
ΕΠΛ323	-	Θεωρία	και	Πρακτική	
Μεταγλωττιστών	
	

Lecture	4b
Symbol	Table
Elias	Athanasopoulos

eliasathan@cs.ucy.ac.cy

Symbol	Table
Πίνακας	Συμβόλων

• A	data	structure	that	holds	information	about	
identified	names (type,	scope,	etc.)
– Linear	List
– Hash	table

• Operations
– Search:	The	symbol	table	is	searched every	time	a	new	
name	is	encountered	in	the	source	text

– Change:	The	symbol	table	is	changed if	a	new	name	or	
new	information	about	an	existing	name	is	discovered

• Evaluation
– What	is	the	time	required	to	insert	n entries	and	make	e
inquiries	

Symbol-table	Entries

• An	entry	is	a	name	followed	by	some	
attributes

• Entries	are	entered	in	the	table	in	various	
times
– Keywords	can	be	entered	in	advance,	or	not

• Role	of	an	entry	can	become	clear	at	a	later	
point

• The	same	name	may	have	several	meanings
– int x; struct x { float y, z };

Characters	in	name
Fixed	length

NAME ATTRIBUTES

s|o|r|t| | | | | | |

a| | | | | | | | | |

r|e|a|d|a|r|r|a|y| |

i| | | | | | | | | |

z|a|d|d|r| | | | | |

Characters	in	name
Dynamic	Length

NAME ATTRIBUTES

pointer

pointer

NULL

NULL

pointer

| s | o | r | t |EOS| a |EOS| r | e | a | d | a | r | r | a | y |EOS|

Storage	Allocation	Information
• Symbol	entries	may	include	storage-allocation	details	
• Variables	are	placed	at	certain	memory	locations	at	run-

time
– Compilers	that	produce	assembly	code,	should	delegate	this	to	

the	assembler
– Compilers	that	produce	machine	code,	should	take	care	of	this	

at	compile-time	
• Variables	are	dynamically	generated	on	the	stack	and	heap	

of	the	process	
– Compilers	should	not	be	aware	of	the	exact	stack/heap	

locations
– Compilers	should	emit	the	proper	code	to	handle	stack/heap	

allocations/deallocations

Symbol	Table	Implementation
Linear	list	of	records

id1
info1
id2
info2

idn
infon

available

- Entering	a	name	needs	work	
proportional	to	n,	since	we	
need	to	make	sure	the	name	
is	not	already	there	(linear	
complexity).	

- To	find	a	name,	on	the	
average	we	search	n/2 names	
(linear	complexity).

- The	total	work	for	inserting	n	
names	and	carry	out	e
enquiries	is:	cn(n+e).

Symbol	Table	Implementation
Hash	Table

0

...

9

...

20

...

32

...

210

cp n

match

last action ws

m

- Complexity	of	performing	e enquiries	
on	n names	is:	n(n+e)/m.

- We	control	m,	if	m	~	n then	the	
complexity	becomes	linear	~(n+e).

Hash	Table	insertion
• Determine	if	there	is	an	entry	for	string	s in	the	symbol	
table
– h(s) è [0,(m-1)]
– If	s is	in	the	symbol	table,	then	it	is	on	the	list	numbered	
h(s)

– If	s is	not	in	the	symbol	table,	it	is	entered	by	creating	a	
record	for	s that	is	linked	at	the	front	of	the	list	numbered	
h(s)

• Rule	of	thumb:	the	average	list	is	n/m records	long	If	
there	are	n names	stored	in	a	hash	table	of	size	m
– If	m~n,	then	the	time	to	access	the	table	is	essentially	
constant	

Other	properties

• The	space	taken	is
– m words	for	the	hash	table
– cn words	for	table	entries,	where	c is	the	number	
of	words	per	table	entry

• Choice	of	m
– It	depends	on	the	compiler
– Some	compilers	take	pre-compiled	code,	where	
the	number	of	different	names	may	be	significant

Computing	h()

• Determine	a	positive	integer	h from	the	
characters	c1, c2,..., ck in	string	s
–Most	programming	languages	support	a	number	
representation	of	characters

• Convert	h to	[0,	m-1]
– Simply	dividing	by	m and	taking	the	remainder	is	a	
reasonable	policy (works	better	if	m is	prime)

hashpjw()
#define PRIME 211
#define EOS ‘\0’
int hashpjw(char *s) {

char *p;
unsigned h = 0, g;

for (p = s; *p != EOS; p = p + 1) {
h = (h << 4) + (*p);
if (g = h & 0xf0000000) {

h = h ^ (g >> 24);
h = h ^ g;

} /* if */
} /* for */

} /* hasphjw */

Representing	Scope	
Information
• Symbol	table	holds	names
• When	a	name is	occurred,	while	the	source	is	
scanned,	the	appropriate	record	should	be	
fetched	(or	processed)

• The	symbol	table	may	host	several	entries	
with	the	same	name
– Consider	the	name	i in	C,	which	is	used	frequently	
as	an	integer	counter

Scope

• Scope	and	name,	both	determine	the	meaning	of	
a	variable
void foo(int N) {

int i = 0;
for (i = 0; i < N; i++) { . . . }
...

}

int main(int argc, char *argv[]) {
int i = 0;
for (i = 0; i < N; i++) { foo(i); }
...
if () { int i; ... }

}

Local	scope	for	
function	foo()

Local	scope	for	
function	main()

Function	
parameter

Block	scope

Scope	and	Symbol	Tables

• Use	several	symbol	tables	per	scope
• Equivalent	at	compile-time	of	activation
records (or	frames)	at	run-time

returned	value

actual	parameters

saved machine	status

local	data

temporaries

activation	record

Symbol	table	per	scope

• Nested	scope	can	be	implemented	using	nested	
symbol	tables

• Each	symbol	entry,	includes	a	procedure	(or	
block)	number
– i.e.,	symbol	x declared	in	id:	13, which	is printf()
– Functions/blocks	can	be	tracked	in	syntax	analysis

• Operations	for	nested	symbol	tables
– lookup:	find	the	most	recently	created	entry
– insert:	make	a	new	entry
– delete:	remove	the	most	recently	created	entry

Implementation	of	
nested	symbol	tables
• Linear	list

• Hash	tables
– Use	a	stack	to	keep	track	of	the	lists	containing	
entries	to	be	deleted	

.

front a2 a0

Entry	of	a declared	in	block	B2,	nested	in	
B0,	appears	nearer	the	front	of	the	list		
than	the	entry	for	a declared	in	B0.

