{ {
sya

EMA323 - Oswplo kat MpoKTkn
MeToyAWTTIOTWV

Lecture 11b
Code Generation

Elias Athanasopoulos
eliasathan@cs.ucy.ac.cy

Final Stage!

source
=

program

front
end

intermediate
>

code

code

intermediate

optimizer

n =

n u

------------ mEEEEEEEEEEEESE
=

symbol
table

code

code
generator

target
>
program

High-level Operation

* |nput

— Intermediate Code (AST, DAG, TAC)
* Output

— Absolute Machine Code

— Relocatable Machine Code

— Assembly Code

* Memory management

— Mapping names (symbols) into actual memory
addresses

Instruction Selection

* Quality of Code
— Speed and size

* Machines understand specific instructions

MOV y, RO /* load y into register RO. */
ADD z, RO /* add z to RO. */
MOV RO, x /* store RO into x */

* TACinput
a := b + c
d := a + e

 Machine output (not efficient)
MOV b, RO
ADD c, RO

MOV RO, a

MOV a, RO These instructions are redundant.

ADD e, RO
MOV RO, d

Register Allocation

* During register allocation, we select the set of
variables that will reside in registers at a point in
the program.

* During a subsequent register assignment phase,
we pick the specific register that a variable will
reside in.

* Finding an optimal assignment of registers is NP-
complete.

* For complications: hardware/QOS specific register
usage.

Register Allocation

t : = a+ b t :(=a + b
t (=t * C t :=t + c
=t / d t : =t / d
L R1, a L RO, a
A R1, b A RO, b
M RO, c A RO, c
D RO, d SRDA RO, 32
ST R1, t D RO, d
ST R1, t

on what will ultimately happen to t.

The optimal choice for the register into which a is to be loaded depends

Choice of Evaluation Order

* The order in which computations are
performed can affect the efficiency of the

target code.
 The optimal order is also a difficult, NP-
complete, problem.

Approaches to
Code Generation

* Target code may not be optimal, but it should
be correct

* Given the premium of correctness, we try to
design a code generator so that

— It can be easily implemented
— It can be easily tested

— It can be easily maintained

Basic Block

* A basic block is a sequence of consecutive statements in
which flow of control enters at the beginning and leaves at
the end without halt or possibility of branching except at

the end:

tl :
t2 :
t3 :
t4d :

a * a
a * b
2 * t2
tl + t3
t5 := b * b
t6 := t4 + t5
* Athree-address statementx := y + 2z defines x and

uses (or references) y and z

e Aname in a basic block is said to be live at a given point if
its value is used after that point in the program, perhaps in
another basic block

Partition Code into
Basic Blocks

* |nput
— A sequence of three-address statements
* Qutput
— A list of basic blocks with each three-address statement in exactly one
block
 Method

1. We first determine the set of leaders, the first statements of basic
blocks. The rules we use are the following.
1. The first statement is a leader.

2. Any statement that is the target of a conditional or unconditional goto is a
leader.

3. Any statement that immediately follows a goto or conditional goto
statement is a leader.
2. For each leader, its basic block consists of the leader and all

statements up to but not including the next leader or the end of the
program.

Example

begin
prod := 0;
i :=1;
do begin
prod :
i1:=i+1;
end
while i <= 20
end

prod + a[i] * b[1];

Statement (1) is a leader by Rule 1.
Statement (3) is a leader by Rule 2.
Statement (13) is a leader by Rule 3.

(1) prod := 0
(2) i = 1

(3) tl :=4 * i
(4) t2 := a[tl]
(5) t3 =4 * 1

(7) t5 := t2 * t4

(8) t6 := prod + t5

(9) prod := t6

(10) t7 := i+l

(11) 1 := t7

L2 E 5540, 99850...03.).,

Transformations
on Basic Blocks

* Two basic blocks are said to be equivalent if
they compute the same set of expressions

* Transformation can improve the quality of the
produced code, without changing the set of
expressions computed by a particular block
— Structure-preserving Transformations
— Algebraic Transformations

Structure-preserving
Transformations

e Common subexpression elimination

a := b + c a := b + c
b :(=a—-—d ‘ b :(=a—-—d
c := b + cC Cc := b + C
d := a—d d := b

e Dead-code elimination

— Suppose that x is dead, that is, never subsequently
used, at the point where the statement
X := y + z appearsina basic block. Then this
statement may be safely removed.

Structure-preserving
Transformations

* Renaming temporary variables
t := b + c canbecomeu := b + c

* Interchange of statements

Tty
+ c

tl := b + c t2 := X
t2 :=x +y ‘ tl := Db

Algebraic Transformations

e Statements can be eliminated
X :=x + 0
X = x * 1

e Statements can be replaced
X =y ** 2

to

Flow graphs

We can add the flow-of-control information to
the set of basic blocks making up a program by
constructing a directed graph called a flow graph

The initial node is the basic block whose leader is
the first statement of the program

There is a directed edge from block B1 to block
B2:

— Conditional or unconditional jump from last statement of B1 to
first statement of B2

— B2 immediately follows B1 in the order of the program and B1
does not end in an unconditional jump

B1 is predecessor of B2 and B2 successor of B1

Flow Graph

N

Bl

prod := 0

1 :=1

B2

tl := 4 * i

t2 = a[tl]

t3 =4 * 1

td := b[t3]

t5 := t2 * t4
t6 := prod + t5
prod := t6

t7 =1+ 1

i := t7

if 1 <= 20 goto B2

l

Next-Use Information

e Next-use information dictates if a name in a
nasic block is going to be used again

* |f the name is not going to be used again in
the block, then the register holding the name
can be released and used for holding other
names

Computing next uses

* Suppose we reach three-address statement

i: X := y op z, inourbackward scan. We
then do the followmg

1. Attach to statement i the information currently

found in the symbol table regarding the next use and
liveness of x, y, and z.

2. Inthe symbol table, set x to “not live” and “no next
use”

3. Inthe symbol table, set y and z to “live” and the
next uses of y and z to i. Note that the order of

steps (2) and (3) may not be interchanged because x
may be y or z.

Example

Live/Dead Next Use
Code
X v oz X v z
(4) x :.=z+y | F T T 4 4
(3) y e.= 2z -7|F F T 3
(2) z :=x*5 | T F F 2
(1) x e=y+2z | F T T 1 1

