{ {
sya

EMA323 - Oswplo kat MpoKTkn
MeToyAWTTIOTWV

Lecture 3a
Lexical Analysis

Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

Lexical Analysis
NEKTIKN AvaAuon

* Definitions

— Tokens, patterns, lexemes
* Regular Expressions
* Transition Diagrams

* Finite Automata
— Non-deterministic (NFA)
— Deterministic (DFA)

Source Program

'

Lexical Analyzer

'

Syntax Analyzer

'

Semantic Analyzer

Code optimizer

e S i

Code generator

'

Target Program

The Role of Lexical Analysis

source
program —*

lexical
analyzer

token

get next

\ token

parser

symbol
table

syntax

Lexical Analysis Properties

* First phase of the compiler

* Reads the input characters (source program)
— Heavy I/0O, many techniques for speeding up the process
— De-beautifies the source (strips comments, white-space)
— Keeps state for error-reporting (line numbers)
— Sometimes implements the pre-processor
* Produces a sequence of tokens that the parser uses for
syntax analysis

— Separation of lexical-syntax analysis is mostly for a clean
design

Lexical-Syntax Analysis
Separation

* Simpler design
— Syntax analysis without comments and white-
space is simpler
e Efficiency
— Specialized buffering for reading the source
program
* Portability

— Handling of special characters/alphabets is
isolated

How it works?

e Convert source code stream to a series of tokens

if (x1*x2 < 1.0) {
y = x1;

}

i|f x{ 1] *{x[2] [<]| [1].[0])|{[\n
Keyword: if| [([Id: x1]1*] |Id: X2]< |Num:].0|D| Id: y|

4)
Tokens RN
ALOKOLTLKOL x

* I|dentifiers (avayvwplotika)
- x, yl1, elsex, 100
* Keywords (6coucupcvec Aeéeic)
— 1f, else, while, break
e Constants (otavepec)
-2, 1000, -500, 5L, 2.0, 0.00020, .02, 1., 1e5
e Operators and symbols (teAcotec n cupBoia)
— + * { } ++ < << [] >=
e Strings (cAoapiduntika):
— “x", “He said, \“Are you?\"”
* Comments (oyoAix)
— /** comment **/

Challenges

e Several different formats
—2.e0, 20.e-01, 2.0000

* Context is significant
— Lexical analyzer has a local view
1f (x == £(x))
fi (x == f£(x))
» Keyword-less languages (e.g., PL/I)

— IF THEN THEN THEN = ELSE; ELSE ELSE = THEN;

Treating whitespace

 Whitespace is primarily added for readability
of the source code

* In some languages whitespace is not
significant and can make things complicated
DO 5 I = 1.25
(means DO5I = 1.25)
DO 5 I = 1,25

(means a loop from 1 to 25)

Tokens — Patterns — Lexemes
Awkpttike — lMpotuna — Neéelc

* Tokens (Otakpitikar)

— Elements of the language (identifiers,
keywords,etc.)

e Pattern (rtpoturo)

— A rule that if applied to a set of strings (or text)
generates the same token

* Lexeme (A£én)

— A sequence of characters in the source program
that is matched by the pattern for a token

Example

const p1 = 3.1456;

The substring pi is a lexeme for the token
“identifier”

Examples of tokens

Token Sample Lexemes Pattern (informal)
const const const
if if if
relation <, <=, =, <>, >, >= < Or<=o0r=0r<>0r>or >=
id pi, count, D2 letter followed by letters or

digits

num 3.141659, 0, 6.03E23 any numeric constant
literal “core dumped” any characters between “

and “ except “

Attributes for Tokens

E =M *C ** 2
<id, pointer tosymbol-table entry for E>
<assign _op, >
<id, pointerto symbol-table enry for M>
<mult op, >
<id, pointerto symbol-table entry for C>
<exp op, >
<num, integervalue 2>

How we match tokens?
SPECIFICATION OF TOKENS

Definitions
e Alphabet (cApab6nro)

— Finite set of symbols

— E.g., {0,1} is the binary alphabet
e String (cupBoAoocsipa)

— Finite set of symbols drawn from the alphabet

— £ is the empty string

— | x| is the size of string, banana is a string of size 6
* Language (yAwooa)

— Any set of strings constructed using an alphabet

— E.g., {e}, G, {01, 00, 11, 10}

String operations

A string obtained by removing zero ore
prefix of s more trailing symbols of string s; e.g., ban
is a prefix of banana

A string formed by deleting zero ore more
suffix of s of the leading symbols of s; e.g., nanais a
suffix of banana

