EIIA 232: IPOTPAMMATIZTIKEE TEXNIKEX KAI EPTAAEIA

EPI'AXTHPIO 9

AVVOpIKY] avEAVOT] KOOIKA

H dvvapikn avdiven tov KOOKA €VOS TPOYPAPPRATOG ivol avAAVGT AOYIGHIKOD OV YiveTal
HE TNV EKTEAECT] TOV TPOYPOUUUATOV TOV TPOKVTTOLY OO OWTO TO GUGTNO AOYIGUIKOV GE £VOV
Tpoyuatikd 1 ewovikd emefepyootn. o va elvor amodotiky, mPEMEL TO TPOYPOUULO TPOG
aviAvon Vo EKTEAEOTEL HE OPKETEC €16000VGC EAEYYOL YL VO EUQOVIOTEL EVOLOPEPOLGQ
GLUTEPLPOPEL.

Ynrdpyovv mTOAAEG EQOUPUOYEG TOV HOG EMTPETOVY VO, KAVOLUE SVVOAIKTY OVAAVGY] TOV KOSIKOL.
Mia omtd avtég givar to Valgrind, o cuAloyn epyoieimv mov Kavouy ToALA Tpdypota, aALd o8
avtd 10 gpyacTiplo Bo emkevipmBoOE GTa EpYOAEiD TOV KAVOLV:

e Profiling: H dwdwkacia tov profiling eivon por onuavtiky wroyn katd tv viAomoinon
EVOC TPOYPAUUOTOS KO EYKELTAL GTOV TPOGOIOPICUO TOV UEPDV TOV KMOKO OV &ivat
xpovoPopa (BEAovV TOAD ¥pdvo Yo va TpEEOLV) Kol Ba TPETEL VAL TPOGIIOPIGTOVY KOl VL
YPaPoOV Eava apov M ToLTEPT EKTEAECT] EVOG TPOYPAUUATOS Elvan Tdvtote emBounty).
Y& oA peydAa projects, to profiling pmopei vo ddoet onuoviikéc TAnpogopieg oyt udvo
kaBopiloviag To TUNUATO TOV TPOYPAUUOTOS TOL €ival Mo 0Pyl o€ KTEAEOT), OAAA
umopel emiong va cag Pondnoel Tov TPOYPAUUATIOT!| Vo Bpel TOAAG GAAD GTOTIOTIKA
oToyElo HEC® TV OTOIWV UTOPOVV VO, EVTIOMIGTOVV Kol VO SloAvBobv moAAL mhovd
oQAALOTOL.

e Memory checking: H dwdwoacio g aviyvevong Kokodweipiong Hviung eivort
OTULOVTIKN Y10 VO, ATOKOADWYEL TIG SLUPPOES UVIUNG, TO GOAALATO ATOSEGUEVONG VIUNG,
KATL. Ko VoL KAVEL Vol TPOYPOLLULO TTLO OTOO0TIKO GTY) XPTON TNG LVANG.

>10 gpyootnplo awtd Oa ypnoiponooovpe 1o epyoireio gprof mov emtpénet to profiling kot to
gpyareio Valgrind mov pog emtpémer vo kavovue kou profiling (uéow g mapapétpoug
cachegrind) oAAda kot memory checking (uéow g mapapétpov memcheck). And to gpyaieio
Valgrind 8a ypnoyomomoovpue to memcheck.

Aocknon 1 - Xpnowonoinen memcheck.
Metaylwttiote 10 To KATm TpoOYypoppa test.c pe tnv mo Kato evioAn.

gcc test.c -0 test

#include <stdio.h>
#include <stdlib.h>

int main()

{

char *p;

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou 1



EIIA 232: IPOTPAMMATIZTIKEE TEXNIKEX KAI EPTAAEIA

// Allocation #1 of 19 bytes

p = (char *) malloc(19);

// Allocation #2 of 12 bytes
p = (char *) malloc(12);
free(p);

// Allocation #3 of 16 bytes
p = (char *) malloc(16);

return

}

0;

INo va edéy&ete yioo memory leaks kotd tnv d1dpKela TG EKTEAEGTG TOV TPOYPAUUATOS, ODOTE
TNV EVIOAN:

valgrind --tool=memcheck --leak-check=full --show-reachable=yes
--num-callers=20 --track-fds=yes --track-origins=yes ./test

