Мعтаү入 $\omega \tau \tau \iota \sigma \tau \omega \dot{ }$

Lecture 3b
Lexical Analysis
Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

Recognition of Tokens if expressions and relational operators

$$
\begin{aligned}
\text { if } & \rightarrow \text { if } \\
\text { then } & \rightarrow \text { then } \\
\text { else } & \rightarrow \text { else } \\
\text { relop } & \rightarrow<|<=|=|<>|>|>= \\
\text { id } & \rightarrow \text { letter(letter } \mid \text { digit)* } \\
\text { num } & \rightarrow \text { digit+(.digit }+) ?(E(+\mid-) \text { ?digit+)? }
\end{aligned}
$$

```
Trim whitespace
delim }->\mathrm{ blank | tab | newline
    ws }->\mathrm{ delim+
```


Transition Diagram $\Delta ı \alpha ́ y \rho \alpha \mu \mu \alpha$ Мєтд́ ${ }^{\prime} \alpha \sigma \eta \varsigma$

- Intermediate visual representation
- The graph depicts how the pointer moves from character to character
- Circles are called states
- They represent the pointer's positions
- Edges leaving state s have labels indicating the characters required for moving to the next state
- Other is special (refers to any character that is not indicated by any of the other edges leaving s)

* denotes states on which input retraction must take place (i.e., the pointer is moved to another transition diagram).

Transition Diagram relation operators

Keywords and Identifiers

- Keywords is a special case of identifiers
- Once an identifier is recognized we can check if it is a keyword

Unsigned numbers

Recognizes 12.3 E 4 (digits fraction? exponent?)

Finite Automata

Пєाєрабнє́vа Autó $\mu \alpha \tau \alpha$

- Recognizer for a language
- A program that takes as input a string x and answers "yes" if x is a sentence of the language and "no" otherwise.
- Compile regular expressions to recognizers
- Construct a generalized transition diagram called a finite automaton
- Two classes of finite automata

- Non-deterministic, NFA ($\mu \eta$-vtєtєр $\mu \iota v \iota \sigma \tau \iota к o ́)$

DFAs and NFAs

- Both a DFA and an NFA are capable of recognizing precisely the regular sets
- Time-space trade-off
- DFAs implement faster recognizers
- DFAs are bigger (more states, more memory)
- Regular expressions can be compiled in both a DFA and an NFA

NFA

- Mathematical model that consists of

1. a set of states \boldsymbol{S}
2. a set of input symbols $\boldsymbol{\Sigma}$ (the input symbol alphabet)
3. a transition functions move that maps statesymbol pairs to sets of states
4. a state \boldsymbol{s}_{0} that is distinguished as the start (or initial) state
5. a set of states \boldsymbol{F} distinguished as accepting (or final) states

NFA for (a|b)*abb

An NFA looks like a transition diagram, but the same character can label two or more transitions out of one state:

Example: a can transit control:
from State 0 to State 0
from State 0 to State 1

Also: edges can be label by the special symbol $\boldsymbol{\varepsilon}$

Implementation using a Transition Table

STATE	INPUT SYMBOL	
	a	b
0	$\{0,1\}$	$\{0\}$
1	-	$\{2\}$
2	-	$\{3\}$

If I am in state 0 and the input character is a, then I can move to states 0 or 1 If I am in state 0 and the input character is b, then I can move to state 0 If I am in state 1 and the input character is a, then there is no state to move If I am in state 1 and the input character is b, then I can move to state 2

Accepted input strings (a|b)*abb

Accepted input strings: $a b b, a a b b, b a b b, a a a b b, \ldots$
$0 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{b} 3$

Several other sequences of moves may be made on the input string $a a b b$, but none of the others happened to end in an accepting state:
$0 \xrightarrow{a} 0 \xrightarrow{a} 0 \xrightarrow{b} 0$

NFA for $a a^{*} \mid b b^{*}$

DFA

1. no state has an ε-transition, i.e., a transition on input ε,
2. For each state s and input symbol a, there is at most one edge labeled a leaving s

[^0]
DFA for $(a \mid b) * a b b$

Recall the NFA version:

DFA is easy to code

$\mathrm{S}:=\mathrm{S}_{0}$
c := nextchar
while c ! $=0 f$ do
$\mathrm{s}:=\operatorname{move}(\mathrm{s}, \mathrm{c})$
c := nextchar
end
if s in F then
return "yes"
else
return "no"

What do we do?

