Мعтаү入 $\omega \tau \tau \iota \sigma \tau \omega \dot{v}$

Lecture 4a
Lexical Analysis
Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

From a regular expression to an NFA

- Construct an NFA from a regular expression
- Simulate the behavior of the NFA with specific algorithms
- If run-time speed is essential
- Convert NFA to DFA (see lecture 3b)

Thompson's construction
 Construct an NFA from a regular expression

- Input
- A regular expression r over an alphabet Σ
- Output
- An NFA N accepting $L(r)$

Bootstrap

- We first parse r into its constituent expressions
- Then, using rules (1) and (2) (next slide), we construct NFAs for each of the basic symbols in r
- If a symbol a occurs several times in r, a separate NFA is constructed for each occurrence

Core rules

- Rule 1 , for ε construct the NFA:

- Rule 2, for a in Σ, construct the NFA:

s / t
- $N(s)$ and $N(t)$ are NFAs for regular expressions s and t

s / t

Here i is a new start state and f a new accepting state. There is a transition on ε from i to the start states of $N(s)$ and $N(t)$. There is a transition on ε from the accepting states of $N(s)$ and $N(t)$ to the new accepting state f. The start and accepting states of $N(s)$ and $N(t)$ are not start or accepting states of $N(s / t)$. Note that any path from i to f must pass through either $N(s)$ or $N(t)$ exclusively. Thus, we see that the composite NFA recognizes $L(s) U L(t)$.

Simplification (no ε-transition)

- Example a / b

st

- $N(s)$ and $N(t)$ are NFAs for regular expressions s and t

st

The start state of $N(s)$ becomes the start state of the composite NFA and the accepting state of $N(t)$ becomes the accepting state of the composite NFA. The accepting state of $N(s)$ is merged with the start state of $N(t)$; that is, all transitions from the start state of $N(t)$ become transitions from the accepting state of $N(s)$. The new merged state loses its status as a start of accepting state in the composite NFA. A path from i to f must go first through $N(s)$ and then through $N(t)$, so the label of that path will be a string in $L(s) L(t)$. Since no edge enters the start state of $N(t)$ or leaves the accepting state of $N(s)$, there can be no path from i to f that travels from $N(t)$ back to $N(s)$. Thus, the composite NFA recognizes $L(s) L(t)$.

S^{*}

- $N(s)$ is the NFA for the regular expression s^{*}

S^{*}

Here i is a new state and f a new accepting state. In the composite NFA, we can go from i to f directly, along an edge labeled ε, representing the fact that ε is in $(L(s))^{*}$, or we can go from i to f passing through $N(s)$ one or more times.

(s)

- For the parenthesized regular expression (s), use $N(s)$ itself as the NFA.

(a|b)*abb

- $r_{1}(a)$

- $r_{2}(b)$

$$
r_{3}=r_{1} \mid r_{2}
$$

$r_{3}=r_{1} \mid r_{2}$

$r_{5}=\left(r_{3}\right)^{*}$

$r_{5}=\left(r_{3}\right)^{*}$

$r_{6}=\alpha$

$r_{7}=r_{5} r_{6}$

$r_{7}=r_{5} r_{6}$

Final NFA

Coding the NFA

S := ε-closure(\{ $\left.\left.\mathrm{s}_{0}\right\}\right)$;
a := nextchar;
while a <> eof do begin
S := ε-closure(move($S, a)$);
a := nextchar;
end
if accepting-state in S then return "yes";
else
return "no";

Example

- Is " a " part of the NFA of slide 22?
$-\varepsilon$-closure $(\{0\})=\{0,1,2,4,7\}$
- On input symbol a there is a transition from 2 to 3 and from 7 to 8
$-\varepsilon$-closure $(\{3,8\})=\{1,2,3,4,6,7,8\}$
- None of these states is accepting, therefore the algorithm returns "no'

Time-space Tradeoffs

AUTOMATON	SPACE	TIME
NFA	$O(\|r\|)$	$O(\|r\| \times\|x\|)$
DFA	$O(2 \mid r)$	$O(\|x\|)$

> We can construct NFA from r, and this can be done in $O(|r|)$ time, where $|r|$ is the length of $|r|$. The NFA has at most twice as many states as $|r|$, and at most two transitions from each state, so a transition table for the NFA can be stored in $O(|r|)$ space. The algorithm for coding the NFA takes time $O(|r| \times|x|)$ to resolve if x is accepted.

> For DFA complexity, consider the regular expression $(a \mid b)^{*}(a \mid b)(a \mid b) \ldots(a \mid b)$, where there are $n-1(a \mid b)$ s at the end. Then you need 2^{n} states to keep track of all sequences of a and b.

