
Topic 9

Cloud Application
Paradigms

M. D. Dikaiakos

• “MapReduce: Simplified Data Processing on
Large Clusters” (2004) Jeffrey Dean and
Sanjay Ghemawat (Google). Usenix OSDI.

• “The Google File System” (2003) Sanjay
Ghemawat, Howard Gobioff, and Shun-Tak
Leung. SOSP.

• “The rise of serverless computing” (2019) P.
Castro, V. Ishakian, V. Muthusamy, and A.
Slominski, Commun. ACM, vol. 62, no. 12, pp.
44–54, Nov. 2019.

• “Cloud Programming Simplified: A Berkeley
View on Serverless Computing” (2019) E.
Jonas et al., Feb. 2019.

Readings

Big-Data Processing: MapReduce & GFS

Cloud Applications Paradigms

M. D. Dikaiakos

Batch Processing
•Processing large amounts of data at-
once, in one-go to deliver a result
according to a query on the data.

M. D. Dikaiakos

Motivation: Processing Large Data-sets

•Need for many computations over large/huge sets of data:

‣ Input data: crawled documents, web request logs

‣ Output data: inverted indices, summary of pages crawled per host,
the set of the most frequent queries in a given day, …

•Most of these computation are relatively straight-forward

• To speedup computation and shorten processing time, we can
distribute data across 100s of machines and process them in parallel

•But, parallel computations are difficult and complex to manage:

‣ Race conditions, debugging, data distribution, fault-tolerance, load
balancing, etc

• Ideally, we would like to process data in parallel but not deal with
the complexity of parallelisation and data distribution

M. D. Dikaiakos

MapReduce
• “A new abstraction that allows us to express the
simple computations we were trying to perform but
hides the messy details of parallelization, fault-
tolerance, data distribution and load balancing in
a library.”

•Programming model:

‣ Provides abstraction to express computation

• Library:

‣ To take care the runtime parallelisation of the
computation.

M. D. Dikaiakos

Count the number of
occurrences of each word in

a text file:
“Cloud computing is a recently evolved computing
terminology or metaphor based on utility and
consumption of computing resources. Cloud
computing involves deploying groups of remote
servers and software networks that al low
centralized data storage and online access to
computer services or resources.”

Identify each word per line. For each word
identified emit <word, 1>:

“Cloud computing is a recently evolved computing terminology or metaphor
based on utility and consumption of computing resources. Cloud computing
involves deploying groups of remote servers and software networks that allow
centralized data storage and online access to computer services or
resources.”

cloud
computing
is
a
recently
evolved
computing
terminology
or
metaphor

1
1
1
1
1
1
1
1
1
1

Identify each word per line. For each word
identified emit <word, 1>:

“Cloud computing is a recently evolved computing terminology or metaphor
based on utility and consumption of computing resources. Cloud computing
involves deploying groups of remote servers and software networks that allow
centralized data storage and online access to computer services or
resources.”

cloud
computing
is
a
recently
evolved
computing
terminology
or
metaphor

1
1
1
1
1
1
1
1
1
1

based
on
utility
and
consumption
of
computing
resources
cloud
computing

1
1
1
1
1
1
1
1
1
1

Identify each word per line. For each word
identified emit <word, 1>:

“Cloud computing is a recently evolved computing terminology or metaphor
based on utility and consumption of computing resources. Cloud computing
involves deploying groups of remote servers and software networks that allow
centralized data storage and online access to computer services or
resources.”

cloud
computing
is
a
recently
evolved
computing
terminology
or
metaphor

1
1
1
1
1
1
1
1
1
1

involves
deploying
groups
of
remote
servers
and
software
networks
that
allow

1
1
1
1
1
1
1
1
1
1
1

based
on
utility
and
consumption
of
computing
resources
cloud
computing

1
1
1
1
1
1
1
1
1
1

Identify each word per line. For each word
identified emit <word, 1>:

“Cloud computing is a recently evolved computing terminology or metaphor
based on utility and consumption of computing resources. Cloud computing
involves deploying groups of remote servers and software networks that allow
centralized data storage and online access to computer services or
resources.”

