
ΕΠΛ323	-	Θεωρία	και	Πρακτική	
Μεταγλωττιστών	
	

Lecture	8a
Syntax-directed	Translation

Elias	Athanasopoulos
eliasathan@cs.ucy.ac.cy

Syntax-directed	Translation	(SDT)
Μετάφραση	Κατευθυνόμενη	από	τη	Σύνταξη

• We	associate	information	with	a	programming	
language	construct	by	attaching	attributes	to	the	
grammar	symbols	representing	the	construct.

• Values	of	attributes	are	computed	based	on	
semantic	rules.

• We	define	Syntax-directed	Definitions	and	Syntax-
director	Translations.

• We	parse	the	input	token	stream,	build	the	parse	
tree,	and	then	traverse	the	tree	as	needed	to	
evaluate	the	semantic	rules	at	the	parse-tree	
nodes.
input	
string

parse	
tree

dependency	
graph

evaluation	order
for	semantic	rules

Syntax-directed	Definitions	(SDTs)
Ορισμοί	κατευθυνόμενοι	από	τη	σύνταξη

• A	syntax-directed	definition	is	a	generalization	of	
a	context-free	grammar	in	which	each	grammar	
symbol	has	an	associated	set	of	attributes
– Synthesized	attributes	(παραγόμενα),
– Inherited	attributes	(κληρονομούμενα).

• Attributes	can	represent	anything
– Strings,	numbers,	types,	memory	locations,	etc.

• A	parse	tree	showing	the	values	of	attributes	at	
each	node	is	called	an	annotated parse tree.

Attributes
In	a	syntax-directed	definition,	each	grammar	production	Aàa has	associated	
with	it	a	set	of	semantic	rules	of	the	form	b	:=	f(c1,	c1,...,	ck) where	a	f is	a	
function.
• Synthesized	

– b is	a	synthesized	attribute	of	A,
– Example:	AàBC,	A.val =	f(B.val,	C.val),	i.e.,	the	attribute	val of	A is	computed	

by	attributes	of	its	children (B	and C).
• Inherited	

– b is	an	inherited	attribute	of	one	of	the	grammar	symbols	on	the	right	side	of	
the	production.

– Terminals	have	only inherited	attributes.
– Example:	AàBCD,	C.val =	f(A.val,	B.val,	D.val),	i.e.,	the	attribute	val of	C (on	

the	right	side	of	the	production)	is	computed	by	attributes	of	its	parent (A)	
and	its	siblings (B and	D).

In	either	case,	we	say	that	attribute	b	depends	on	attributes	c1,	c1,...,	ck.

Example	
Synthesized	Attributes
PRODUCTION SEMANTIC RULES

L à E n print(E.val)

E à E1 + T E.val:=E1.val+T.val

E à T E.val:=T.val

T à T1 * T T.val:=T1.val*T.val

T à F T.val:=F.val

F à (E) F.val:=E.val

F à digit F.val:=digit.lexval

Attribute	val of	E is	a	function	of	the	
attributes	of	its	children,	namely	E1 and	T.

All	semantic	rules	are	written	at	
the	right	end	of	the	productions.

Syntax-directed	definition	(called	
also	S-attributed	definition),	which	
contains	only synthesized	
attributes.	

Annotated	Parse	Tree	

E.val=19

+E.val=15

T.val=15

*T.val=3 F.val=5

F.val=3

digit.lexval=3

digit.lexval=5

T.val=4

F.val=4

digit.lexval=5

L

n

Input:	3*5+4

Semantic	Analysis

• Syntax-directed	Definition	(SDD)
A	context-free	grammar	with	semantic	rules for	
calculating	the	attributes

• Syntax-directed	Translations	(SDTs)
A	context-free	grammar	with	semantic	actions
and	their	exact	order	(actions	can	appear	
anywhere	in	the	right	side	of	a	production)
T à num { print(num.val) }

PRODUCTION SEMANTIC RULES
E à E1 + T E.val:=E1.val+T.val

Syntax	Trees

• An	(abstract)	syntax	tree	(AST)	is	a	condensed	
form	of	a	parse	tree,	useful	for	representing	
language	constructs.

• An	AST	is	much	more	simplified	compared	to	
the	parse	tree

• Much	more	easier	to	be	handled	from	
following	phases	of	the	compiler

AST

Example

E.val=19

+E.val=15

T.val=15

*T.val=3 F.val=5

F.val=3

digit.lexval=3

digit.lexval=4

T.val=4

F.val=4

digit.lexval=5

L

n
+

* 4

3 5

AST	Construction

• We	use	the	following	functions	to	create	an	AST.
– mknode(op, left, right) creates	an	operator	
node	with	label	op and	two	fields	containing	pointers	
to	left and	right.

– mkleaf(id, entry)creates	an	identifier	node	
with	label	id and	a	field	containing	entry,	a	pointer	to	
the	symbol-table	entry	for	the	identifier.

– mkleaf(num, val)creates	a	number	node	with	
label	num and	a	field	containing	val,	the	value	of	the	
number.

Syntax-directed	Definition
for	AST	construction

PRODUCTION SEMANTIC RULES

E à E1 + T E.nptr:=mknode(‘+’, E1.nptr, T.nptr)

E à E1 - T E.nptr:=mknode(‘-’, E1.nptr, T.nptr)

E à T E.nptr:=T.nptr

T à (E) T.nptr:=E.nptr

T à id T.nptr:=mkleaf(id, id.entry)

T à num T.nptr:=mkleaf(num, num.val)

a-4+c

+ | | 0

- | | 0

id | 0 num|4

id | 0

ptr for	c

ptr for	a

(1) p1 := mkleaf(id, entrya)
(2) p2 := mkleaf(num, 4)
(3) p3 := mknode(‘-’, p1, p2)
(4) p4 := mkleaf(id, entryc)
(5) p5 := mknode(‘+’, p3, p4)