A string obtained by deleting a prefix and
substring of s a suffix form s; e.g., nan is a substring of
banana

Any nonempty string x that is,
proper prefix, suffix, or substring of s respectively, a prefix, suffix, or substring
of s such that s # x

Any string formed by deleting ero ore
more not necessarily contiguous symbols
from s; e.g., baaa is a subsequence of
banana

subsequence of s

Operations on Languages

e Concatenation (cuvevwaon n rapodeon)
e Union (evwon)
e Closure (kAcioto)

Concatenation
JUVEVWON

* Assume languages, L and M, their concatenation,
LM, or LM is

—LM={st|selandte M}
— s, t are strings

Example

L={A,B,GC_, .., 7}
M={0,1,2, ..., 9}

LM ={A0O, Al, ..., BO, B1, ...}

Exponentiation
YYwon oe duvaun

e [0={g)

d d
safa

e Lk={s,s,..s.|s;isin e L,i=1,..,k}

Example
L={A,B,GC_, .., 7}
L2 = {AA, AB, ..., BA, BB, ...}

Union
Evwon

* Assume languages L and M. Their union, LUM, is
—LUM={s]|sel or s e M}
— s is string

Example

L={A, B, C, ..., Z}

M={0,1,2,...,9}

LM ={A,B,C, .. 7Z0,1,2,..,9}

|})
Closure YN
KAeiowo x

e Kleene closure of L
— L* denotes “zero ore more concatenations of” L

L=Ur
i=0

e Positive closure of L
— L+ denotes “one ore more concatenations of” L

L+=LJ1LZ'

Examples

L={A,B, .., Z, a,b,...z} i.e., all letters
D={0,1,..., 9} i.e, all digits

1. LU Disthe set of letters and digits

2. LD is the set of strings consisting of a letter followed by a digit

3. L%is the set of all four-letter strings

4. L isthe set of all strings of letters, including the empty string

5. L(Lu D)"is the set of all strings of letters and digits beginning
with a letter

6. D*is the set of all strings of one or more digits

Regular Expressions
Kavovikec Ekppaoeic

* In Pascal, an identifier is a letter followed by zero or
more letters

— l.e., itis a member of the set L(L U D)’

 We use regular expressions to define such sets
— letter (letter | digit) *

* Each regular expression r over an alphabet
denotes a language L(r)

Rules

1. €isaregular expression that denotes {€}, i.e., the set
containing the empty string

2. Ifaisasymbolin alphabet 2 then a is a regular expression
that denotes {a}

— ais used for the symbol, the string and the regular expression

3. Suppose r and s are regular expressions denoting the
language L(r) and L(s)

— (r)|(s) is a regular expression denoting L(r) W L(s)
— (r)(s) is a regular expression denoting L(r) M L(s)
— (r)” is a regular expression denoting L(r)"

— (r) is a regular expression denoting L(r)

Ope rator precedence
[MpoTepaloTNTEC

1. The unary operator * has the highest

precedence and is left associative

2. Concatenation has the second highest
precedence and is left associative

3. | has the lowest precedence and is left
associative

(a) | ((b)*(c)) is equivalent to a/b*c

Regular Expressions Algebra

r{s=sjr | is commutative

r{(s[t)=(r[s)]t | is associative

(rs)t = r(st) concatenation is associative

r(s[t)=rs[rt concatenation distributes over |

(s[t)r =sr[tr

Er=r € is the identify element of concatenation
re=r

r*={(rle)* relation between * and €

pEE = pk *is idempotent

Shorthands

* +: “one or more instances of” r* is equal to (L(r))*
 ?:“zeroor oneinstance of” r? equaltor|e

e [a-z]: {a, b, ...,z}, equal to a|b]c]|d...|z

e [Ma-z]: notinset{a, b, ...z}

Regular definitions

* Afrequently used regular expression can be
named for delivering additional regular
expressions

Pascal Identifiers (e.g., x1, y, velocity100, etc.)

letter 2 A | B | . . . Z | a | b |
digit 20 | 1| . . . | 9
id => letter (letter|digit)*

Example 1

* Unsighed numbers in Pascal
- 5280, 39.37, 6.336E4, 1.894E-4

digit 2 0 | 1 | . . . | 9
digits = digit digit*
opt frac = . digits | ¢
opt _exp = (E(+|-|e)digits) |e
num =>» digits opt frac opt exp

Example 2

* Unsighed numbers in Pascal
- 5280, 39.37, 6.336E4, 1.894E-4

digit 2 0 | 1 | . . . | 9
digits = d
opt frac = (. digits)?

opt _exp = (E(+|-)?digits)?
num =>» digits opt frac opt exp

