{ {
sya

EMA323 - Oswplo kat MpoKTkn
MeToyAWTTIOTWV

Lecture 5a
Syntax Analysis

Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

Syntax Analysis A“rxi‘g

JUVTOKTLKN AvaAuon

Source Program

* Context-free Grammars (CFGs) Lexicainawzer

v

e Derivations

Syntax Analyzer
° Pa rs e t re e S SemantijAnalyzer
* Top-down Parsing :f‘"infé"r*méd%é‘té‘aodé"‘i

 Ambiguities

————————————————————————————————————

Code optimizer

I I
I I
| |

Code generator

v

Target Program

Syntax Analysis

e Syntax analysis (parsing) is the process of
determining if a string of tokens can be
generated by a grammar

“I gave him the book” Se”tence\
// \ indirect object
subject: | verb:gave object: him \

noun phrase

— '\

article: the noun: book

Lexical-Syntax Analysis

{
if (b == 0) a = b;
Source code while (a != 1) { printf(“%I “,I--); }
(character stream) }

Lexical Analysis

Token stream |{ |1£](

o
I
I
o
)
I
o

Syntax Analysis

Syntax tree block
if stmt while_stmt
/ - |
/ expr \ / expr block
| _ |
variable == COHIStant varllable . corlwstant
| -]
b 0 expr a
N N
variable _ variable
/ \

a b

The Role of the Parser

token
source .
orogram lexical
analyzer
get next
\ token
symbol

table

Syntax Analysis Operation

* |nput
— A stream of tokens taken from lexical analysis
* Output

— Syntax tree which determines the token relations

and the syntax correctness (are all parentheses
balanced?)

* Semantic analysis takes care of types
—int x

true;
—int y; z = £(y);

Syntax Error Handling

Lexical
— Misspelling an identifier, keyword, or operator

Syntactic

— Arithmetic expression with unbalanced
parenthesis

Semantic
— Operator applied to an incompatible operand

Logical
— Infinitely recursive call

Error Handler Requirements

* |t should report the presence of errors clearly
and accurately

* |t should recover from each error quickly
enough to be able to detect subsequent errors

* |t should not significantly slow down the
processing of correct programs

What happens when an error is
detected?

 Many strategies, none clearly dominates

* Not adequate for the parser to quit upon
detecting the first error

— Subsequent parsing may reveal additional errors

e Usually, the compiler attempts error recovery

— Reasonable hope that the rest of the program can
be parsed

* Error recovery should be realized correctly
— Otherwise many errors can be generated

Example

* While recovering from an error a compiler may
skip the declaration of a variable zap

* At a later point when zap is used the compiler
should not generate a syntactic error, but just the
missing declaration

— Since, there should be no entry at the symbol table

* Conservative strategy

— Once an error is detected, filter out close errors
(consume enough tokens to exit the error area)

BUT WHY?1? WE
NEVER PROGRAMMED
THEM 70 DO THS !

static bool isCrazyMurderingRobot = false;

void interact_with_humans (void){

if(isCrazyMurderingRobot = true)
kill(humans);

else

be_nice_to(humans);

Error-recovery Strategies

e Panic mode

— Once an error is detected, consume tokens until a synchronizing
token is detected

— Synchronizing tokens are usually delimiters (end, ;), which
have a clear meaning

— Simple and cannot enter an infinite loop
* Phrase level

— Attempt to correct the error by taking action

— Insert a missing semicolon, replace a comma with a semicolon,
etc.

— Can create infinite loops if actions are not applied correctly

— Hard to cope with cases where the error has occurred before
the point of detection

Error-recovery Strategies

* Error productions

— Common errors can be augmented to the grammar of the
language

— The parser can then detect errors, since these errors are
part of the language

* Global correction
— Attempt to correct an error with the least possible actions

— Given an incorrect input string x and grammar G, find a
valid y, which can be derived from x with the least amount
of changes

— The closest correct program may not be the one the
programmer had in mind

pauuatikec Xwpic Zuuppalousvo
CONTEXT-FREE GRAMMARS

Regular Expressions
Limitations

* Regular expressions can be transformed easily
to NFA (and then to DFA)

* Discovering and classifying tokens using
regular expressions is easy and efficient

* Regular expressions cannot be used for syntax
analysis

Regular Expressions
Limitations

 Match all balanced parentheses:

— () (C)) OOy CO))O)ece))))
* You need an NFA with an infinite number of
states

(((((

For 5 nested parentheses
you need the following
NFA

Context-free Grammar (CFG)
[oauuotikn Xwpic Zuuppalousvo

1. A set of tokens, known as terminal symbols.

— Terminals are the basic symbols from which strings are
formed. The word “token” is a synonym for “terminal”
when we are talking about programming languages
(e.g., tokens like 1 £, then, and else are all
terminals)

2. A set of nonterminals.

— Nonterminals are syntactic variables that denote sets
of strings. The nonterminals define sets of strings that
help define the language generated by the grammar.
They also impose a hierarchical structure on the
language defined by the grammar.

