
ΕΠΛ323	-	Θεωρία	και	Πρακτική	
Μεταγλωττιστών	
	

Lecture	5a
Syntax	Analysis
Elias	Athanasopoulos

eliasathan@cs.ucy.ac.cy

Syntax	Analysis
Συντακτική	Ανάλυση

• Context-free	Grammars	(CFGs)	
• Derivations
• Parse	trees
• Top-down	Parsing
• Ambiguities

Syntax	Analysis

• Syntax	analysis	(parsing)	is	the	process	of	
determining	if	a	string	of	tokens	can	be	
generated	by	a	grammar

“I	gave	him	the	book” sentence

subject: I verb:gave object: him
indirect object

noun phrase

article: the noun: book

Lexical-Syntax	Analysis

Source	code
(character	stream)

Token	stream

Syntax	tree

if (b) a = b ;==

{
if (b == 0) a = b;
while (a != 1) { printf(“%I “,I--); }

}

{

if_stmt
expr

variable

b

constant

0

block

while_stmt

expr

== !=
variable constant

block

1a
...

0

Lexical	Analysis

Syntax	Analysis

expr

variable = variable

a b

The	Role	of	the	Parser

lexical
analyzer parser

source
program

token

get	next
token

symbol
table

rest	of	
front	end

parse
tree

Syntax	Analysis	Operation

• Input
– A	stream	of	tokens	taken	from	lexical	analysis

• Output
– Syntax	tree	which	determines	the	token	relations	
and	the	syntax	correctness	(are	all	parentheses	
balanced?)

• Semantic	analysis	takes	care	of	types
– int x = true;
– int y; z = f(y);

Syntax	Error	Handling

• Lexical
–Misspelling	an	identifier,	keyword,	or	operator

• Syntactic
– Arithmetic	expression	with	unbalanced	
parenthesis

• Semantic	
– Operator	applied	to	an	incompatible	operand	

• Logical
– Infinitely	recursive	call

Error	Handler	Requirements

• It	should	report	the	presence	of	errors	clearly	
and	accurately

• It	should	recover	from	each	error	quickly	
enough	to	be	able	to	detect	subsequent	errors

• It	should	not	significantly	slow	down	the	
processing	of	correct	programs

What	happens	when	an	error	is	
detected?
• Many	strategies,	none	clearly	dominates
• Not	adequate	for	the	parser	to	quit	upon	
detecting	the	first	error
– Subsequent	parsing	may	reveal	additional	errors

• Usually,	the	compiler	attempts	error	recovery
– Reasonable	hope	that	the	rest	of	the	program	can	
be	parsed

• Error	recovery	should	be	realized	correctly
– Otherwise	many	errors	can	be	generated	

Example

• While	recovering	from	an	error	a	compiler	may	
skip	the	declaration	of	a	variable	zap

• At	a	later	point	when	zap is	used	the	compiler	
should	not	generate	a	syntactic	error,	but	just	the	
missing	declaration
– Since,	there	should	be	no	entry	at	the	symbol	table

• Conservative	strategy
– Once	an	error	is	detected,	filter	out	close	errors	
(consume	enough	tokens	to	exit	the	error	area)

Error-recovery	Strategies
• Panic	mode

– Once	an	error	is	detected,	consume	tokens	until	a	synchronizing	
token is	detected

– Synchronizing	tokens	are	usually	delimiters	(end, ;),	which	
have	a	clear	meaning

– Simple	and	cannot	enter	an	infinite	loop
• Phrase	level

– Attempt	to	correct	the	error	by	taking	action
– Insert	a	missing	semicolon,	replace	a	comma	with	a	semicolon,	

etc.
– Can	create	infinite	loops	if	actions	are	not	applied	correctly
– Hard	to	cope	with	cases	where	the	error	has	occurred	before	

the	point	of	detection

Error-recovery	Strategies
• Error	productions
– Common	errors	can	be	augmented	to	the	grammar	of	the	
language

– The	parser	can	then	detect	errors,	since	these	errors	are	
part	of	the	language

• Global	correction
– Attempt	to	correct	an	error	with	the	least	possible	actions
– Given	an	incorrect	input	string	x and	grammar	G,	find	a	
valid	y,	which	can	be	derived	from	x with	the	least	amount	
of	changes

– The	closest	correct	program	may	not	be	the	one	the	
programmer	had	in	mind	

CONTEXT-FREE	GRAMMARS	
Γραμματικές	Χωρίς	Συμφραζόμενα

Regular	Expressions	
Limitations
• Regular	expressions	can	be	transformed	easily	
to	NFA	(and	then	to	DFA)

• Discovering	and	classifying	tokens	using	
regular	expressions	is	easy	and	efficient	

• Regular	expressions	cannot	be	used	for	syntax	
analysis

Regular	Expressions	
Limitations
• Match	all	balanced	parentheses:	
– () (()) ()()() (())()((()()))

• You	need	an	NFA	with	an	infinite	number	of	
states

(((((

)))))

For	5	nested	parentheses	
you	need	the	following	
NFA

S

Context-free	Grammar	(CFG)
Γραμματική	Χωρίς	Συμφραζόμενα

1. A	set	of	tokens,	known	as	terminal symbols.
– Terminals	are	the	basic	symbols	from	which	strings	are	
formed.	The	word “token”	is	a	synonym	for	“terminal”	
when	we	are	talking	about	programming	languages	
(e.g.,	tokens	like	if,	then,	and	else are	all	
terminals)

2. A	set	of	nonterminals.
– Nonterminals are	syntactic	variables	that	denote	sets	
of	strings.	The	nonterminals define	sets	of	strings	that	
help	define	the	language	generated	by	the	grammar.	
They	also	impose	a	hierarchical	structure	on	the	
language	defined	by	the	grammar.