Avt 1 evioA Ba eppavicel oty 006vn:

==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==

Memcheck, a memory error detector

Copyright (C) 2002-2015, and GNU GPL"d, by Julian Seward et al.
Using Valgrind-3.12.0 and LibVEX; rerun with -h for copyright info
Command: ./test

FILE DESCRIPTORS: 3 open at exit.
Open file descriptor 2: /dev/pts/0
<inherited from parent>

Open file descriptor 1: /dev/pts/0
<inherited from parent>

Open file descriptor 0: /dev/pts/0
<inherited from parent>

HEAP SUMMARY :
in use at exit: 35 bytes in 2 blocks
total heap usage: 3 allocs, 1 frees, 47 bytes allocated

16 bytes in 1 blocks are definitely lost in loss record 1 of 2
at 0x4C29BE3: malloc (vg_replace _malloc.c:299)
by 0x4005B6: main (test.c:16)

19 bytes in 1 blocks are definitely lost in loss record 2 of 2
at 0x4C29BE3: malloc (vg_replace _malloc.c:299)
by Ox40058E: main (test.c:9)

LEAK SUMMARY :
definitely lost:
indirectly lost:

possibly lost:
still reachable:

35 bytes in 2 blocks
0 bytes in 0 blocks
0 bytes in 0 blocks
0 bytes in 0 blocks

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou 2



EIIA 232: IPOTPAMMATIZTIKEX TEXNIKEX KAI EPTAAEIA
==8567== suppressed: 0 bytes in 0 blocks

==8567==

==8567== For counts of detected and suppressed errors, rerun with: -v
==8567== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

BAénoviog tov k®ddwke pmopovpe vo. cvumepdvoope 6Ot H ovagopd ota 19 byte mov
deopevtnkay apyikd (ue to tpdto malloc) ydveton 6tav o deiktng p yiveton malloc yio dedtepn
@opd Kot £tol avtég ot Béoelg pvqung (19 bytes) pévovv ampoomélacteg (19 bytes in 1 block
definitely lost). 'Etot ed® £xovpe dwoppon pwviung (memory leak). To Valgrind pog deiyvel mov
JEGUEVTNKE AVTOG O YDPOG, eivar 6To test.c, v ypapun 9. H dedtepn déopevon (12 byte) dev
eoivetar oto amoteAéopoto emeldn omodeousvetor (free) koavovikda (dev vmhpyel Sappon
unung). H tpitn déopevon eaivetal ot amoteAéspata yio. dStoppon uvniung (memory leak) av
Kol VLAPYEL 0 OEIKTNG P oV cvveyilel va delyVEL GTO YMPO OEGUEVONG TPV TOV TEPUATIGUO TOV
TPoYPAupaTos. Ed® to TpoPAnua sivar 6Tt dev amodesUeELTNKAV AVTEG 01 BEGELS TPV TEAEIDOEL
10 mpoypopupa. Omdte ko avtd eivon évo, memory leak ko to Valgrind deiyver tv ypouur oto

npoypappa (test.c ypapun 16).
Metaylottiote 0 To KAT® TPOYpoppo test2.c pe v mo KAT®m EVIOAN.

gcc test2.c -0 test2

#include <stdio.h>
#include <stdlib.h>

#define SIZE 10
int main()

// free in not called
char *waste = (char *)malloc(SIZE *sizeof(char));

// uninitialized pointer
int *a;
printf('%d\n", *a);

// write past end of array
waste[SIZE] = O;

return O;

}

AV eKTEAEGETE TNV EVTOAN

valgrind --tool=memcheck --leak-check=full --show-reachable=yes
-—-num-callers=20 --track-fds=yes --track-origins=yes ./test2

Ba deite ot vrapyer éva memory leak (10 bytes definitely lost). Av 6élete va deite k1 GAAeC
TANPOPOPIES CYETIKA PE TO TPOPANUO TOL TPOKVITEL OO TNV EKTVTMCT] UN-0PYLKOTOUUEVOL
deikn | Vv mwpooméraor BEong mov PpiokeTon €KTOC TG OEGUEVUEVNG TTEPLOYNG TOV TivaKQ

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou 3



EIIA 232: IPOTPAMMATIZTIKEE TEXNIKEX KAI EPTAAEIA

waste extedéote Vv Mo whve eviodn valgrid mpocbétovtag axdpo Eva Oploud -V TO 0moio
TOPOVCLAGEL O AETTOUEPT] aviivon TV TpoPfAnudtev (verbose).