- NFAs are easy to conceive and draw
-Multiple edges on the same characters leaving one state can cause ambiguity ($\alpha \mu ф ь \sigma \eta \mu \iota \alpha ́) ~$
-Many paths that spell out the same input string
-Hard to code
- DFAs are easy to implement in a computer program

Subset Construction
CONVERSION OF AN NFA INTO A DFA

Operations

OPERATION	DESCRIPTION
ε-closure(s)	Set of NFA states reachable from NFA state s on ε-transitions alone.
ε-closure (T)	Set of NFA states reachable from some NFA state s in T on ε - transitions alone.
$\operatorname{move}(T, a)$	Set of NFA states to which there is a transition on input symbol a from some NFA state s in T.

Notation: s an NFA state, T a set of NFA states

Examples

$\operatorname{move}(\{1,2\}, a)=2$

$$
\begin{aligned}
& \varepsilon \text {-closure }(0)=\{0,1,2,3\} \\
& \varepsilon \text {-closure }(1)=\{1,2\} \\
& \varepsilon \text {-closure }(2)=\{2\} \\
& \varepsilon \text {-closure }(3)=\{3\} \\
& \varepsilon \text {-closure }(4)=\{4\}
\end{aligned}
$$

Example
 Initial NFA, for $(a \mid b)^{*} a b b$

Equivalent DFA

No ε transitions
No two edges with the same symbol leaving one state Easy to transform to a computer program

Step 1

- The start state of the equivalent DFA is ع-closure (0)
$-A=\{0,1,2,4,7\}$, these are exactly the states reachable from state 0 via a path in which every edge is labeled ε

Step 2

- The input symbol is $\{a, b\}$, we mark A, and compute ε-closure (move(A, a))
- move (A, a) is the set of states of the NFA having transitions on a from members of A, that is states 2 and 7 (moving to 3 and 8)
- ε-closure $(\operatorname{move}(\{0,1,2,4,7\}, a))=\varepsilon$-closure $(\{3$, $8\})=\{1,2,3,4,6,7,8\}$
- This is $B=\{1,2,3,4,6,7,8\}$

Step 3

- Among the states in A, only 4 has a transition on b to 5
- the DFA has a transition from A to C, and $C=\varepsilon$-closure $(\{5\})=\{1,2,4,5,6,7\}$

Step 4

- We mark the new sets B and C, and we repeat Step 1-3

Repeat steps

- Until all sets of the DFA are marked
- Final sets

$$
\begin{aligned}
& -A=\{0,1,2,4,7\} \\
& -B=\{1,2,3,4,6,7,8\} \\
& -C=\{1,2,4,5,6,7\} \\
& -D=\{1,2,4,5,6,7,9\} \\
& -E=\{1,2,3,5,6,7,10\}
\end{aligned}
$$

Transition Table for DFA

STATE	INPUT SYMBOL	
	a	b
A	B	C
B	B	D
C	B	C
D	B	E
E	B	C

The subset construction

```
initially, \varepsilon-closure(s0) is the only
state in Dstates and it is unmarked;
while there is an unmarked state T in Dstates do begin
    mark T
    for each input symbol a do begin
    U = \varepsilon-closure(move(T,a))
    if U is not in Dstates then
        add U as an unmarked state to Dstates;
    Dtran(T,a) := U
    end for
end while
```


ε-closure(T)

```
push all states in T onto stack
initialize \varepsilon-closure(T) to T;
while stack is not empty do begin
    pop t
    for each state u with an edge from t to u labeled \varepsilon do
    if u not in \varepsilon-closure(T)
        add u to \varepsilon-closure(T)
        push u
    end if
    end for
end while
```


[^0]: You can't have a leaving state 0 and being able to reach two states, i.e., state 0 and state 1

