
ΕΠΛ323	-	Θεωρία	και	Πρακτική	
Μεταγλωττιστών	
	

Lecture	3a
Lexical	Analysis
Elias	Athanasopoulos

eliasathan@cs.ucy.ac.cy



Lexical	Analysis
Λεκτική	Ανάλυση

• Definitions
– Tokens,	patterns,	lexemes	

• Regular	Expressions
• Transition	Diagrams
• Finite	Automata	
– Non-deterministic	(NFA)
– Deterministic	(DFA)



The	Role	of	Lexical	Analysis

lexical
analyzer parser

source
program

token

get	next
token

symbol
table

syntax
analysis



Lexical	Analysis	Properties

• First	phase	of	the	compiler
• Reads	the	input	characters	(source	program)
– Heavy	I/O,	many	techniques	for	speeding	up	the	process
– De-beautifies	the	source	(strips	comments,	white-space)
– Keeps	state	for	error-reporting	(line	numbers)
– Sometimes	implements	the	pre-processor	

• Produces	a	sequence	of	tokens	that	the	parser	uses	for	
syntax	analysis
– Separation	of	lexical-syntax	analysis	is	mostly	for	a	clean	
design



Lexical-Syntax	Analysis	
Separation
• Simpler	design
– Syntax	analysis	without	comments	and	white-
space	is	simpler

• Efficiency
– Specialized	buffering	for	reading	the	source	
program	

• Portability
– Handling	of	special	characters/alphabets	is	
isolated



How	it	works?
• Convert	source	code	stream	to	a	series	of	tokens

Keyword: if ( Id: x1 * Id: x2 < Num: 1.0 ) { Id: y

if (x1*x2 < 1.0) {
y = x1;

}

i f ( x 1 * x 2 < 1 . 0 ) { \n



Tokens
Διακριτικά

• Identifiers	(αναγνωριστικά)		
– x, y11, elsex, _i00

• Keywords	(δεσμευμένες λέξεις)
– if, else, while, break

• Constants	(σταθερές)
– 2, 1000, -500, 5L, 2.0, 0.00020, .02, 1., 1e5

• Operators	and	symbols	(τελεστές ή σύμβολα)
– +  *  {  }  ++  <  <<   [  ]  >=

• Strings	(αλφαριθμητικά):	
– “x”, “He said, \“Are you?\””

• Comments	(σχόλια)
– /** comment **/



Challenges

• Several	different	formats
– 2.e0, 20.e-01, 2.0000

• Context	is	significant
– Lexical	analyzer	has	a	local	view
if (x == f(x))
fi (x == f(x))

• Keyword-less	languages	(e.g.,	PL/I)
– IF THEN THEN THEN = ELSE; ELSE ELSE = THEN;



Treating	whitespace

• Whitespace	is	primarily	added	for	readability	
of	the	source	code

• In	some	languages	whitespace	is	not	
significant	and	can	make	things	complicated
DO 5 I = 1.25
(means DO5I = 1.25)
DO 5 I = 1,25
(means a loop from 1 to 25)



Tokens	– Patterns	– Lexemes
Δικριτικά	– Πρότυπα	– Λέξεις

• Tokens	(διακριτικά)	
– Elements	of	the	language	(identifiers,	
keywords,etc.)

• Pattern	(πρότυπο)
– A	rule	that	if	applied	to	a	set	of	strings	(or	text)	
generates	the	same	token

• Lexeme	(λέξη)
– A	sequence	of	characters	in	the	source	program	
that	is	matched	by	the	pattern	for	a	token



Example

const pi = 3.1456;

The	substring pi is	a	lexeme	for	the	token	
“identifier”



Examples	of	tokens
Token Sample Lexemes Pattern (informal)

const const const

if if if

relation <, <=, =, <>, >, >= <	or	<=	or	=	or	<>	or	>	or	>=

id pi, count, D2 letter	followed by	letters	or	
digits

num 3.141659, 0, 6.03E23 any numeric	constant

literal “core dumped” any characters	between	“	
and	“	except	“



Attributes	for	Tokens

E = M *C ** 2
<id, pointer	to	symbol-table	entry	for E>
<assign_op, >
<id, pointer	to	symbol-table	enry for M>
<mult_op, >
<id, pointer	to	symbol-table	entry	for C>
<exp_op, >
<num, integer	value 2>



SPECIFICATION	OF	TOKENS
How	we	match	tokens?



Definitions
• Alphabet	(αλφάβητο)
– Finite	set	of	symbols
– E.g.,	{0,1}	is	the	binary	alphabet		

• String	(συμβολοσειρά)
– Finite	set	of	symbols	drawn	from	the	alphabet
– ε is	the empty	string
– |x|	is	the	size	of	string,	banana is	a	string	of	size	6	

• Language	(γλώσσα)
– Any	set	of	strings	constructed	using	an	alphabet
– E.g.,	{ε},	Æ,	{01,	00,	11,	10}



String	operations

prefix of	s
A	string	obtained	by	removing	zero	ore	
more	trailing symbols	of	string	s;	e.g.,	ban
is	a	prefix	of	banana

suffix of	s
A	string formed	by	deleting	zero	ore	more	
of	the	leading	symbols	of	s;	e.g.,	nana is	a	
suffix	of	banana

substring of	s
A	string obtained	by	deleting	a	prefix	and	
a	suffix	form	s;	e.g.,	nan is	a	substring	of	
banana

proper prefix,	suffix,	or	substring of	s
Any	nonempty	string	x that	is,
respectively,	a	prefix,	suffix,	or	substring	
of	s such	that	s	≠	x

subsequence of	s

Any	string	formed by	deleting	ero ore	
more	not	necessarily	contiguous	symbols	
from	s;	e.g.,	baaa is	a	subsequence	of	
banana