Aocknon 2 - Xpnewonoinen memcheck.

1. Amd v otooeAida tov pobnuatog katefdote ta oapyeio list.h won list.c. To list.c
nepléEyel éva driver avtikeipevov, apo yio. TV HETOYADTTION TOV YPNCULOTONOTE GTNV
evioAn, -DDEBUG.

2. EXéy&re pe to Valgrind yia Stoppoic pvriung.

3. AopBmote ta AGON TOL VITAPYOLV.

Aocknon 3 - Xpnowonoinon gprof.

H yprion tov epyaieiov gprof dev givar kaBoAov mepimiokn. ATAd mpémetl va extedéoete ta e&Ng
Bruoto
e Evepyomojote to profiling kotd tn petayAdtrion tov k®dwko. AVTO YiveTol PE TNV
TOPAUETPO -gpP KATA TNV KAo™ TOov gCC
e Exteléote Tov KDIIKA mTpoypaupatog yio va dnuovpynoete to profiling data (apyeio pe
dvopa gmon.out)
o Tpékte 10 epyodeio gprof mave ota profiling data (mov SnpovpyHnkav oto
TPOTYOVLEVO Pripar).

To tehevtaio Ppa mopdyet éva apyeio avaivong mov givar oe avOp®OTIVY avoyvOGIUN HOPO).
Avtd 1o apyeio mepiéyel pepikovg mivaxeg (flat profile kon call graph) extog and kdmoleg dAheg
nAnpogopiec. To flat profile divel po emokoTNON TOV TANPOPOPIOV YPOVIGLOD TOV AELTOLPYIOV
OT®G M KATAVAA®OT XPOVOL YloL TNV EKTEAEOTN OGS GLYKEKPIUEVNC Agttovpyiog, TOGES POPES
KMnke kKA. And v GAAn mAevpd, to call graph mopéyer 10 dévipo TV KAAGEOV T®V
oLVOAPTNOEMV TOV gUmTAEKovTal 6to Tpdypappa. Etot, €101 pmopet kaveig va mépet pua 0o Tov
YPOVOL EKTEAEONG OV JOTOVATOL KOl OTI GUVOPTNGOELS KOl GTIG CUVOPTNCELS TOV KOAOHVTOL
HECO GE GLVOPTNGELS KTA.

Metayhottiote ta mo Katw mwpoypdupoto test gprof.c xau test_gprof new.c pe v mo kdtw
EVTOM).

//test_gprof.c
#include<stdio.h>

void new_funcl(void);

void funcl(void)

{
printf("'\n Inside funcl \n');

int 1 = 03

for G i<OXFFFFFFff;i++);
new_funcl();

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou 4



EITA 232: TIPOTPAMMATIETIKEY TEXNIKEY KAI EPTAAEIA

return;

}

static void func2(void)

{
printf(''\n Inside func2 \n");
int i = 0;
for(; i<Oxffffffaa;i++);
return;

}

int main(void)

{
printf(''\n Inside main(QQ\n");
int i = 0;
for(; iI<OXFFFFFF;i++);
funcl();
func2();
return O;

}

//test_gprof new.c
#include<stdio.h>

void new_funcl(void)

{
printfC"\n Inside new_funcl(Q\n™);
int i :0;
for(; i<OxFfFffffee;i++);
return;
}

Brpa 1: Metaylottion

gcc -pg test gprof.c test _gprof new.c -0 test gprof

A6 To man page tov gcc:

-pg : Generate extra code to write profile information suitable for the analysis program gprof.
You must use this option when compiling the source files you want data about, and you must
also use it when linking.

