Мعтаү入 $\omega \tau \tau \iota \sigma \tau \omega \dot{v}$

Lecture 3a
Lexical Analysis
Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

Lexical Analysis

＾єктıкウ́ Avó入儿oŋ

－Definitions
－Tokens，patterns，lexemes
－Regular Expressions
－Transition Diagrams
－Finite Automata
－Non－deterministic（NFA）
－Deterministic（DFA）

The Role of Lexical Analysis

Lexical Analysis Properties

- First phase of the compiler
- Reads the input characters (source program)
- Heavy I/O, many techniques for speeding up the process
- De-beautifies the source (strips comments, white-space)
- Keeps state for error-reporting (line numbers)
- Sometimes implements the pre-processor
- Produces a sequence of tokens that the parser uses for syntax analysis
- Separation of lexical-syntax analysis is mostly for a clean design

Lexical-Syntax Analysis
 Separation

- Simpler design
- Syntax analysis without comments and whitespace is simpler
- Efficiency
- Specialized buffering for reading the source program
- Portability
- Handling of special characters/alphabets is isolated

How it works?

- Convert source code stream to a series of tokens

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { if } \begin{array}{l}
\left(x x^{*} x 2<1.0\right) \\
y=x 1 ;
\end{array} \\
\}
\end{array}\right]
\end{aligned}
$$

Keyword: if 1 Id: x1 1 Id: x2

Tokens

هıккрıтька́

- Identifiers (avapvcoıəбтıќ)
- x, y11, elsex, _i00
- Keywords (סॄб $\mu \varepsilon \cup \mu \varepsilon ́ v \varepsilon \varsigma \lambda \varepsilon ́ \xi \varepsilon \iota \varsigma)$
- if, else, while, break
- Constants (бта৩६คદ́ऽ)
- 2, 1000, -500, 5L, 2.0, 0.00020, .02, 1., 1e5
- Operators and symbols ((זદ ε.
- + * \{ \} ++ \ll< [] >=
- Strings ($\alpha \lambda \varphi \alpha \rho \iota \vartheta \mu \eta \tau \iota \kappa \alpha ́)$:
- "x", "He said, \"Are you?\""
- Comments ($\sigma \chi o ́ \lambda \iota \alpha$)
- /** comment **/

Challenges

- Several different formats
-2.e0, 20.e-01, 2.0000
- Context is significant
- Lexical analyzer has a local view
if ($x==f(x)$)
fi ($x==f(x)$)
- Keyword-less languages (e.g., PL/I)
- IF THEN THEN THEN = ELSE; ELSE ELSE = THEN;

Treating whitespace

- Whitespace is primarily added for readability of the source code
- In some languages whitespace is not significant and can make things complicated DO 5 I = 1.25
(means DO5I = 1.25)
DO 5 I = 1,25
(means a loop from 1 to 25)

Tokens - Patterns - Lexemes
 $\Delta \iota к \rho \iota \tau \iota к \alpha ́ ~-~ П р о ́ т и т \alpha ~-~ \Lambda \varepsilon ́ \xi \varepsilon ı \varsigma ~$

- Tokens (ঠıакрıтıка́)
- Elements of the language (identifiers, keywords,etc.)
- Pattern ($\pi \rho o ́ t u \pi о)$
- A rule that if applied to a set of strings (or text) generates the same token
- Lexeme ($\lambda \varepsilon ́ \xi \eta$)
- A sequence of characters in the source program that is matched by the pattern for a token

Example

$$
\text { const pi }=3.1456 ;
$$

The substring $\mathbf{p i}$ is a lexeme for the token "identifier"

Examples of tokens

Token	Sample Lexemes	Pattern (informal)
const	const	const
if	if	if
relation	$<,<=,=,<>,>,>=$	< or <= or = or <> or > or >=
id	pi, count, D2	letter followed by letters or digits
num	3.141659, 0, 6.03E23	any numeric constant
literal	"core dumped"	any characters between " and " except "

Attributes for Tokens

$$
E=M * C * * 2
$$

<id, pointer to symbol-table entry for E>
<assign_op, >
<id, pointer to symbol-table enry for M>
<mult_op, >
<id, pointer to symbol-table entry for C>
<exp_op, >
<num, integer value 2>

How we match tokens?