Context-free	Grammar	(CFG)
Γραμματική	Χωρίς	Συμφραζόμενα

3. A	set	of	productions	(κανόνες	παραγωγής) where	each	production	
consists	of	a	nonterminal,	called	the	left	side of	the	production,	an	
arrow,	and	a	sequence	of	tokens	and/or	nonterminals,	called	the	
right	side of	the	production.
– The	productions	of	the	grammar	specify	the	manner	in	which	the	

terminals	and	nonterminals can	be	combined	to	form	strings.	Each	
production	consists	of	a	nonterminal,	followed	by	an	arrow	
(sometimes	the	symbol	::== is	used	in	place	of	the	arrow),	followed	
by	a	string	of	nonterminals and	terminals.

4. A	designation	of	one	of	the	nonterminals as	the	start	symbol
– In	a	grammar,	one	nonterminal	is	distinguished	as	the	start	symbol,	

and	the	set	of	strings	it	denotes	is	the	language	defined	by	the	
grammar.

Example	1

• Expressions	of	digits	separated	by	plus	and	
minus	signs
– 9-5+2, 3-1, 7

list è list + digit (2.2)
list è list – digit (2.3)
list è digit (2.4)
digit è 0|1|2|3|4|5|6|7|8|9 (2.5)
The	three	first	productions	can	be	grouped:
list è list + digit | list – digit | digit

Terminals/Tokens:	+ - 0 1 2 3 4 5 6 7 8 9
Nonterminals:	list, digit
Sart symbol: list

Example	1

• The	ten	productions	for	the	nonterminal	digit
allow	it	to	stand	for	any	of	the	tokens	0, 1,
..., 9

• From	2.4	a	single	digit by	itself	is	a	list
• 2.2	and	2.3	express	the	fact	that	if	we	take	any	list	
and	follow	it	by	a	plus	or	minus	sign	and	then	
another	digit we	have	a	new	list

9-5+2
• 9 is	a	list	by	production	2.4,	since	9 is	a	digit
• 9-5 is	a	list	by	production	2.3,	since	9 is	a	list	and	5 is	a	digit
• 9-5+2 is	a	list	by	production	2.2,	since	9-5 is	a	list	and	2 is	a	digit

Example	2

• “Begin End” block	in	Pascal

begin
... (* Pascal code *)

end

block è begin opt_stmts end
opt_stmts è stmt_list | ε
stmt_list è stmt_list ; stmt | stmt

(stmt is	not	expanded	at	this	point)

Example	3

• Simple	arithmetic	expressions

expr è expr op expr
expr è (expr)
expr è -expr
expr è id
op è +
op è -
op è *
op è /
op è ^

Equal	with:
E è E A E | (E) | -E | id
A è + | - | * | / | ^

Derivation
Παραγωγή

E è E A E | (E) | -E | id
• The	production	E è -E signifies	that	an	
expression	preceded	by	a	minus	sign	is	also	an	
expression

• We	can	thus	generate	more	complex	
expressions	from	simpler	expressions	by	just	
replacing	E with	-E

Derivation
Παραγωγή

E => -E
(E derives –E)

Examples	
E è (E)
E*E => (E)*E or E*(E)
E => -E => -(E) => -(id)

=> Derives	in	one	step
=> Derives	in	zero	ore	more	steps
=> Derives	in	one	or	more	steps
*
+

Leftmost	derivation
E=>-E=>-(E)=>-(E+E)=>-(id+E)=>-(id+id)

Rightmost	derivation
E=>-E=>-(E)=>-(E+E)=>-(E+id)=>-(id+id)

Leftmost	- Rightmost

E è E A E | (E) | -E | id (G1)
A è + | - | * | / | ^

lm lmlmlmlm

rm rm rm rm rm

The	string	 -(id + id) is	a	sentence	of	grammar	G1

Grammars	and	Languages

• Given	a	grammar	G	with	a	start	symbol	S,
– A	string	of	only	terminals, w, is	in	L(G)	iff S	=>	w
– The	string	w is	called	a	sentence	of G
– L(G) is	the	language	generated	by	G and	includes	
all	w	(strings	composed	by	terminals	of	G)

• A	language	that	can	be	generated	by	a	
grammar	is	a	context-free	grammar

• If	two	grammars	generate	the	same	language,	
then	they	are	equivalent

+

Parse	Trees

A	parse	tree	may	be	viewed	as	a	graphical	
representation	for	a	derivation	that	filters	out	the	
choice	regarding	replacement	order.

E

E

E

E E

-

()

+

id id

E=>-E=>-(E)=>-(E+E)=>-(id+E)=>-(id+id)
lm lmlmlmlm

Constructing	the	Parse	Tree
E E

E-

E

E

E

-

()

E

E

E

E E

-

()

+

id id

E

E

E

E E

-

()

+

id

E

E

E

E E

-

()

+

=> =>

=> =>=>

Ambiguity
Αμφισημία

• A	grammar	that	produces	more	than	one	parse	
tree	for	some	sentence	is	said	to	be	ambiguous

• For	certain	types	of	parsers,	it	is	desirable	that	
the	grammar	be	made	unambiguous

• For	some	applications	we	shall	also	consider	
methods	whereby	we	can	use	certain	ambiguous	
grammars,	together	with	disambiguating rules
that	“throw	away”	undesirable	parse	trees

