain the following A-productions: $A \rightarrow Ac \mid Aad \mid bd \mid \epsilon$
- The final grammar

$$S \rightarrow Aa \mid b$$
 $A \rightarrow bdA' \mid A'$
 $A' \rightarrow cA' \mid adA' \mid \epsilon$

Left Factoring

- When we have two productions
 - stmt → if expr then stmt else stmt
 if expr then stmt
- on seeing the input token if, we cannot immediately tell which production to use to expand stmt

Left Factoring

In general, if $A \rightarrow ab_1 \mid ab_2$ are two A-productions and the input begins with a nonempty string derived from a, we do not know whether to expand A to ab_1 or ab_2 . However we may defer the decision by expanding A to aA'. Then after seeing the input derived from a, we expand A' to b_1 or to b_2 :

$$\begin{array}{cccc} A & \rightarrow & aA' \\ A' & \rightarrow & b_1 \mid b_2 \end{array}$$

Left Factoring a Grammar

- Input
 - Grammar G
- Output
 - An equivalent left-factored grammar
- Method
 - − For each nonterminal A find the longest prefix a common to two or more of its alternatives. If a<>ε, i.e., there is a nontrivial common prefix, replace all the A productions A \Rightarrow ab₁ | ab₂ | . . . | ab_n | γ, where γ represents all alternatives that do not begin with a by

$$A \rightarrow aA' | \gamma$$

 $A' \rightarrow b_1 | b_2 | \dots | b_n$

Example

If expression then statement,
If expression then statement else statement

 $S \rightarrow iEtSS' | a$ $S' \rightarrow eS | \epsilon$ $E \rightarrow b$

Non-Context-Free Grammars

Γραμματικές με Συμφραζόμενα

- $L_1 = \{wcw \mid \acute{o}\pi o \upsilon \ w \in (a/b)^*\}$
 - This language abstracts the problem of checking that identifiers are declared before their use in the program.
- $L_2=\{a^nb^mc^nd^m\mid \acute{o}\pi o \upsilon\ n\geq 1,\ m\geq 1\}$
 - This language abstracts the problem of checking that the number of formal parameters in the declaration of a procedure agrees with the number of actual parameters in a use of the procedure
- Properties that cannot be expressed using a CFG are checked in Semantic Analysis