
ΕΠΛ323	-	Θεωρία	και	Πρακτική	
Μεταγλωττιστών	
	

Lecture	3b
Lexical	Analysis
Elias	Athanasopoulos

eliasathan@cs.ucy.ac.cy

Recognition	of	Tokens
if expressions	and	relational	operators

if è if
then è then
else è else
relop è < | <= | = | <> | > | >=

id è letter(letter|digit)*
num è digit+(.digit+)?(E(+|-)?digit+)?

Trim	whitespace
delim è blank | tab | newline

ws è delim+

Transition	Diagram
Διάγραμμα	Μετάβασης

0 6 7

8

>start

other

=

• Intermediate	visual	representation
• The	graph	depicts	how	the	pointer	moves	from	character	to	

character
• Circles	are	called	states

• They	represent	the	pointer’s	positions
• Edges leaving	state	s	have	labels	indicating	the	characters	required	

for	moving	to	the	next	state
• Other is	special (refers	to	any	character	that	is	not	indicated	by	

any	of	the	other	edges	leaving	s)

**	denotes	states	on	which	input	retraction	
must	take	place	(i.e.,	the	pointer	is	moved	
to	another	transition	diagram).

Transition	diagram	for	>=

Transition	Diagram
relation operators

0 1 2

3

<start

other

=

5

6

4

7

8

=

>

=

>

other
*

*

return(relop,	EQ)

return(relop,	LE)

return(relop,	NE)

return(relop,	LT)

return(relop,	GE)

return(relop,	GT)

EQ:	equal
LE:	less	or	equal
LT:	less	than
NE:	not	equal
GE:	greater	or	equal
GT:	grater	than

Keywords	and	Identifiers

0 10 11
letterstart

return(get_token(),	install_id())
*other

letter or	digit

• Keywords	is	a	special	case	of	identifiers
• Once	an	identifier	is	recognized	we	can	
check	if	it	is	a	keyword

Unsigned	numbers

12 13 19digitstart *other
digit

14 15

digit

. digit
16 17 18

digit

E +	or	- digit

Recognizes	12.3E4
(digits fraction?	exponent?)

E digit

20 21
digitstart

digit

22 23

digit

. digit
24

other *

Recognizes	12.3
(digits fraction)

25 26
digitstart

digit

27
other *

Recognizes	12
(digits)

Finite	Automata
Πεπερασμένα	Αυτόματα

• Recognizer	for	a	language
– A program	that	takes	as	input	a	string	x and	answers	
“yes”	if	x is	a	sentence	of	the	language	and	“no”	
otherwise.	

• Compile	regular	expressions	to	recognizers
– Construct	a	generalized	transition	diagram called	a	
finite	automaton

• Two	classes	of	finite	automata
– Deterministic,	DFA	(ντετερμινιστικό)
– Non-deterministic,	NFA	(μη-ντετερμινιστικό)

DFAs	and	NFAs

• Both	a	DFA	and	an	NFA	are	capable	of	
recognizing	precisely	the	regular	sets

• Time-space	trade-off
– DFAs	implement	faster	recognizers
– DFAs	are	bigger	(more	states,	more	memory)

• Regular	expressions	can	be	compiled	in	both	a	
DFA	and	an	NFA

NFA

• Mathematical	model	that	consists	of
1. a set	of	states	S
2. a set	of	input	symbols	Σ (the	input	symbol	

alphabet)
3. a transition	functions	move that	maps	state-

symbol	pairs	to	sets	of	states
4. a state	s0 that	is	distinguished	as	the	start (or	

initial)	state
5. a set	of	states	F distinguished	as	accepting (or	

final)	states

NFA	for	(a|b)*abb

0 1astart 32
b b

a

b

An	NFA	looks	like	a	transition	diagram,	but	the	
same	character	can	label	two	or	more	transitions
out	of	one	state:

Example:	 a can	transit	control:
from State	0	to State	0
from	State	0 to	State	1

Also:	edges	can	be	label	by	the	special	symbol	ε

States:	{0,	1,	2,	3}
Symbol	alphabet:	{a,	b}
Start	state:	0
Accepting	state:	3

Implementation	using	a	
Transition	Table

STATE
INPUT SYMBOL

a b

0 {0,	1} {0}

1 - {2}

2 - {3}

If	I	am	in	state	0	and	the	input	character	is	a,	then	I	can	move	to	states	0	or	1
If	I	am	in	state	0	and	the	input	character	is	b, then	I	can	move	to	state	0
If	I	am	in	state	1	and	the	input	character	is	a,	then	there	is	no	state	to	move
If	I	am	in	state	1	and	the	input	character	is	b,	then	I	can	move	to	state	2