cloud
computing
is
a
recently
evolved
computing
terminology
or
metaphor

1
1
1
1
1
1
1
1
1
1

centralized
data
storage
and
online
access
to
computer
services
or
resources

1
1
1
1
1
1
1
1
1
1
1

involves
deploying
groups
of
remote
servers
and
software
networks
that
allow

1
1
1
1
1
1
1
1
1
1
1

based
on
utility
and
consumption
of
computing
resources
cloud
computing

1
1
1
1
1
1
1
1
1
1

Sort key-value pairs <word, 1> per key (word):

recently
remote
resources
resources
servers
services
software
storage
terminology
that
to
utility

1
1
1
1
1
1
1
1
1
1
1
1

data
deploying
evolved
groups
involves
is
metaphor
networks
of
of
on
online
or
or

1
1
1
1
1
1
1
1
1
1
1
1
1
1

a
access
allow
and
and
and
based
centralized
cloud
cloud
computing
computing
computing
computing
computer
consumption

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

recently
remote
resources
servers
services
software
storage
terminology
that
to
utility

1
1
2
1
1
1
1
1
1
1
1

data
deploying
evolved
groups
involves
is
metaphor
networks
of
on
online
or

1
1
1
1
1
1
1
1
2
1
1
2

a
access
allow
and
based
centralized
cloud
computing
computer
consumption

1
1
1
3
1
1
2
4
1
1

Aggregate the counts per each word in the
sorted <k, v> list below:

M. D. Dikaiakos

Generalizing the Computation
•Apply a map operation to each logical “record” in
the input to compute a set of intermediate key/value
pairs:

‣ In this case, each text file is mapped to a set of <w, 1>,
where the keys correspond to words found in the file.

•Apply a reduce operation to all the values that share
the same key, combining the derived data, with an
appropriate reduce function.

‣ In this case, for each word w collect a list <w, {1, 1,…}>
and reduce it to <w, countw>

M. D. Dikaiakos

Count the number of
occurrences of each word in the

text below:
“Cloud computing is a recently evolved computing
terminology or metaphor based on utility and consumption
of computing resources. Cloud computing involves
deploying groups of remote servers and software networks
that allow centralized data storage and online access to
computer services or resources.”

How do you solve this problem if
the file is very large and you have

multiple CPUs in your disposal?

Say you have 4 nodes.

Partition the input data to 4 nodes and run
the algorithm in parallel

“Cloud computing is a recently evolved computing terminology or metaphor
based on utility and consumption of computing resources. Cloud computing
involves deploying groups of remote servers and software networks that allow
centralized data storage and online access to computer services or
resources.”

cloud
computing
is
a
recently
evolved
computing
terminology
or
metaphor

1
1
1
1
1
1
1
1
1
1

based
on
utility
and
consumption
of
computing
resources
cloud
computing

1
1
1
1
1
1
1
1
1
1

involves
deploying
groups
of
remote
servers
and
software
networks
that
allow

1
1
1
1
1
1
1
1
1
1
1

centralized
data
storage
and
online
access
to
computer
services
or
resources

1
1
1
1
1
1
1
1
1
1
1

Sort each list
“Cloud computing is a recently evolved computing terminology or metaphor
based on utility and consumption of computing resources. Cloud computing
involves deploying groups of remote servers and software networks that allow
centralized data storage and online access to computer services or
resources.”

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

a
cloud
cloud
computing
evolved
is
metaphor
or
recently
terminology

and
based
cloud
computing
computing
consumption
of
on
resources
utility

and
allow
deploying
groups
involves
networks
of
remote
servers
software
that

access
and
centralized
computer
data
storage
to
online
or
resources
services

Observe that some words appear in lists on
different nodes

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

a
cloud
cloud
computing
evolved
is
metaphor
or
recently
terminology

and
based
cloud
computing
computing
consumption
of
on
resources
utility

and
allow
deploying
groups
involves
networks
of
remote
servers
software
that

access
and
centralized
computer
data
storage
to
online
or
resources
services

M. D. Dikaiakos

What is the next step?