Bipa 2: Extéleon tpoypappatog

./test_gprof

Metd v 0OAOKANP®OT TG EKTELEGNG TOL TPOYPAULOTOS TaPdyETOL TO apyeio gmon.out

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou 5



EIIA 232: IPOTPAMMATIZTIKEE TEXNIKEX KAI EPTAAEIA

Bipa 3: Extéleon gprof tool
gprof test _gprof gmon.out > analysis.txt

Agite ta mepieydpueva tov apyeiov analysis.txt

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name
33.86 15.52 15.52 1 15.52 15.52 func2
33.82 31.02 15.50 1 15.50 15.50 new_funcl
33.29 46.27 15.26 1 15.26 30.75 funcl
0.07 46.30 0.03 main

% the percentage of the total running time of the
time program used by this function.

cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.

self the number of seconds accounted for by this
seconds function alone. This is the major sort for this
listing.

calls the number of times this function was invoked, if
this function is profiled, else blank.

selT the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
else blank.

total the average number of milliseconds spent in this
ms/call function and its descendents per call, if this
function is profiled, else blank.

name the name of the function. This is the minor sort

for this listing. The index shows the location of

the function in the gprof listing. If the iIndex is

in parenthesis it shows where it would appear in

the gprof listing if it were to be printed.

Call graph (explanation follows)

granularity: each sample hit covers 2 byte(s) for 0.02% of 46.30 seconds

index % time self children called name

[1] 100.0 0.03 46.27 main [1]
15.26 15.50  1/1 funcl [2]
15.52 0.00 1/1 func2 [3]
15.26 15.50  1/1 main [1]

[2] 66.4 15.26 15.50 1 funcl [2]

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou



EIIA 232: IPOTPAMMATIZTIKEE TEXNIKEX KAI EPTAAEIA

15.50 0.00 1/1 new_funcl [4]
15.52 0.00 171 main [1]

[31 33.5 15.52 0.00 1 func2 [3]
15.50 0.00 171 funcl [2]

[4] 33.5 15.50 0.00 1 new_funcl [4]

This table describes the call tree of the program, and was sorted by
the total amount of time spent in each function and its children.

Each entry in this table consists of several lines. The line with the
index number at the left hand margin lists the current function.

The lines above it list the functions that called this function,

and the lines below it list the functions this one called.

This line lists:

index A unique number given to each element of the table.

Index numbers are sorted numerically.

The index number is printed next to every function name so

it is easier to look up where the function in the table.

% time This is the percentage of the “total® time that was spent
in this function and its children. Note that due to

different viewpoints, functions excluded by options, etc,

these numbers will NOT add up to 100%.

self This is the total amount of time spent in this function.

children This is the total amount of time propagated into this
function by its children.

called This is the number of times the function was called.
IT the function called itself recursively, the number

only includes non-recursive calls, and is followed by

a ~+" and the number of recursive calls.

name The name of the current function. The index number is
printed after it. If the function is a member of a

cycle, the cycle number is printed between the

function®s name and the index number.

For the function®"s parents, the fields have the following meanings:

self This iIs the amount of time that was propagated directly
from the function into this parent.

children This is the amount of time that was propagated from
the function®s children into this parent.

called This is the number of times this parent called the
function /" the total number of times the function

was called. Recursive calls to the function are not
included in the number after the ~/-".

name This is the name of the parent. The parent"s index

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou 7



. EIIA 232: IPOTPAMMATIZTIKEX TEXNIKEX KAI EPTAAEIA
number is printed after it. ITf the parent is a

member of a cycle, the cycle number is printed between

the name and the index number.

IT the parents of the function cannot be determined, the word
" is printed in the "name®" field, and all the other
fields are blank.

For the function®s children, the fields have the following meanings:

self This is the amount of time that was propagated directly
from the child into the function.

children This is the amount of time that was propagated from the
child®"s children to the function.

called This is the number of times the function called
this child /" the total number of times the child

was called. Recursive calls by the child are not
listed in the number after the “/".

name This is the name of the child. The child"s index
number is printed after it. If the child is a

member of a cycle, the cycle number is printed
between the name and the index number.

IT there are any cycles (circles) in the call graph, there is an
entry for the cycle-as-a-whole. This entry shows who called the

cycle (as parents) and the members of the cycle (as children.)

