
ΕΠΛ323	-	Θεωρία	και	Πρακτική	
Μεταγλωττιστών	
	

Lecture	11b
Code	Generation

Elias	Athanasopoulos
eliasathan@cs.ucy.ac.cy

Final	Stage!

front
end

symbol
table

code
generator

code
optimizer

source
program

intermediate
code

intermediate
code

target
program

High-level	Operation

• Input
– Intermediate	Code	(AST,	DAG,	TAC)

• Output
– Absolute	Machine	Code
– Relocatable Machine	Code
– Assembly	Code

• Memory	management
–Mapping	names	(symbols)	into	actual	memory	
addresses

These	instructions	are	redundant.

Instruction	Selection
• Quality	of	Code

– Speed	and	size
• Machines	understand	specific	instructions

MOV y, R0 /* load y into register R0. */
ADD z, R0 /* add z to R0. */
MOV R0, x /* store R0 into x */

• TAC	input
a := b + c
d := a + e

• Machine	output	(not	efficient)
MOV b, R0
ADD c, R0
MOV R0, a
MOV a, R0
ADD e, R0
MOV R0, d

Register	Allocation

• During	register	allocation,	we	select	the	set	of	
variables	that	will	reside	in	registers	at	a	point	in	
the	program.

• During	a	subsequent	register	assignment	phase,	
we	pick	the	specific	register	that	a	variable	will	
reside	in.

• Finding	an	optimal	assignment	of	registers	is	NP-
complete.

• For	complications:	hardware/OS	specific	register	
usage.

Register	Allocation

t := a + b
t := t * c
t := t / d

t := a + b
t := t + c
t := t / d

L R1, a
A R1, b
M R0, c
D R0, d
ST R1, t

L R0, a
A R0, b
A R0, c
SRDA R0,32
D R0, d
ST R1, t

The	optimal	choice	for	the	register	into	which	a is	to	be	loaded	depends
on	what	will	ultimately	happen	to	t.

Choice	of	Evaluation	Order

• The	order	in	which	computations	are	
performed	can	affect	the	efficiency	of	the	
target	code.

• The	optimal	order	is	also	a	difficult,	NP-
complete,	problem.

Approaches	to	
Code	Generation
• Target	code	may	not	be	optimal,	but	it	should	
be	correct

• Given	the	premium	of	correctness,	we	try	to	
design	a	code	generator	so	that
– It	can	be	easily	implemented
– It	can	be	easily	tested
– It	can	be	easily	maintained	

Basic	Block
• A	basic	block is	a	sequence	of	consecutive	statements	in	

which	flow	of	control	enters	at	the	beginning	and	leaves	at	
the	end	without	halt	or	possibility	of	branching	except	at	
the	end:
t1 := a * a
t2 := a * b
t3 := 2 * t2
t4 := t1 + t3
t5 := b * b
t6 := t4 + t5

• A	three-address	statement	x := y + z defines x and	
uses (or	references)	y and	z

• A	name	in	a	basic	block	is		said	to	be	live at	a	given	point	if	
its	value	is	used	after	that	point	in	the	program,	perhaps	in	
another	basic	block

Partition	Code	into
Basic	Blocks
• Input

– A	sequence	of	three-address	statements
• Output

– A	list	of	basic	blocks	with	each	three-address	statement	in	exactly	one	
block

• Method
1. We	first	determine	the	set	of	leaders,	the	first	statements	of	basic	

blocks.	The	rules	we	use	are	the	following.
1. The	first	statement	is	a	leader.
2. Any	statement	that	is	the	target	of	a	conditional	or	unconditional	goto	is	a	

leader.
3. Any	statement	that	immediately	follows	a	goto	or	conditional	goto	

statement	is	a	leader.
2. For	each	leader,	its	basic	block	consists	of	the	leader	and	all	

statements	up	to	but	not	including	the	next	leader	or	the	end	of	the	
program.