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

a
cloud
cloud
computing
evolved
is
metaphor
or
recently
terminology

and
based
cloud
computing
computing
consumption
of
on
resources
utility

and
allow
deploying
groups
involves
networks
of
remote
servers
software
that

access
and
centralized
computer
data
storage
to
online
or
resources
services

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

a
cloud
cloud
computing
evolved
is
metaphor
or
recently
terminology

and
based
cloud
computing
computing
consumption
of
on
resources
utility

and
allow
deploying
groups
involves
networks
of
remote
servers
software
that

access
and
centralized
computer
data
storage
to
online
or
resources
services

Collect all lists to one node

1
1
1
1
1
1
1
1
1
1

a
cloud
cloud
computing
evolved
is
metaphor
or
recently
terminology

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

and
based
cloud
computing
computing
consumption
of
on
Resources
utility

and
allow
deploying
groups
involves
networks
of
remote
servers
software
that

access
and
centralized
computer
data
storage
to
online
or
resources
services

Sort by word (key)

recently
remote
resources
resources
servers
services
software
storage
terminology
that
to
utility

1
1
1
1
1
1
1
1
1
1
1
1

data
deploying
evolved
groups
involves
is
metaphor
networks
of
of
on
online
or
or

1
1
1
1
1
1
1
1
1
1
1
1
1
1

a
access
allow
and
and
and
based
centralized
cloud
cloud
computing
computing
computing
computing
computer
consumption

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Aggregate counts per each word

recently
remote
resources
servers
services
software
storage
terminology
that
to
utility

1
1
2
1
1
1
1
1
1
1
1

data
deploying
evolved
groups
involves
is
metaphor
networks
of
on
online
or

1
1
1
1
1
1
1
1
2
1
1
2

a
access
allow
and
based
centralized
cloud
computing
computer
consumption

1
1
1
3
1
1
2
4
1
1

M. D. Dikaiakos

What if the lists do
not fit in one node?

Partition the lists to R nodes

(Use a partitioning function e.g. hash(key) mod R)

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

a
cloud
cloud
computing
evolved
is
metaphor
or
recently
terminology

and
based
cloud
computing
computing
consumption
of
on
resources
utility

and
allow
deploying
groups
involves
networks
of
remote
servers
software
that

access
and
centralized
computer
data
storage
to
online
or
resources
services

1
1
1
1
1
1

a
cloud
cloud
computing
evolved
is

1
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

and
based
cloud
computing
computing
consumption

and
allow
deploying
groups
involves

access
and
centralized
computer
data

1
1
1
1

metaphor
or
recently
terminology

1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

of
on
resources
utility

networks
of
remote
servers
software
that

storage
to
online
or
resources
services

Sort the lists in parallel

data
deploying
evolved
groups
involves
is

1
1
1
1
1
1

a
access
allow
and
and
and
based
centralized
cloud
cloud
computing
computing
computing
computing
computer
consumption

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

recently
remote
resources
resources
servers
services
software
storage
terminology
that
to
utility

metaphor
networks
of
of
on
online
or
or

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

Aggregate counts

data
deploying
evolved
groups
involves
is

1
1
1
1
1
1

a
access
allow
and
based
centralized
cloud
computing
computer
consumption

1
1
1
3
1
1
2
4
1
1

recently
remote
resources
servers
services
software
storage
terminology
that
to
utility

metaphor
networks
of
on
online
or

1
1
2
1
1
2

1
1
2
1
1
1
1
1
1
1
1

M. D. Dikaiakos

Programming Model
• Input: a set of key/value pairs

•Output: a set of key/value pairs

•Computation is expressed using the two functions:

‣ Map task: single pair  list of intermediate pairs

• map(input-key, input-value)  list(out-key, intermediate-value)

• e.g. <k1, v1>  { < k2, v2 >,… }

‣ Reduce task: all intermediate pairs with the same k2  a list
of values

• reduce(out-key, list(intermediate-value))  list(out-values)

• e.g. < k2, {v2,…} >  {v2,… }

M. D. Dikaiakos

Programming Model
• The Map function, written by the user, takes an input pair <k1,v1> and
produces a set of intermediate key/value pairs {<k2, v2>,…}

• The MapReduce library groups together all intermediate values
associated with the same intermediate key <k2, {v2,…}> and passes
them to the Reduce function.

• The Reduce function, also written by the user, accepts an
intermediate key k2 and a set of values for that key {v2,…}

‣ It merges together these values to form a possibly smaller set of values.