The ~+" recursive calls entry shows the number of function calls that
were internal to the cycle, and the calls entry for each member shows,
for that member, how many times it was called from other members of
the cycle.

Index by function name

[2] funcl [1] main
[3] func2 [4] new_funcl

Aoknon 4.

Xpnowomomote to Valgrind ya va ehéyEete yloo Sloppoég LvAUNG Yo TV Tpitn Gog epyacio
AS3.

I profiling ypnowonoote to gprof.

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou 8



kﬂﬂ -
~

EIIA 232: IPOTPAMMATIZTIKEE TEXNIKEX KAI EPTAAEIA

Valgrind with eClipse

To gpyareio Valgrind umopei va 1o ypnoomomoste kot amd to eClipse. [pdto mpénet va
eykataotioete to plug-in Linux Tools.

EmléEte to project mov Béhete va kKAveTe Suvapky oviAvon dtappodv VNG Kot petd deéi
KAk, Profiling Tools - Profile with Valgrind:

File E
l -
I Proje

>
i
=
» [
b SN

Profiling Tools »

=5 Labd

MNew
Go |nto
Open in Mew Window
Show in Local Terminal
& copy

Paste
K Delete

Rer

wve from Context

Source

Maove..,

Rename...

g Import...

3 Export..

Build Project

Clean Project

| Refresh

Close Project

Close Unrelated Projects
Build Targets

Index

Build Configurations

Show in Remote Systems view

walidate

RUn As

Debug As

Profile As

Restore from Local History. .
#7 Run C/C++ Code Analysis

Taarm
-

Ctrl+C

F2

FS

eclipse-workspace - Lab4/samplel.c - Eclipse

act Run Window Help

@vﬁj’vlgev@v#@vevg_;VQV@bzv v

lci

Llude =stdio.h=
Lude =stdlib.h=>

main ()
ar *p;

Allocation #1 of 19 bytes
= (char *) malloc(19);

Allocation #2 of 12 bytes
= (char *) malloc(12);
ee(p);

Allocation #3 of 15 bytes
= (char *) malloc(16);

turn ©;

[ 1 Profile Code Coverage
@ 2 profile Memory

@ 3 Profile Timing

li: 4 Function callgraph

@ S Profile with OProfile
fo 6 Profile with Perf

¥ 7 Profile with valgrind

Profiling Tools Configurations...

GQuick A

es i Call Graph V4 Valgrind

i X % kE B (2| &=
zion] fhome/faculty/cspSpalfeclipse-workspace/Lab4/Debug/Lab4d (1

Kot Oa dgite to mo kdto amoteAécparta

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou 9


https://wiki.eclipse.org/Linux_Tools_Project/Valgrind/User_Guide

A#,
N

{ EIIA 232: IPOTPAMMATIZTIKEE TEXNIKEX KAI EPTAAEIA

[£ samplel.c 23

#include =stdio.h=
2 #ginclude =stdlib.h=

1
A= int main()
s [

5] char *p;

=] /7 Allocation #1 of 19 bytes
¥ S = (char *) malloc(19):

11 // Allocation #2 of 12 bytes
12 p = (char *) malloc(12);
13 free(p);

14

15 /7 Allocation #3 of 16 bytes
¥l6 = (char *) malloc(15);

17

158 return O;

19 H

v,

(2! Problems = Tasks B Console [ Properties i Call Graph | ¥ valgrind 52

Lab4 (1) [memcheck] valgrind {10/31/17, 1:06 PM)
» ¥ 16 bytes in 1 blocks are definitely lost in loss record 1 of 2 [PID: 25061]
b ¥ 19 bytes in 1 blocks are definitely lost in loss record 2 of 2 [PID: 25061]

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou

10



EIIA 232: IPOTPAMMATIZTIKEE TEXNIKEX KAI EPTAAEIA

Hopaptnpa
From Valgrind website (http://valgrind.org/docs/manual/mc-manual.html)
Pointer chain AAA Leak Case BBB Leak Case
(1) RRR == > BBB DR
(2) RRR ---> AAA ---> BBB DR IR
(3) RRR BBB DL
(4) RRR AAA ---> BBB DL IL
(5) RRR -———-—- R > BBB (Y)DR, (n)DL
(6) RRR ---> AAA -?-> BBB DR (IR, (n)DL

