
ΕΠΛ323	-	Θεωρία	και	Πρακτική	
Μεταγλωττιστών	
	

Lecture	1
Introduction
Elias	Athanasopoulos

eliasathan@cs.ucy.ac.cy

Contract	- Logistics

• Office	hours
– Every	Tuesday,	10:00	– 12:00,	B105	(ΘΕΕ01)

• Credits:	7.5	ECTS
• Lecture	Timetable
–Monday,	Thursday,	12:00	– 13:30,	006	(ΧΩΔ01)
–Wednesday,	9:00-10:00,	110	(ΧΩΔ01),	
only	when	announced!

Contract	- Logistics

• Labs	(Dr.	Petros Panayi)
– Every	Wednesday,	B103	(ΘΕΕ01)
– Group	1:	15:00	- 17:00
– Group	2:	17:00	- 19:00

Contract	- Logistics

• Score
– Programming	Assignments	(Quizzes),	15%
– Project	(multiple	steps),	15%
–Midterm,	30%
– Final,	40%

• Requirements
– Average	grade	of	written	exams	
should	be	at	least	4.5

– Final	grade	should	be	at	least	5

Contract	- Logistics

• Required	courses
– CS132	(C	programming),
– CS211 (Complexity),	
– CS231 (Data	Structures)

Students	with	conflicts	should	let	me	know	

Contract	- Logistics

• Reading	material
– Dragon	book,	Compilers	– Principles,	Techniques,	
and	Tools	(2nd	Edition),	A.V.	Aho,	M.S.	Lam,	R.	
Sethi and	J.D.	Ullman,	Prentice	Hall,	2006.

Communication

• Labs
– Blackboard

• Lectures
– http://www.cs.ucy.ac.cy/courses/EPL323

INTRODUCTION
(Chapter	1	from	Dragon	Book)

Why	this	course	is	important?

• Many	core	concepts of	CS	in	a	real-life	setting
– CS132:	Behind	the	scenes	of	C	programming
– CS211,	CS231:	DFAs,	parsing	algorithms
– CS372,	CS221:	Assembly,	Computer	Architecture

• Compilers	are	everywhere	
– From	exotic	devices	(IoT)	to	web	browsers	
(JavaScript	engines,	DOM	parsers,	etc.)

• Tweaking	compilers	for	Security

Compiler	is	a	tough	one

• Significant	effort	to	build	a	compiler	from	
scratch
– First	Fortran	compiler	took	18	staff-years

• Nowadays,	many	tools	exist	to	help
– Our	understanding	is	much	better
– Better	techniques,	better	programming	languages

What	is	a	compiler?

• A	compiler	is	a	program	that
– reads	a	program	written	in	one	language	(source)
– and	translates	it	to	an	equivalent	program	in	
another	language	(target)

– important:	error	reporting	during	translation

Compilersource	program target	program

error	messages

Examples

• GCC	(Gnu	Compiler	Collection)
– gcc,	g++,	javac,	etc.

• LLVM	(Low	Level	Virtual	Machine)
– clang,	clang++

• “Compilers”	are	everywhere,
– Pretty	printers	(i.e.,	color	syntax	in	editors),	static	
checkers,	interpreters	(i.e.,	scripting	languages),	
etc.

Analysis-Synthesis	Model

• There	are	two	parts	in	compilation:
– Analysis
– Synthesis	

• Analysis	
– Breaks	up	the	source	program to	subparts	and	
creates	intermediate	representation(s)

• Synthesis
– Constructs	the	target	program from	intermediate	
representation(s)

Example	1	(LaTeX)
\begin{table}[tb]

\centering
\caption{We name gadgets based on their type (prefix), payload (body),
and exit instruction (suffix). In total, we name 2\times3\times3=18
different gadget types.}
\begin{tabular}{|c|c|c|}

\hline
\textbf{Gadget type} & \textbf{Payload instructions} &

\textbf{Exit instruction} \\
\hline
{Prefix} & {Body} & {Suffix} \\
\hline

\begin{tabular}{l}
CS - Call site\\
EP - Entry point\\
\end{tabular} &
...