 SPECIFICATION OF TOKENS
Definitions

- Alphabet ($\alpha \lambda \varphi \alpha ́ B \eta \tau o)$
- Finite set of symbols
- E.g., $\{0,1\}$ is the binary alphabet
- String ($\sigma \cup \mu$ bo入oбعıра́)
- Finite set of symbols drawn from the alphabet
$-\varepsilon$ is the empty string
$-|x|$ is the size of string, banana is a string of size 6
- Language ($\gamma \lambda \omega \dot{\omega} \sigma \sigma \alpha$)
- Any set of strings constructed using an alphabet
- E.g., $\{\varepsilon\}, \varnothing,\{01,00,11,10\}$

String operations

prefix of s

	is a prefix of banana
suffix of s	A string formed by deleting zero ore more of the leading symbols of $s ;$ e.g., nana is a suffix of banana
substring of s	A string obtained by deleting a prefix and a suffix form $s ;$ e.g., nan is a substring of banana
proper prefix, suffix, or substring of s	Any nonempty string x that is, respectively, a prefix, suffix, or substring of s such that $s \neq x$
subsequence of s	Any string formed by deleting ero ore more not necessarily contiguous symbols from $s ; ~ e . g ., ~ b a a a ~ i s ~ a ~ s u b s e q u e n c e ~ o f ~$
banana	

Operations on Languages

- Concatenation ($\sigma u v \varepsilon ́ v \omega \sigma \eta$ ウ́ $\tau \alpha \rho \alpha ́ \vartheta \varepsilon \sigma \eta)$
- Union (ε v $\omega \sigma \eta$)
- Closure (клєíбццо)

Concatenation

¿uvévшoŋ

- Assume languages, L and M, their concatenation, $\mathrm{L} \cap \mathrm{M}$, or LM is
$-\mathrm{LM}=\{s t \mid s \in \mathrm{~L}$ and $t \in \mathrm{M}\}$
$-s, t$ are strings

$$
\begin{aligned}
& \text { Example } \\
& L=\{A, B, C, \ldots, Z\} \\
& M=\{0,1,2, \ldots, 9\} \\
& L M=\{A 0, A 1, \ldots, B 0, B 1, \ldots\}
\end{aligned}
$$

Exponentiation
 ' $\downarrow \psi \omega \sigma \eta$ os $\delta \dot{v} v a \mu \eta$

- $L^{0}=\{\varepsilon\}$
- $\mathrm{L}^{\mathrm{k}}=\left\{s_{1} s_{2} \ldots s_{k} \mid s_{i}\right.$ is in $\left.\in \mathrm{L}, \mathrm{i}=1, . ., \mathrm{k}\right\}$

$$
\begin{aligned}
& \text { Example } \\
& L=\{A, B, C, \ldots, Z\} \\
& L^{2}=\{A A, A B, \ldots, B A, B B, \ldots\}
\end{aligned}
$$

Union

'Evaon

- Assume languages L and M. Their union, $L \cup M$, is
$-\mathrm{L} \cup \mathrm{M}=\{s \mid s \in \mathrm{~L}$ or $s \in \mathrm{M}\}$
$-s$ is string

$$
\begin{aligned}
& \text { Example } \\
& L=\{A, B, C, \ldots, Z\} \\
& M=\{0,1,2, \ldots, 9\} \\
& L \cup M=\{A, B, C, \ldots, Z, 0,1,2, \ldots, 9\}
\end{aligned}
$$

Closure
 клеібцно

- Kleene closure of L
- L* denotes "zero ore more concatenations of" L

$$
L^{*}=\bigcup_{i=0}^{\infty} L^{i}
$$

- Positive closure of L
- $L+$ denotes "one ore more concatenations of" L

$$
L^{+}=\bigcup_{i=1}^{\infty} L^{i}
$$

Examples

$$
\begin{aligned}
& L=\{A, B, \ldots, Z, a, b, \ldots z\} \text {, i.e., all letters } \\
& D=\{0,1, \ldots, 9\}, \text { i.e., all digits }
\end{aligned}
$$