Example
begin
prod := 0;
i := 1;
do begin
prod := prod + a[i] * b[i];
i:=i+1;

end
while i <= 20

end

(1) prod := 0
(2) i := 1
(3) t1 := 4 * i
(4) t2 := a[t1]
(5) t3 := 4 * i
(6) t4 := b[t3]
(7) t5 := t2 * t4
(8) t6 := prod + t5
(9) prod := t6
(10) t7 := i+1
(11) i := t7
(12) if i <= 20 goto (3)
(13) . . .Statement	(1)	is	a	leader	by	Rule	1.

Statement	(3)	is	a	leader	by	Rule	2.
Statement	(13)	is	a	leader	by	Rule	3.

Transformations
on	Basic	Blocks
• Two	basic	blocks	are	said	to	be	equivalent if	
they	compute	the	same	set	of	expressions

• Transformation	can	improve	the	quality	of	the	
produced	code,	without	changing	the	set	of	
expressions	computed	by	a	particular	block
– Structure-preserving	Transformations
– Algebraic	Transformations

Structure-preserving	
Transformations
• Common	subexpression elimination

• Dead-code	elimination
– Suppose	that	x is	dead,	that	is,	never	subsequently	
used,	at	the	point	where	the	statement	
x := y + z appears	in	a	basic	block.	Then	this	
statement	may	be	safely	removed.

a := b + c
b := a – d
c := b + c
d := a – d

a := b + c
b := a – d
c := b + c
d := b

Structure-preserving	
Transformations
• Renaming	temporary	variables

t := b + c can	become	u := b + c

• Interchange	of	statements

t1 := b + c
t2 := x + y

t2 := x + y
t1 := b + c

Algebraic	Transformations

• Statements	can	be	eliminated
x := x + 0
x := x * 1

• Statements	can	be	replaced
x := y ** 2
to
x := y * y

Flow	graphs

• We	can	add	the	flow-of-control	information	to	
the	set	of	basic	blocks	making	up	a	program	by	
constructing	a	directed	graph	called	a	flow	graph

• The	initial	node is	the	basic	block	whose	leader	is	
the	first	statement	of	the	program

• Τhere	is	a	directed	edge	from	block	B1	to	block	
B2:
– Conditional	or	unconditional	jump	from	last	statement	of	B1	to	

first	statement	of	B2
– B2	immediately	follows	B1	in	the	order	of	the	program	and	B1	

does	not	end	in	an	unconditional	jump
• B1	is	predecessor of	B2	and	B2	successor of	B1

Flow	Graph
B1
prod := 0
i := 1

B2
t1 := 4 * i
t2 := a[t1]
t3 := 4 * i
t4 := b[t3]
t5 := t2 * t4
t6 := prod + t5
prod := t6
t7 := i + 1
i := t7
if i <= 20 goto B2

Next-Use	Information

• Next-use	information	dictates	if	a	name	in	a	
basic	block	is	going	to	be	used	again

• If	the	name	is	not	going	to	be	used	again	in	
the	block,	then	the	register	holding	the	name	
can	be	released	and	used	for	holding	other	
names

Computing	next	uses

• Suppose	we	reach	three-address	statement	
i:		x := y op z,	in	our	backward	scan.	We	
then	do	the	following
1. Attach	to	statement	i the	information	currently	

found	in	the	symbol	table	regarding	the	next	use	and	
liveness of	x,	y,	and	z.

2. In	the	symbol	table,	set	x to	“not	live”	and	“no	next	
use”

3. In	the	symbol	table,	set	y and	z to	“live”	and	the	
next	uses	of	y and	z to	i.	Note	that	the	order	of	
steps	(2)	and	(3)	may	not	be	interchanged	because	x
may	be	y or	z.

Example
Code

Live/Dead Next	Use

x y z x y z

(4) x := z + y F T T 4 4

(3) y := z - 7 F F T 3

(2) z := x * 5 T F F 2

(1) x := y + z F T T 1 1

