{ {
sya

EMA323 - Oswplo kat MpoKTkn
MeToyAWTTIOTWV

Lecture 4b
Symbol Table

Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

Symbol Table

Mivakoc ZuuBoAwv

A data structure that holds information about
identified names (type, scope, etc.)

— Linear List
— Hash table
* QOperations

— Search: The symbol table is searched every time a new
name is encountered in the source text

— Change: The symbol table is changed if a new name or
new information about an existing name is discovered

e Evaluation

— What is the time required to insert n entries and make e
Inquiries

Symbol-table Entries

* An entry is a name followed by some
attributes

e Entries are entered in the table in various
times

— Keywords can be entered in advance, or not

* Role of an entry can become clear at a later
point

* The same name may have several meanings
—int x; struct x { float y, z };

Characters in name &
Fixed length x

N [F-|H | W
®
o)
0.
©
N
A
o)
N

Characters in name
Dynamic Length

NAME ATTRIBUTES

pointer

— pointer

NULL

NULL

| pointer

v v

| s | o| r| t |EOS| a |EOS| r | e | a | d | a | r | r | a | y |EOS|

Storage Allocation Information

* Symbol entries may include storage-allocation details

* Variables are placed at certain memory locations at run-
time
— Compilers that produce assembly code, should delegate this to
the assembler
— Compilers that produce machine code, should take care of this
at compile-time
* Variables are dynamically generated on the stack and heap
of the process

— Compilers should not be aware of the exact stack/heap
locations

— Compilers should emit the proper code to handle stack/heap
allocations/deallocations

Symbol Table Implementation
Linear list of records

available

Entering a name needs work
proportional to n, since we
need to make sure the name
is not already there (linear
complexity).

To find a name, on the
average we search n/2 names
(linear complexity).

The total work for inserting n
names and carry out e
enquiries is: cn(n+e).

Symbol Table Implementation

Hash Table

20

32

210

WS

cp n
>
match
last action
> >

Complexity of performing e enquiries
on n names is: n(n+e)/m.

We control m, if m ~ n then the
complexity becomes linear ~(n+e).

Hash Table insertion

 Determine if there is an entry for string s in the symbol
table
—h(s) = [0,(m-1)]
— I;:(s)is in the symbol table, then it is on the list numbered
S

— If sis not in the symbol table, it is entered by creating a
record for s that is linked at the front of the list numbered

h(s)
* Rule of thumb: the average list is n/m records long If
there are n names stored in a hash table of size m

— If m~n, then the time to access the table is essentially
constant

Other properties

* The space taken is
— m words for the hash table

— cn words for table entries, where c is the number
of words per table entry

* Choice of m
— |t depends on the compiler

— Some compilers take pre-compiled code, where
the number of different names may be significant

Computing h()

 Determine a positive integer h from the
characters c,, c,,..., ¢, in string s

— Most programming languages support a number
representation of characters

 Convert hto [0, m-1]

— Simply dividing by m and taking the remainder is a
reasonable policy (works better if m is prime)

hashpjw()

#define PRIME 211
#define EOS ‘\O’
int hashpjw(char *s) {

char *p;
unsigned h = 0, g;

for (p = s; *p != EOS; p=p + 1) {
h = (h << 4) + (*p);
if (g = h & 0x£f0000000) {
h =h "~ (g > 24);

h =h "~ g;
y /* 1if */
} /* for */

} /* hasphjw */

Representing Scope
Information

* Symbol table holds names

* When a name is occurred, while the source is
scanned, the appropriate record should be
fetched (or processed)

* The symbol table may host several entries
with the same name

— Consider the name i in C, which is used frequently
as an integer counter

Scope

e Scope and name, both determine the meaning of

a variable

void foo(int N) {
int i = 0; <€
for (i = 0; i < N; i++) { . . . }

Local scope for
function foo()

Local scope for

' function main()
int main(int argc, char *ar {

int 1 = 0; .

for (i = 0; i < N; i++) { foo(i¢gs—3} Function

c e parameter

if () { int i; ... }
} -

Block scope

Scope and Symbol Tables

e Use several symbol tables per scope

* Equivalent at compile-time of activation
records (or frames) at run-time

returned value

activation record = saved machine status

temporaries

Symbol table per scope

* Nested scope can be implemented using nested
symbol tables

e Each symbol entry, includes a procedure (or
block) number

— i.e., symbol x declared in id: 13, which is printf()
— Functions/blocks can be tracked in syntax analysis

* Operations for nested symbol tables
— lookup: find the most recently created entry

— insert: make a new entry
— delete: remove the most recently created entry

Implementation of

nested symbol tables

e Linear list

Entry of a declared in block B,, nested in
B,, appears nearer the front of the list
than the entry for a declared in B,,.

ag

~> —> s —>

 Hash tables

— Use a stack to keep track of the lists containing

entries to be deleted

