
Quick Sort
B Insertion Sort

CMerge Sort
Selection Sort

Which of the following sorting algorithms in its typical 
implementation gives best performance when applied 
on an array which is sorted or almost sorted 
(maximum 1 or two elements are misplaced).



Consider a situation where swap operation is very 
costly. Which of the following sorting algorithms 
should be preferred so that the number of swap 
operations are minimized in general?

Quick Sort
B Insertion Sort

CMerge Sort
Selection Sort



The pivot could be either the 7 or the 9.
B The pivot could be the 7, but it is not the 9
C The pivot is not the 7, but it could be the 9
D Neither the 7 nor the 9 is the pivot.

Suppose we are sorting an array of eight integers 
using quicksort, and we have just finished the first 
partitioning with the array looking like this:

2 5 1 7 9 12 11 10 
Which statement is correct?



A N(logN base 3)
B N(logN base 2/3) 
C N(logN base 1/3) 
D N(logN base 3/2) 

In a modified merge sort, the input array is 
splitted at a position one-third of the length(N) 
of the array. Which of the following is the 
tightest upper bound on time complexity of this 
modified Merge Sort.



O (n log n) 
O (n2 log n) 

CO (n2 + log n) 
DO (n2) 

A list of n string, each of length n, is sorted 
into lexicographic order using the merge-sort 
algorithm. The worst case running time of this 
computation is



t1 = 5 
B t1 < t2 

t1 > t2 
D t1 = t2 

Let P be a QuickSort Program to sort numbers in 
ascending order using the first element as pivot. Let t1 and 
t2 be the number of comparisons made by P for the inputs 
{1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively. Which one of 
the following holds?



A Merge sort.
Quick sort.

D Insertion sort.

What is the best sorting algorithm to use for the elements in array 
are more than 1 million in general?