$ pdflatex main.tex

Example	2	(Database)

class

student Seq. Scan

Hash Join

Aggregate

SELECT AVG(grade)
FROM student, class
WHERE
class.name = “epl223” AND
class.id = student.id;

Requirements

• Compiler
– Reliability
– Fast	execution
– Low	memory	overhead
– Good	error	reporting
– Error	recovery
– Portability
– Maintainability

• Target	program
– Fast	execution
– Low	memory	overhead

Source	code/program

• Easy	to	read/write	by	human

int expr(int n) {
int d;

d = 4 * n * n * (n + 1) * (n +
1);

return d;
}

Assembly	and	Machine	Code

• Optimized	for	execution	by	a	machine	(CPU)
• Less	descriptive
• Hard	to	be	processed	by
a	human

lda $30,-32($30)
stq $26,0($30)
stq $15,8($30)
bis $30,$30,$15
bis $16,$16,$1
stl $1,16($15)
lds $f1,16($15)
sts $f1,24($15)
ldl $5,24($15)
bis $5,$5,$2
s4addq $2,0,$3
ldl $4,16($15)
mull $4,$3,$2
ldl $3,16($15)

Optimizations

• Compilers	have	several	layers	of	optimizations
int expr(int n){

int d;
d = 4 * n * n * (n + 1) * (n + 1);

return d;
}

.expr:
stw 31,-4(1) lwz 11,64(31)
stwu 1,-40(1) addi 9,11,1
mr 31,1 mullw 0,0,9
stw 3,64(31) stw 0,24(31)
lwz 0,64(31) lwz 0,24(31)
mr 9,0 mr 3,0
slwi 0,9,2 b L..2
lwz 9,64(31) L..2:
mullw 0,0,9 lwz 1,0(1)
lwz 11,64(31) lwz 31,-4(1)
addi 9,11,1 blr
mullw 0,0,9

.expr:
addi 9,3,1
slwi 0,3,2
mullw 3,3,0
mullw 3,3,9
mullw 3,3,9
blr

No	optimizations
$ gcc –O0

Optimizations
$ gcc –O3

Cross-compiler

• Compilers	can	generate	code	for	different	
machines	(targets) int expr(int n){

int d;
d = 4 * n * n * (n + 1) * (n + 1);

return d;
}

expr:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
leal 1(%eax), %edx
imull %eax, %eax
imull %edx, %eax
imull %edx, %eax
sall $2, %eax
popl %ebp
ret

.expr:
addi 9,3,1
slwi 0,3,2
mullw 3,3,0
mullw 3,3,9
mullw 3,3,9
blr

For	x86
$ gcc –O3 –b i586

For	PowerPC
$ gcc –O3 –b powerpc

Compilation	life	cycle

• Phases
– Source	code	is	transformed	to	intermediate	
representations

– Each	intermediate	representation	is	suitable	for	a	
particular	processing	(lexical,	syntax,	optimization,	
etc.)

• In	each	phase	the	program	is	translated	to	a	
form	closer	to	the	machine	representation	
and	less	similar	to	the	(human-oriented)	
source	representation

Compiler	Phases

Lexical Analyzer

Source Program

Target Program

Syntax Analyzer

Semantic Analyzer

Intermediate code
generator

Code optimizer

Code generator

Error HandlerSymbol Table Manager

1

2

2

3

3

Optional

1:	Tokens	
(Διακριτικά)
2:	Syntax	tree	
(Συντατικό	δένδρο)
3:	Intermediate	code	
(Ενδιάμεσος	κώδικας)

Analysis	of	the	source	program

• Linear	analysis
– Source	is	treated	as	a	stream	of	characters	(left-to-
right)	and	is	grouped	into	tokens

• Hierarchical	analysis
– Tokens	are	further	grouped	in	larger	grammatical	
structures	(e.g.,	nested	parentheses	and	blocks)

• Semantic	analysis
– Certain	checks	are	performed	to	ensure	the	
validity	of	the	identified	grammatical	structures

Lexical	Analysis
Λεξιλογική	Ανάλυση

• Linear	scanning
• Consider	the	expression

position := initial + rate *60

• Lexical	analysis	produces
id(1) op(:=) id(2) op(+) id(3) op(*) cons(60)
id: identifier, op: operator, cons: constant