1. $L \cup \mathbf{D}$ is the set of letters and digits
2. LD is the set of strings consisting of a letter followed by a digit
3. L^{4} is the set of all four-letter strings
4. \mathbf{L}^{*} is the set of all strings of letters, including the empty string
5. $L(L \cup D)^{*}$ is the set of all strings of letters and digits beginning with a letter
6. \mathbf{D}^{+}is the set of all strings of one or more digits

Regular Expressions
 Kavovıке́ऽ Екчро́бєıऽ

- In Pascal, an identifier is a letter followed by zero or more letters
- I.e., it is a member of the set $L(L \cup D)^{*}$
- We use regular expressions to define such sets
- letter (letter | digit) *
- Each regular expression r over an alphabet denotes a language $L(r)$

Rules

1. ε is a regular expression that denotes $\{\varepsilon\}$, i.e., the set containing the empty string
2. If a is a symbol in alphabet Σ then a is a regular expression that denotes $\{a\}$

- $\quad a$ is used for the symbol, the string and the regular expression

3. Suppose r and s are regular expressions denoting the language $L(r)$ and $L(s)$

- $(r) \mid(s)$ is a regular expression denoting $L(r) \cup L(s)$
$-(r)(s)$ is a regular expression denoting $L(r) \cap L(s)$
$-(r)^{*}$ is a regular expression denoting $L(r)^{*}$
$-(r)$ is a regular expression denoting $L(r)$

Operator precedence
 Протєрако́tптєऽ

1. The unary operator * has the highest precedence and is left associative
2. Concatenation has the second highest precedence and is left associative
3. | has the lowest precedence and is left associative
(a) | ($\left.(b)^{*}(c)\right)$ is equivalent to $a \mid b^{*} c$

Regular Expressions Algebra

$r / s=s / r$	\mid is commutative
$r /(s / t)=(r / s) / t$	\mid is associative
$(r s) t=r(s t)$	concatenation is associative
$r(s / t)=r s / r t$	concatenation distributes over \|
$(s / t) r=s r / t r$	
$\varepsilon r=r$	ε is the identify element of concatenation
$r \varepsilon=r$	relation between $*$ and ε
$r^{*}=(r / \varepsilon)^{*}$	$*$ is idempotent
$r^{* *}=r^{*}$	

Shorthands

- +: "one or more instances of" r^{+}is equal to $(\mathrm{L}(\mathrm{r}))^{+}$
- ?: "zero or one instance of" r ? equal to $r \mid \varepsilon$
- [a-z]: \{a, b, ..., z\}, equal to a|b|c|d...|z
- [^a-z]: not in set $\{a, b, \ldots, z\}$

Regular definitions

- A frequently used regular expression can be named for delivering additional regular expressions

Example 1

- Unsigned numbers in Pascal

$$
-5280,39.37,6.336 \mathrm{E} 4,1.894 \mathrm{E}-4
$$

$$
\begin{aligned}
& \text { digit } \rightarrow 0|1| \ldots . \mid \\
& \text { digits } \rightarrow \text { digit digit* } \\
& \text { opt_frac } \rightarrow \text { digits } \mid \varepsilon \\
& \text { opt_exp }\rightarrow \text { (E }(+|-| \varepsilon) \text { digits }) \mid \varepsilon \\
& \text { num } \rightarrow \text { digits opt_frac opt_exp } \\
& \hline
\end{aligned}
$$

Example 2

- Unsigned numbers in Pascal

$$
-5280,39.37,6.336 \mathrm{E} 4,1.894 \mathrm{E}-4
$$


```
digits }->\mathrm{ digit+
opt_frac }->\mathrm{ (. digits)?
    opt_exp 位(+|-)?digits)?
        num }->\mathrm{ digits opt_frac opt_exp
```