Operations	on	Languages
• Concatenation	(συνένωση ή	παράθεση)
• Union	(ένωση)
• Closure	(κλείσιμο)



Concatenation
Συνένωση

• Assume	languages,	L	and	Μ,	their	concatenation,	
LÇM,	or	LM	is
– LM	=	{	st |	s Î L	and	t ÎM	}
– s,	t	are	strings

Example
L	=	{A,	B,	C,	…,	Z}	
M	=	{0,1,2,	…,	9}	
LM	=	{A0,	A1,	…,	B0,	B1,	…}



Exponentiation	
Ύψωση σε δύναμη

• L0 =	{ε}

• Lk =	{s1 s2 …	sk |	si is	in	Î L,	i=1,..,k}

Example
L	=	{A,	B,	C,	…,	Z}	
L2 =	{AA,	AB,	…,	BA,	BB,	…}



Union
Ένωση

• Assume	languages	L	and	Μ.	Their	union,	LÈM,	is
– LÈM	=	{	s |	s Î L		or		s	ÎM}	
– s is	string

Example

L={A,	B,	C,	…,	Z}	
M={0,1,2,…,9}	
LÈM	=	{A,	B,	C,	…,	Z,	0,1,2,…,9}	



Closure
Κλείσιμο

• Kleene closure	of	L
– L*	denotes	“zero	ore	more	concatenations	of”	L

• Positive	closure	of	L
– L+ denotes	“one	ore	more	concatenations	of”	L



Examples

L =	{A,	B,	…,	Z,	a,	b,	...	z},	i.e.,	all	letters
D	=	{0,	1,	...,	9},	i.e.,	all	digits

1. LÈ D is	the	set	of	letters	and	digits
2. LD is	the	set	of	strings	consisting	of	a	letter	followed	by	a	digit
3. L4 is	the	set	of	all	four-letter	strings
4. L* is	the	set	of	all	strings	of	letters,	including	the	empty	string
5. L(LÈ D)* is	the	set	of	all	strings	of	letters	and	digits	beginning	

with	a	letter
6. D+ is	the	set	of	all	strings	of	one	or	more	digits



Regular	Expressions
Κανονικές	Εκφράσεις

• In	Pascal,	an	identifier	is	a	letter	followed	by	zero	or	
more	letters
– I.e.,	it	is	a	member	of	the	set L(LÈ D)*

• We	use	regular	expressions	to	define	such	sets
– letter	(letter	|	digit)	*

• Each	regular	expression	r over	an	alphabet	
denotes	a	language	L(r)



Rules
1. ε is	a	regular	expression	that	denotes	{ε},	i.e.,	the	set	

containing	the	empty	string
2. If	a	is	a	symbol	in	alphabet	Σ then	a	is	a	regular	expression	

that	denotes	{a}
– a	is	used	for	the	symbol,	the	string	and	the	regular	expression

3. Suppose	r and	s	are	regular	expressions	denoting	the	
language	L(r)	and	L(s)
– (r)|(s)	is	a	regular	expression	denoting	L(r)	È L(s)
– (r)(s)	is	a	regular	expression	denoting	L(r)	Ç L(s)
– (r)* is	a	regular	expression	denoting	L(r)*

– (r)	is	a	regular	expression	denoting	L(r)



Operator	precedence
Προτεραιότητες

1. The	unary	operator	*	has	the	highest	
precedence	and	is	left	associative	

2. Concatenation	has	the	second	highest	
precedence	and	is	left	associative

3. |	has	the	lowest	precedence	and	is	left	
associative	

(a)	|	((b)*(c)) is	equivalent to a|b*c



r|s =	s|r | is	commutative

r|(s|t) =	(r|s)|t |	is	associative

(rs)t	=	r(st) concatenation is	associative

r(s|t)	=	rs|rt
(s|t)r	=	sr|tr

concatenation	distributes	over	|

εr =	r
rε	= r

ε	is	the	identify	element	of	concatenation

r*	=	(r|ε)*	 relation	between	*	and	ε

r** =	r* * is	idempotent

Regular	Expressions	Algebra



Shorthands
• +:	“one	or	more	instances	of”	r+ is	equal	to	(L(r))+

• ?:	“zero	or	one	instance	of”	r?	equal	to	r|ε

• [a-z]:	{a,	b,	…,z},	equal	to	a|b|c|d…|z

• [^a-z]:	not	in	set	{a,	b,	…,z}



Regular	definitions

• A	frequently	used	regular	expression	can	be	
named	for	delivering	additional	regular	
expressions

Pascal	Identifiers	(e.g.,	x1,	y,	velocity100,	etc.)
letter è A | B | . . . | Z | a | b | . . . | z
digit è 0 | 1 | . . . | 9
id è letter (letter|digit)*



Example	1

• Unsigned	numbers	in	Pascal
– 5280, 39.37, 6.336E4, 1.894E-4

digit è 0 | 1 | . . . | 9
digits è digit digit*

opt_frac è . digits | ε
opt_exp è (E(+|-|ε)digits)|ε

num è digits opt_frac opt_exp



Example	2

• Unsigned	numbers	in	Pascal
– 5280, 39.37, 6.336E4, 1.894E-4

digit è 0 | 1 | . . . | 9
digits è digit+

opt_frac è (. digits)?
opt_exp è (E(+|-)?digits)?

num è digits opt_frac opt_exp