(7) RRR -?-> AAA ---> BBB (Y)DR, (n)DL IR, (NIL
(8 RRR -?-> AAA -?-> BBB (y)DR, (n)DL &,.Y)IR, (n,y)IL, (.,n)DL

(9) RRR AAA -?-> BBB DL (IL, ()DL

Pointer chain legend:

RRR: a root set node or DR block

AAA, BBB: heap blocks
- —-->I a start-pointer

- -?->:I an interior-pointer

Leak Case legend:

- DR: Directly reachable

- IR: Indirectly reachable
- DL: Directly lost

- IL: Indirectly lost

(Y)XY: it"s XY if the interior-pointer is a real pointer

- (NXY: it"s XY if the interior-pointer is not a real pointer

(OXY: it"s XY in either case

Every possible case can be reduced to one of the above nine. Memcheck merges some of these
cases in its output, resulting in the following four leak kinds.

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou 11


http://valgrind.org/docs/manual/mc-manual.html

EIIA 232: IPOTPAMMATIZTIKEE TEXNIKEX KAI EPTAAEIA

"Still reachable"”. This covers cases 1 and 2 (for the BBB blocks) above. A start-pointer
or chain of start-pointers to the block is found. Since the block is still pointed at, the
programmer could, at least in principle, have freed it before program exit. "Still
reachable™ blocks are very common and arguably not a problem. So, by default,
Memcheck won't report such blocks individually.

"Definitely lost". This covers case 3 (for the BBB blocks) above. This means that no
pointer to the block can be found. The block is classified as "lost", because the
programmer could not possibly have freed it at program exit, since no pointer to it exists.
This is likely a symptom of having lost the pointer at some earlier point in the program.
Such cases should be fixed by the programmer.

"Indirectly lost™. This covers cases 4 and 9 (for the BBB blocks) above. This means that
the block is lost, not because there are no pointers to it, but rather because all the blocks
that point to it are themselves lost. For example, if you have a binary tree and the root
node is lost, all its children nodes will be indirectly lost. Because the problem will
disappear if the definitely lost block that caused the indirect leak is fixed, Memcheck
won't report such blocks individually by default.

"Possibly lost". This covers cases 5--8 (for the BBB blocks) above. This means that a
chain of one or more pointers to the block has been found, but at least one of the pointers
is an interior-pointer. This could just be a random value in memory that happens to point
into a block, and so you shouldn't consider this ok unless you know you have interior-
pointers.

(Note: This mapping of the nine possible cases onto four leak kinds is not necessarily the best
way that leaks could be reported; in particular, interior-pointers are treated inconsistently. It is
possible the categorisation may be improved in the future.)

Furthermore, if suppressions exists for a block, it will be reported as "suppressed™ no matter
what which of the above four kinds it belongs to.

From Valgrind FAQ:

With Memcheck’s memory leak detector, what's the difference between "definitely lost",
"indirectly lost", "possibly lost", "still reachable", and "suppressed"?

The details are in the Memcheck section of the user manual.

In short:

definitely lost means your program is leaking memory -- fix those leaks!

indirectly lost means your program is leaking memory in a pointer-based structure. (E.g.
if the root node of a binary tree is "definitely lost", all the children will be "indirectly
lost™.) If you fix the definitely lost leaks, the indirectly lost leaks should go away.
possibly lost means your program is leaking memory, unless you're doing funny things
with pointers. This is sometimes reasonable.

Use --show-possibly-lost=no if you don't want to see these reports.

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou 12


http://valgrind.org/docs/manual/faq.html%23faq.deflost

EIIA 232: IPOTPAMMATIZTIKEE TEXNIKEX KAI EPTAAEIA

« still reachable means your program is probably ok -- it didn't free some memory it could

have. This is quite common and often reasonable.
Don't use --show-reachable=yes if you don't want to see these reports.

o suppressed means that a leak error has been suppressed. There are some suppressions in

the default suppression files. You can ignore suppressed errors.

ElMA232 — Epyaothpio 9. YmeuBuvog Epyaotnpiwv: Mippog Mmpdarokag, MNaluAog Aviwviou

13



