{ {
sya

EMA323 - Oswplo kat MpoKTkn
MeToyAWTTIOTWV

Lecture 3b
Lexical Analysis

Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

Recognition of Tokens
1f expressions and relational operators

if
then
else
relop
id
num

= if

= then

= else

D> < | <=|=|<>]|>] >=

= letter(letter|digit)*

= digit+(.digit+)?(E(+]|-)2digit+)?

Trim whitespace
delim = blank | tab | newline
ws =2 delim+

Transition Diagram
Awaypouuoa MetaBaonc

* Intermediate visual representation
* The graph depicts how the pointer moves from character to
character
* Circles are called states
* They represent the pointer’s positions
* Edges leaving state s have labels indicating the characters required
for moving to the next state
e Other is special (refers to any character that is not indicated by
any of the other edges leaving s)

start
()

* denotes states on which input retraction
must take place (i.e., the pointer is moved
to another transition diagram).

Transition Diagram
relation operators

start < =
return(relop, LE)

return(relop, NE)

*
return(relop, LT)

return(relop, EQ)

other

EQ: equal

LE: less or equal

LT: less than

NE: not equal

GE: greater or equal
GT: grater than

return(relop, GE)

return(relop, GT)

Keywords and Identifiers

* Keywords is a special case of identifiers
* Once an identifier is recognized we can
check if it is a keyword

letter or digit

start letter ’ other *
)@ Q return(get _token(), install_id())

Unsigned numbers

digit digit digit

Recognizes 12.3E4
(digits fraction? exponent?)

digit digit

start @ digit e’ . e digit other*
Recognizes 12.3

(digits fraction)

digit

start e digit @’ other*
Recognizes 12

(digits)

Finite Automata
[enepaoueva Avtouato

e Recognizer for a language

— A program that takes as input a string x and answers
“yes” if x is a sentence of the language and “no”
otherwise.

 Compile regular expressions to recognizers

— Construct a generalized transition diagram called a
finite automaton

* Two classes of finite automata
— Deterministic, DFA (vretepuiviotiko)
— Non-deterministic, NFA (un-vtetepuiviotiko)

DFAs and NFAs

 Both a DFA and an NFA are capable of
recognizing precisely the regular sets
* Time-space trade-off
— DFAs implement faster recognizers

— DFAs are bigger (more states, more memory)

* Regular expressions can be compiled in both a
DFA and an NFA

NFA

e Mathematical model that consists of

1. aset of states S

2. aset of input symbols 2 (the input symbol
alphabet)

3. a transition functions move that maps state-
symbol pairs to sets of states

4. a state s, that is distinguished as the start (or
initial) state

5. aset of states F distinguished as accepting (or
final) states

NFA for (a/b)*abb

States: {0, 1, 2, 3}
Symbol alphabet: {a, b}
Start state: 0

Accepting state: 3

An NFA looks like a transition diagram, but the
same character can label two or more transitions
out of one state:

Example: a can transit control:
from State 0 to State 0
from State 0 to State 1

Also: edges can be label by the special symbol €

Implementation using a
Transition Table

INPUT SYMBOL
STATE

a b

0 {0, 1} {0}

1 - {2}

2 - {3}

If | am in state 0 and the input character is g, then | can move to states O or 1
If | am in state 0 and the input character is b, then | can move to state 0

If | am in state 1 and the input character is g, then there is no state to move
If | am in state 1 and the input character is b, then | can move to state 2

Accepted input strings
(a/b)*abb

Accepted input strings: abb, aabb, babb, aaabb, ...
a a b b
0 —0 > 1 > 2 —> 3

Several other sequences of moves may be made on the input string aabb, but
none of the others happened to end in an accepting state:

a a b b
0O —>0 —>0 —>0—70

NFA for aa*[bb*

DFA

1. no state has an e-transition, i.e., a transition
on input g,

2. For each state s and input symbol a, there is
at most one edge labeled a leaving s

a x
You can’t have a leaving state 0 and
a . ,
0 0 being able to reach two states, i.e.,
state 0 and state 1

DFA for (a/b)*abb

b

start a b b

a

a

Recall the NFA version:
a

(<A D)——(D)—()

b

DFA is easy to code

S := S,

C := nextchar

while ¢ != eof do
s := move(s, C)
Cc := nextchar

end

if s in F then
return “yes”
else
return “no”

What do we do?

* NFAs are easy to conceive and draw

— Multiple edges on the same characters
leaving one state can cause ambiguity
(audonpia)

—Many paths that spell out the same input
string

—Hard to code

* DFAs are easy to implement in a
computer program

CONVERSION OF AN NFA
INTO A DFA

Operations

OPERATION DESCRIPTION

e-closure(s) Set of NFA states reachable from NFA state s on e-transitions
alone.

e-closure(T) Set of NFA states reachable from some NFA state sin T on &-

transitions alone.

move(T, a) Set of NFA states to which there is a transition on input symbol
a from some NFA statesin T.

Notation: s an NFA state, T a set of NFA states

Examples

move({1, 2}, a) =2

e-closure(0) = {0, 1, 2, 3}
e-closure(1) = {1, 2}
e-closure(2) = {2}
e-closure(3) = {3}
e-closure(4) = {4}

Example
Initial NFA, for (a/b)*abb

0502050

Equivalent DFA

No € transitions
No two edges with the same symbol leaving one state
Easy to transform to a computer program

Step 1

* The start state of the equivalent DFA is
e-closure(0)

—A={0, 1, 2, 4, 7}, these are exactly the states
reachable from state O via a path in which every
edge is labeled €

Step 2

 The input symbol is {a, b}, we mark A, and
compute e-closure(move(A, a))

— move(A, a) is the set of states of the NFA having
transitions on a from members of A, that is
states 2 and 7 (moving to 3 and 8)

— e-closure(move({0, 1, 2, 4, 7}, a)) = e-closure({3,
8})=1{1,2,3,4,6,7,8}

— ThisisB={1, 2, 3,4,6, 7, 8}

Step 3

* Among the states in A, only 4 has a transition
onbto5

— the DFA has a transition from A to C,
and C = e-closure({5}) = {1, 2,4, 5, 6, 7}

Step 4

* We mark the new sets B and C, and we repeat
Step 1-3

Repeat steps

e Until all sets of the DFA are marked

* Final sets
—-A={0,1, 24,7}
-B=1{1,2,3,4,6,7, 8}
—C={1,2,4,5,6, 7}
—-D={1,2,4,5,6,7,9}
—-E={1,2,3,5,6,7, 10}

Transition Table for DFA sy"

INPUT SYMBOL

The subset construction

d d
Ay'a

initially, €-closure(s0) 1is the only
state in Dstates and it 1is unmarked;
while there is an unmarked state T in Dstates do begin
mark T
for each input symbol a do begin
U = eg-closure(move(T,a))
if U is not in Dstates then
add U as an unmarked state to Dstates;
Dtran(T,a) := U
end for
end while

e-closure(T)

push all states in T onto stack
initialize ¢€-closure(T) to T;
while stack is not empty do begin

pop t
for each state u with an edge from t to u labeled € do

if u not in e-closure(T)
add u to e-closure(T)
push u
end if
end for
end while