Context-free Grammar (CFG)
[oauuotikn Xwpic Zuuppalousvo

3. Aset of productions (kavovec rapaywyric) where each production
consists of a nonterminal, called the /eft side of the production, an

arrow, and a sequence of tokens and/or nonterminals, called the
right side of the production.

— The productions of the grammar specify the manner in which the
terminals and nonterminals can be combined to form strings. Each
production consists of a nonterminal, followed by an arrow

(sometimes the symbol : : == is used in place of the arrow), followed
by a string of nonterminals and terminals.

4. A designation of one of the nonterminals as the start symbol

— In a grammar, one nonterminal is distinguished as the start symbol,

and the set of strings it denotes is the language defined by the
grammar.

Example 1

* Expressions of digits separated by plus and

minus signs
—9-5+2, 3-1, 7

list =» list + digit (2.2)
list = 1list — digit (2.3)
list =» digit (2.4)
digit = 0|1|2|3|4|5|6|7|8]|9 (2.5)

The three first productions can be grouped:

list = list + digit

list — digit | digit

Nonterminals: 1ist, digit
Sart symbol: 1ist

Terminals/Tokens:+ - 0 1 2 3 4 5 6 7 8 9

Example 1

* The ten productions for the nonterminal digit
allow it to stand for any of the tokens 0, 1,
ooy 9

4

* From 2.4 a single digit by itself is a list

e 2.2 and 2.3 express the fact that if we take any list
and follow it by a plus or minus sign and then
another digit we have a new list

9-5+2

e 9 s a list by production 2.4, since 9 is a digit

e 9-5 s alist by production 2.3, since 9 is a list and 5 is a digit

e 9-5+2 is alist by production 2.2, since 9-5 is a list and 2 is a digit

Example 2

* “Begin End” block in Pascal

begin
(* Pascal code *)
end
block = begin opt stmts end

opt stmts = stmt list | €
stmt list =P stmt list ; stmt | stmt

(stmt is not expanded at this point)

Example 3

e Simple arithmetic expressions

expr
expr
expr
expr
op
op
op
op
op

= exXpr op expr

v
2
s
J

VNV

Equal with:
E= EAE | (E)
A=+ | - | * |

Derivation
Mapaywyn

E=2EAE/| (E) | -E | id
* The production E =» -FE signifies that an

expression preceded by a minus sign is also an
expression

* We can thus generate more complex

expressions from simpler expressions by just
replacing E with —F

Derivation

Mapaywyn
E => -F
(E derives —E)
Examples
E = (E)

E*E => (E)*E or E*(E)
E => -F => —-(E) => -(id)

=> Derives in one step

* ..

=> Derives in zero ore more steps
+ .

=> Derives in one or more steps

Leftmost - Rightmost

E=>EAE/| (E) | -E | id (G1)
A2+ | -1 *1/717

The string —(1id + id) is a sentence of grammar G1

Leftmost derivation
E=>-E=>-(E)=>-(E+E)=>—(id+E) =>— (id+id)

Rightmost derivation
E=>-E=>-(E)=>-(E+E)=>-(E+id)=>-(id+id)

Grammars and Languages

* Given a grammar G with a start symbol S,
— A string of only terminals, w, isin L(G) iff S=>w
— The string w is called a sentence of G

— L(G) is the language generated by G and includes
all w (strings composed by terminals of G)

* Alanguage that can be generated by a
grammar is a context-free grammar

* |f two grammars generate the same language,
then they are equivalent

Parse Trees

A parse tree may be viewed as a graphical
representation for a derivation that filters out the
choice regarding replacement order.

E=>-E=>-(E)=>-(E+E)=>-(id+E) =>— (id+id)

Im

Constructing the Parse Tree

E E

E
7N AN
=> => /7 I\
(F)

E E E
i 7N 7 N
=> I\ => I\ =2 / I\
(E) (E) (E)
E/+E E/+\E E/+\E

Ambiguity
Auplonuio

* A grammar that produces more t
tree for some sentence is said to

nan one parse
oe ambiguous

* For certain types of parsers, it is desirable that
the grammar be made unambiguous

* For some applications we shall also consider
methods whereby we can use certain ambiguous
grammars, together with disambiguating rules
that “throw away” undesirable parse trees

