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From	a	regular	expression	
to	an	NFA
• Construct	an	NFA	from	a	regular	expression	
• Simulate	the	behavior	of	the	NFA	with	specific	
algorithms

• If	run-time	speed	is	essential
– Convert	NFA	to	DFA	(see	lecture	3b)



Thompson’s	construction
Construct	an	NFA	from	a	regular	expression

• Input
– A	regular	expression	r	over	an	alphabet	Σ

• Output
– An	NFA	N accepting	L(r)



Bootstrap

• We	first	parse	r into	its	constituent	
expressions

• Then,	using	rules	(1)	and	(2)	(next	slide),	we	
construct	NFAs	for	each	of	the	basic	symbols	
in	r

• If	a	symbol	a occurs	several	times	in	r,	a	
separate	NFA	is	constructed	for	each	
occurrence



Core	rules

• Rule	1,	for	ε construct	the	NFA:

• Rule	2,	for	a in	Σ,	construct	the	NFA:
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• N(s) and	N(t) are	NFAs	for	regular	expressions	
s and	t

i f
start

N(s)

N(t)

ε

ε

ε

ε



s|t

i f
start

N(s)

N(t)

ε

ε

ε

ε

Here i	is	a	new	start	state	and	f a	new	accepting	state.	There	is	a	
transition	on	ε	from	i to	the	start	states	of	N(s) and	N(t).	There	is	a	
transition	on	ε from	the	accepting	states	of	N(s) and	N(t) to	the	new	
accepting	state	f.	The	start	and	accepting	states	of	N(s) and	N(t) are	
not	start or	accepting	states	of	N(s|t).	Note	that	any	path	from	i to	f
must	pass	through	either	N(s) or	N(t) exclusively.	Thus,	we	see	that	
the	composite	NFA	recognizes	L(s)UL(t).



Simplification	(no	ε-transition)

• Example	a|b
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• N(s) and	N(t) are	NFAs	for	regular	expressions	
s and	t
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The	start	state	of	N(s) becomes	the	start	state	of	the	composite	NFA	and	the	
accepting	state	of	N(t) becomes	the	accepting	state	of	the	composite	NFA.	
The	accepting	state	of	N(s) is	merged	with	the	start	state	of	N(t);	that	is,	all	
transitions	from	the	start	state	of	N(t) become	transitions	from	the	accepting	
state	of	N(s).	The	new	merged	state	loses	its	status	as	a	start	of	accepting	
state	in	the	composite	NFA.	A	path	from	i to	fmust	go	first	through	N(s) and	
then	through	N(t),	so	the	label	of	that	path	will	be	a	string	in	L(s)L(t).	Since	no	
edge	enters	the	start	state	of	N(t) or	leaves	the	accepting	state	of	N(s),	there	
can	be	no	path	from	i to	f that	travels	from	N(t) back	to	N(s).	Thus,	the	
composite	NFA	recognizes	L(s)L(t).



N(s)

s*

• N(s) is	the	NFA	for	the	regular	expression	s*
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Here	i	is	a	new	state	and	f a	new	accepting	
state.	In	the	composite	NFA,	we	can	go	from	i	
to	f directly,	along	an	edge	labeled	ε,	
representing	the	fact	that	ε is	in	(L(s))*,	or	we	
can	go	from	i to	f passing	through	N(s) one	or	
more	times.	



(s)

• For	the	parenthesized	regular	expression	(s),	
use	N(s) itself	as	the	NFA.



(a|b)*abb

• r1 (a)

• r2 (b)
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r5=(r3)*
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r5=(r3)*
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r6=α
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r7=r5r6
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Final	NFA
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Coding	the	NFA
S := ε-closure({s0});
a := nextchar;
while a <> eof do begin

S := ε-closure(move(S, a));
a := nextchar;

end
if accepting-state in S then

return “yes”;
else

return “no”;



Example

• Is	“a” part	of	the	NFA	of	slide	22?
– ε-closure({0})	=	{0,	1,	2,	4,	7}

• On	input	symbol	a there	is	a	transition	from	2	
to	3	and	from	7	to	8
– ε-closure({3,	8})	=	{1,	2,	3,	4,	6,	7,	8}

• None	of	these	states	is	accepting,	therefore	
the	algorithm	returns	“no’



Time-space	Tradeoffs	
AUTOMATON SPACE TIME

NFA O(|r|) O(|r|×|x|)

DFA O(2|r|) O(|x|)

We	can	construct	NFA	from	r,	and	this	can	be	done	in	O(|r|)	time,	
where	|r|	is	the	length	of	|r|.	The	NFA	has	at	most	twice	as	many	states	
as	|r|,	and	at	most	two	transitions	from	each	state,	so	a	transition	table	
for	the	NFA	can	be	stored	in	O(|r|)	space.	The	algorithm	for	coding	the	
NFA	takes	time	O(|r|×|x|)	to	resolve	if	x is	accepted.

For	DFA	complexity,	consider	the	regular	expression	(a|b)*(a|b)(a|b)…(a|b),	
where	there	are	n-1 (a|b)s	at	the	end.	Then	you	need	2n states	to	keep	track	of	
all	sequences	of	a and	b.