0 1astart 32
b b

a

b

Accepted	input	strings
(a|b)*abb

0 1astart 32
b b

a

b

Accepted	input	strings:	abb,	aabb,	babb,	aaabb,	…
a a												b												b

0 0 1 2 3

Several	other	sequences	of	moves	may	be	made	on	the	input	string	aabb, but
none	of	the	others	happened	to	end	in	an	accepting	state:

a a												b												b
0 0 0 0 0

NFA	for	aa*|bb*

21
a

a

43
b

b0
start

ε

ε

DFA

1. no	state	has	an	ε-transition,	i.e.,	a	transition	
on	input	ε,

2. For	each	state	s and	input	symbol	a,	there	is	
at	most one	edge	labeled	a leaving	s

0 a

a

1
You	can’t	have	a leaving	state	0	and	
being	able	to	reach	two	states,	i.e.,	
state	0	and	state	1

DFA	for	(a|b)*abb

0 1astart 32
b b

a

b

0 1astart 32
b b

b

a
a

a

b

Recall	the	NFA	version:

DFA	is	easy	to	code
s := s0
c := nextchar
while c != eof do

s := move(s, c)
c := nextchar

end
if s in F then

return “yes”
else

return “no”

What	do	we	do?

• NFAs	are	easy	to	conceive	and	draw
–Multiple	edges	on	the	same	characters	
leaving	one	state	can	cause	ambiguity	
(αμφισημιά)
–Many	paths	that	spell	out	the	same	input	
string
–Hard	to	code

• DFAs	are	easy	to	implement	in	a	
computer	program

CONVERSION	OF	AN	NFA	
INTO	A	DFA

Subset	Construction

Operations
OPERATION DESCRIPTION

ε-closure(s) Set	of	NFA	states	reachable from	NFA	state	s on	ε-transitions	
alone.

ε-closure(T) Set	of	NFA	states	reachable from	some	NFA	state	s	in T on	ε-
transitions	alone.

move(T, a) Set	of	NFA	states	to which	there	is	a	transition	on	input	symbol	
a from	some	NFA	state	s in	T.

Notation: s an	NFA	state,	T a	set	of	NFA	states

Examples

21
ε

a

43
b

b0
start

ε

ε

ε-closure(0)	=	{0,	1,	2,	3}
ε-closure(1)	=	{1,	2}
ε-closure(2)	=	{2}
ε-closure(3)	=	{3}
ε-closure(4)	=	{4}

move({1,	2},	a)	=	2

Example
Initial	NFA,	for	(a|b)*abb

32
a

54
b

1
start

ε

ε

0 6 7 8 9 10
ε

ε

ε

ε a b b

ε

ε

Equivalent	DFA

A Bastart ED
b b

a

C

a

b

b

b

a

a

No	ε	transitions
No	two	edges	with	the	same	symbol	leaving	one	state
Easy	to	transform	to	a	computer	program

Step	1

• The	start	state of	the	equivalent	DFA	is	
ε-closure(0)
– A	=	{0,	1,	2,	4,	7},	these	are	exactly	the	states	
reachable	from	state	0	via	a	path	in	which	every	
edge	is	labeled	ε

Step	2

• The	input	symbol	is	{a,	b},	we	mark	A,	and	
compute	ε-closure(move(A,	a))
– move(A,	a)	is	the	set	of	states	of	the	NFA	having	

transitions	on	a from	members	of	A,	that	is	
states	2	and	7	(moving	to	3	and	8)

– ε-closure(move({0,	1,	2,	4,	7},	a))	=	ε-closure({3,	
8})	=	{1,	2,	3,	4,	6,	7,	8}

– This	is	B	=	{1,	2,	3,	4,	6,	7,	8}

Step	3

• Among	the	states	in	A, only	4	has	a	transition	
on	b to	5
– the	DFA	has	a	transition	from	A	to	C,	
and	C	=	ε-closure({5})	=	{1,	2,	4,	5,	6,	7}	

Step	4

• We	mark	the	new	sets	B	and	C,	and	we	repeat	
Step	1-3

Repeat	steps

• Until	all	sets	of	the	DFA	are	marked
• Final	sets
– A	=	{0,	1,	2,	4,	7}
– B	=	{1,	2,	3,	4,	6,	7,	8}
– C	=	{1,	2,	4,	5,	6,	7}
– D	=	{1,	2,	4,	5,	6,	7,	9}
– E	=	{1,	2,	3,	5,	6,	7,	10}

Transition	Table	for	DFA

STATE
INPUT SYMBOL

a b

A B C

B B D

C B C

D B E

E B C

32
a

54
b

1
start

ε

ε

0 6 7 8 9 10
ε

ε

ε

ε a b b

ε

ε

A Bastart ED
b b

a

C

a

b

b

b

a

a

NFA

DFA

The	subset	construction
initially, ε-closure(s0) is the only
state in Dstates and it is unmarked;
while there is an unmarked state T in Dstates do begin

mark T
for each input symbol a do begin
U = ε-closure(move(T,a))
if U is not in Dstates then

add U as an unmarked state to Dstates;
Dtran(T,a) := U
end for

end while

ε-closure(T)
push all states in T onto stack
initialize ε-closure(T) to T;
while stack is not empty do begin

pop t
for each state u with an edge from t to u labeled ε do
if u not in ε-closure(T)

add u to ε-closure(T)
push u

end if
end for

end while

