
ΕΠΛ323	-	Θεωρία	και	Πρακτική	
Μεταγλωττιστών	
	

Lecture	12a
Code	Generation

Elias	Athanasopoulos
eliasathan@cs.ucy.ac.cy



Simple	Code	Generator

• Generates	target	code	from	three-address	
code

• For	each	three-address	code	operator	there	is	
a	target	code	operator	(e.g.,	ADD	for	‘+’)

• Computed	results	can	be	left	in	registers	as	
long	as	possible, except:
– their	register	is	needed	for	another	computation
– just	before	a	procedure	call,	jump,	or	labeled	
statement	



Target	Machine

• n general-purpose	registers,	
R0,R1,...,Rn-1

• Instructions	(op source, destination)
– MOV (move	source to	destination)
– ADD (add	source to	destination)
– SUB (subtract	source from	destination)



Target	Machine
Memory	Addressing

MODE FORM ADDRESS ADDED	COST

absolute M M 1

register R R 0

indexed c(R) c + contents(R) 1

indirect register *R contents(R) 0

indirect indexed *c(R) contents(c+contents(R)) 1

contents(x):	contents	of	register	or	memory

The	cost	is	1	only when	memory	is	addressed.



Instruction	Cost
• The	cost	of	an	instruction	is	one	plus	the	added	costs	
associated	with	the	address	modes	used

• Examples
MOV B, R0 cost = 6
ADD c, R0
MOV R0, a

MOV b, a cost = 6
ADD c, a

ADD R2, R1 cost = 3
MOV R1, a



Challenges

• Consider	the	statement	a := b + c
• Possible	target	code	generations

// assumes variables are in registers
ADD Rj, Ri (cost 1)
// assumes b is in Ri
ADD c, Ri (cost 2)
// good if c is going to be used later
MOV c, Rj (cost 3)
ADD Rj, Ri

• Many	different	options



Register	and	
Address	Descriptors
• We	use	descriptors	to	keep	track	of	register	
contents	and	address	for	names
1. A	register	descriptor	keeps	track	of	what	is	currently	

in	each	register.	We	assume	that	initially	the	register	
descriptor	shows	that	all	registers	are	empty.	

2. An	address	descriptor	keeps	track	of	the	location	(or	
locations)	where	the	current	value	of	the	name	can	
be	found	at	run-time.	The	location	might	be	a	
register,	a	stack	location,	a	memory	address,	or	
some	set	of	these.	This	information	can	be	stored	in	
the	symbol	table.	



Code	Generation	Algorithm
• For	each	three-address	statement	of	the	form	x := y op z we	

perform	the	following	actions.	
1. Invoke	a	function	getreg to	determine	the	location	L where	the	

result	of	the	computation	should	be	stored.	L can	be	a	register	or	
memory	location.

2. Consult	the	address	descriptor	for	y to	determine	y’,	(one	of)	the	
current	location(s)	of	y (prefer	a	register	to	a	memory	location).	If	
the	value	of	y is	not	already	in	L,	generate	the	instruction	MOV 
y’, L to	place	a	copy	of	y in	L.

3. Generate	the	instruction	OP z’, L where	z’ is	a	current	location	
for	z (prefer	a	register	to	a	memory	location).

4. if	the	current	values	of	of	y and/or	z have	no	next	uses,	are	not	live	
on	exit	from	the	block,	and	are	in	registers,	alter	the	register	
descriptor	to	indicate	that,	after	execution	of	x := y op z,	those	
registers	no	longer	contain	y and/or	z,	respectively.



Special Case
x := y
• If	y is	in	a	register,	simply	change	the	register	and	
address	descriptors	to	record	that	the	value	of	x
is	now	found	in	the	register	holding	the	value	of	
y.

• If	y has	no	next	use	and	is	not	live	on	exit	from	
the	block,	the	register	no	longer	holds	the	value	
of	y.

• If	y is	only	in	memory,	we	use	getreg to	find	a	
register	in	which	to	load	y and	make	the	register	
the	location	of	x.



getreg
• Returns	the	location	L to	hold	the	value	of	x for	the	

assignment	x := y op z.
1. If	the	name	y is	in	a	register	that	holds	the	value	of	no	other	

names,	and	y is	not	live	and	has	no	next	use	after	execution	of	
the	statement,	then	return	the	register	of	y for	L.

2. Failing	(1),	return	an	empty	register	for	L.
3. Failing	(2),	if	x has	a	next	use	in	the	block,	or	op is	an	

operator,	such	as	indexing,	that	requires	a	register,	find	an	
occupied	register	R.	Store	the	value	of	R into	a	memory	
location	(by	MOV R, M)	and	return	R.

4. If	x is	not	used	in	the	block,	or	no	suitable	occupied	register	
can	be	found,	select	the	memory	location	of	x as	L.



Example
d := (a-b) + (a-c) + (a-c)

TAC
t := a - b
u := a - c
v := t + u
d := v + u

STATEMENTS CODE REGISTERS ADDRESSES

registers	empty

t := a - b MOV a,R0 R0 contains t t in R0

SUB b,R0

u := a - c MOV a,R1 R0 contains t t in R0

SUB c,R1 R1 contains u u in R1

v := t + u ADD R1,R0 R0 contains v u in R1

R1 contains u v in R0

d := v + u ADD R1,R0 R0 contains d d in R0

MOV R0,d d in R0/m



Register	Allocation	and	
Assignment
• Instructions	involving	only	register	operands	
are	shorter	and	faster	than	those	involving	
memory	operands

• Register	Allocation
–What	values	should	reside	in	registers	

• Register	Assignment	
–Which	register	should	value	reside



Usage	Counts

Σ use(x,	B)	+	2	*	live(x,	B)

blocks	B	in	L
use(x,	B)	
number	of	times	x	is	used	in	B	prior	to	definition

live(x,	B)	
is	1	if	x	is	live	on	exit	from	B	and	value	is	assigned	in	B



a := b + c
d := d – b
e := a + f

f := a - d

b := d + c

b := d + f
e := a - c

bcdf

acde acdf

cdef

B1

B3B2

B4

acdef

cdef

bcdef

bcdef

b,c,d,e,f live

Usage	cost	of	a
- a is	live	and	is	assigned	on	exit	from	B1	
but	not	from	B2,	B3,	or	B4:	∑2*live(a,	B)	=	2
- use(a,	B1)	=	0,	use(a,	B2)	=	1,	use(a,	B3)=1,	use(a,	B4)	=	0:			∑use(a,	B)	=	2
- Usage	cost	(a)	=	4

a: 4 d: 6  
b: 6 f: 4
c: 3 e: 4
aàR0, bàR1, dàR2

Usage	cost	of	e
- e	is	live	and	is	assigned only	in	B1
Usage	cost	of	d
- d	is	used	in	B1,	B2,	B3,	and	B4	(4).	
- d	is	live	and	is	assigned	in	B1	(2x1).



MOV R1, R0
ADD c, R0
SUB R1, R2
MOV R0, R3
ADD f, R3
MOV R3, e

MOV R0, R3
SUB R2, R3
MOV R3, f

MOV R2, R1
ADD c, R1

MOV R2, R1
ADD f, R1
MOV R0, R3
SUB c, R3
MOV R3, e

B1

B3B2

B4

MOV b, R1
MOV d, R2

MOV  R1, b
ADD  R2, d

MOV  R1, b
ADD  R2, d