‣ Typically just zero or one output value is produced per Reduce
invocation.

‣ The intermediate values are supplied to the user’s reduce function via
an iterator. This allows to handle lists of values that are too large to fit in
memory.

map(String input_key, String input_value):
 // input_key: document name
 // input_value: document contents

 for each word w in input_value:
 EmitIntermediate(w, "1");
reduce(String output_key, Iterator intermediate_values):
 // output_key: a word
 // output_values: a list of counts

 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));

Example: Counting the number of occurrences of
each word in a collection of documents

M. D. Dikaiakos

Abstraction & Implementation
• The Map-Reduce programming model provides a
simple abstraction that captures the essence of the
computation and allows programmers to express simple
computations while…

•… hiding the messy details of data partitioning,
parallelization, fault-tolerance, data distribution and
load balancing in a library implementation.

•Main contribution: a simple and powerful interface that
enables automatic parallelization and distribution of
large-scale computations, combined with an
implementation of this interface that achieves high
performance on large clusters of commodity PCs.

M. D. Dikaiakos

What is the abstraction
provided by MapReduce?

Map()

<k1, v1>

list(k2, v2)

Reduce()

<k2, list(v2)>

list(v2)

M. D. Dikaiakos

MapReduce Example Applications
• The MapReduce model can be applied to many
applications:

‣ Distributed grep:

• map: emits a line, if line matched the pattern

• reduce: identity function

‣ Count of URL access Frequency

‣ Reverse Web-Link Graph

‣ Inverted Index

‣ Distributed Sort

‣ ….

M. D. Dikaiakos

• For every web page in a
given set of Web pages
return a list of the origin
pages of its incoming links.

•Give the code in the map-
reduce abstraction.

Reverse Web-
Link Graph

M. D. Dikaiakos

MapReduce Implementation
•MapReduce implementation for (2006):

‣ Large cluster of commodity PCs connected via switched
Ethernet

‣ Machines are typically dual-processor x86, running Linux, 2-4GB
of mem! (slow machines for today’s standards)

‣ A cluster of machines, so failures are anticipated

‣ Storage with (GFS) Google File System (2003) on IDE disks
attached to PCs. GFS is a distributed file system, uses replication
for availability and reliability.

• Scheduling system:

‣ Users submit jobs

‣ Each job consists of tasks; scheduler assigns tasks to machines

M. D. Dikaiakos

Parallel Execution on Google Cloud
• User specifies:
‣ M: number of map tasks
‣ R: number of reduce tasks
• Map:
‣ MapReduce library splits the input file into M pieces
‣ Typically 16-64MB per piece
‣ Map tasks are distributed across the machines
• Reduce:
‣ Partitioning the intermediate key space into R pieces
‣ hash(intermediate_key) mod R
• Typical setting:
‣ 2,000 machines, M = 200,000, R = 5,000

M. D. Dikaiakos

Execution Flow
1. The MapReduce library in the user program splits the input files into M pieces of

typically 16 megabytes to 64 megabytes (MB) per piece (parameterized). It
then starts up many copies of the program on a cluster of machines.

2. One of the copies of the program is special – the master. The rest are workers
(assigned work by the master).

• There are M map tasks and R reduce tasks to assign.

• The master picks idle workers and assigns each one a map task or a reduce
task.

3. A worker who is assigned a map task:

• Reads the contents of the corresponding input split.

• Parses key/value pairs out of the input data.

• Passes each pair to the user-defined Map function.

• The intermediate key/value pairs produced by the Map function are
buffered in memory.

M. D. Dikaiakos

Execution Flow
4. Periodically, the buffered pairs are written to local disk, partitioned into R regions by the

partitioning function.

• The locations of these buffered pairs on the local disk are passed back to the master,
who is responsible for forwarding these locations to the reduce workers.

5. When a reduce worker is notified by the master about these locations, it uses remote
procedure calls to read the buffered data from the local disks of the map workers.
When a reduce worker has read all intermediate data, it sorts it by the intermediate keys
so that all occurrences of the same key are grouped together.

• Sorting is needed because typically many different keys map to the same reduce
task.

• If the amount of intermediate data is too large to fit in memory, an external sort is
used.