• Symbol	Table 1 position …
2 initial …
3 rate …
4 … …

Syntax	Analysis
Συντακτική	Ανάλυση

• Hierarchical
• Involves	grouping	the	tokens	into	grammatical	
phases	

• Constructs	the	
structure	with	the	
token	relationship

op(:=)

id(3) cons(60)

id(2) op(*)

id(1) op(+)

position := initial + rate * 60

Simple	Grammar

• The	hierarchical	structure	of	the	program	is	
usually	expressed	by	recursive	rules

1. Any	identifier is	an	expression
2. Any	number is	an	expression
3. If	expression1 and	expression2 are	expressions,	

then	so	are:
expression1 +	expression2
expression1 *	expression2
(expression1)	

Applying	the	grammar

op(:=)

id(3) cons(60)

id(2) op(*)

id(1) op(+)

(1)	Any	identifier is	an	expression
(2)	Any	number is	an	expression
(3)	If	expression1 and	expression2 are	
expressions,	then	so	are:

expression1 +	expression2
expression1 *	expression2
(expression1)	

Semantic	Analysis
Σημασιολογική	Ανάλυση

• Checks	the	program	for	semantic	errors
• Gathers	type	information	
• Operands	and	operators
• Type-checking

op(:=)

id(3) int_2_real

id(2) op(*)

id(1) op(+)

cons(60)

FLOAT

INT
position := initial + rate * 60

int_2_real() is	an	extra	node	
for	converting	60 to	a	real	
number.	Remember:	the	
machine	representation	of	
integers	and	real	numbers	is	
different!

Error	detection	and	reporting

• All	phases	can	issue	errors
• A	compiler	that	stops	at	the	first	error	is	not	helpful	
• Most	of	the	errors	are	handled	in	the	syntax/semantic	
analysis	phases
– Lexical	analysis	detects	errors	where	a	stream	of	
characters	does	not	form	a	valid	token

– Syntax	analysis	detects	errors	where	the	stream	of	valid	
tokens	violate	the	structure	rules	(syntax)

– Semantic	analysis	detects	errors	where	the	syntax	is	valid	
by	the	operation	not	(adding	an	array	with	a	real	number)

Intermediate	Code	and	Optimization
Ενδιάμεσος	Κώδικας	και	Βελτιστοποίηση

• Each	phase	produces	intermediate	code

• Optimization	

temp1 := int_2_real(60)
temp2 := id(3) * temp1
temp3 := id(2) + temp2
id(1) := temp3

temp1 := id(3) * 60.0
id(1) := id(2) + temp1

three-address	code:	a	simple	
assembly-like	language,	
which	consists	of	instructions,	
each	of	which	has	at	most	
three	operands

Operator:	τελεστής
Operand: τελεστέος

Code	Generation
Παραγωγή	Κώδικα

• The	last	phase	of	the	compiler	is	the	
generation	of	the	target	code

• Register	allocation
– Each	expression	should	use	registers	that	are	
available

• Relocation	information
– Variables	are	stored	in
relocatable addresses

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

Generic	Picture
Compiler	and	Friends

Source	code

Compiler

Assembly	code

Assembler

Machine	code

Executable

Linker

ΟS	Loader

Front	and	Back	ends

• Separation	of	common	tasks
• Makes	design	and

implementation	easier
• K	compilers	for	N	machines
– N	back	ends,	K	front	ends

– Instead	of	K*N	compilers

Front	end
(machine-

independent)

Back	end

Lexical Analyzer

Source Program

Target Program

Syntax Analyzer

Semantic Analyzer

Intermediate code
generator

Code optimizer

Code generator

Passes

• A	pass is	when	the	compiler	reads	the	source	
code	(or	intermediate	files)

• The	number	of	passes	depends	on	the	source	and	
target	language	and	the	running	environment

• Different	phases	that	cooperate	can	be	grouped	
to	a	single	pass	(not	always	possible)

• When	grouping	is	not	possible
– Backpatching:	leave	empty	information	that	is	going	
to	be	filled	by	a	later	phase/pass

Compiler-construction	Tools

• Parser	generators
• Scanner	generators
• Syntax-directed	translation	engines
• Automatic	code	generators
• Data-flow	engines