6. The reduce worker iterates over the sorted intermediate data and

• For each unique intermediate key encountered, it passes the key and the
corresponding set of intermediate values to the user’s Reduce function.

• The output of the Reduce function is appended to a final output file for this reduce
partition.

M. D. Dikaiakos

Execution Flow
7. When all map tasks and reduce tasks have been completed, the

master wakes up the user program. At this point, the MapReduce
call in the user program returns back to the user code.

8. After successful completion, the output of the MapReduce
execution is available in the R output files (one per reduce task,
with file names as specified by the user).

•Typically, users do not need to combine these R output files into
one file:

•they often pass these files as input to another MapReduce
call, or

•use them from another distributed application that is able to
deal with input that is partitioned into multiple files.

M. D. Dikaiakos

Execution Flow

M. D. Dikaiakos

Master Data Structures
• For each map/reduce task:

‣ State status {idle, in-progress, completed}

‣ Identity of the worker machine (for non-idle tasks)

• The location of intermediate file regions is
passed from maps to reducers tasks through the
master.

‣ This information is pushed incrementally (as map
tasks finish) to workers that have in-progress
reduce tasks.

M. D. Dikaiakos

Fault-Tolerance
Two types of failures:
•Worker failures:
‣ Identified by sending heartbeat messages by the master.
‣ If no response within a certain amount of time, then the worker is dead.
‣ In-progress and completed map tasks are re-scheduled  idle
‣ In-progress reduce tasks are re-scheduled  idle
‣ Workers executing reduce tasks affected from failed map/workers are notified

of re-scheduling
•Question: Why completed map tasks have to be re-scheduled?
•Answer: Map output is stored on local fs, while reduce output is stored on GFS
•Master failure:
‣ Rare
‣ Can be recovered from checkpoints
‣ Solution: aborts the MapReduce computation and starts again

M. D. Dikaiakos

Disk Locality
•Network bandwidth is a relatively scarce resource
and also increases latency

• The goal is to save network bandwidth

•Use of GFS that stores typically three copies of the
data block on different machines

•Map tasks are scheduled “close” to data

‣ On nodes that have input data (local disk)

‣ If not, on nodes that are nearer to input data (e.g.,
same switch)

M. D. Dikaiakos

Task Granularity
•Number of map tasks > number of worker nodes
‣ Better load balancing.
‣ Better recovery.
•But, this, increases load on the master
‣ More scheduling.
‣ More states to be saved.
•M could be chosen with respect to the block size of the file
system
‣ For locality properties.
•Number R of partitions of intermediate results is usually specified
by the user
‣ Each reduce task produces one output file.

M. D. Dikaiakos

Stragglers
• Slow workers delay overall completion time  stragglers

‣ Bad disks with soft errors

‣ Other tasks using up resources

‣ Machine configuration problems, etc

•Very close to end of MapReduce operation, master schedules
backup execution of the remaining in-progress tasks.

•A task is marked as complete whenever either the primary or
the backup execution completes.

•Example: α sort operation of an example given in the Map-
Reduce paper takes 44% longer to complete when the
backup task mechanism is disabled.

M. D. Dikaiakos

Refinements: Partitioning Function
•Partitioning function identifies the reduce task

‣ Users specify the desired output files they want, R

‣ But, often there are more keys than R

‣ Use the intermediate key and R for partitioning:
hash(key) mod R

• Important to choose well-balanced partitioning
functions. E.g, for output keys that are URLs:

‣ hash(hostname(urlkey)) mod R

M. D. Dikaiakos

Refinements: Combiner Function
• Introduce a mini-reduce phase before intermediate
data is sent to reduce

•When there is significant repetition of intermediate keys

‣ Merge values of intermediate keys before sending to
reduce tasks

‣ Example: word count, many records of the form
<word_name, 1>. Merge records with the same
word_name

‣ Similar to reduce function

• Saves network bandwidth

M. D. Dikaiakos

Evaluation - Setup
•Evaluation on two programs running on a large
cluster and processing 1 TB of data:

1. grep: search over 1010 100-byte records looking for a rare 3-character pattern

2. sort: sorts 1010 100-byte records

•Cluster configuration:
‣ 1,800 machines

‣ Each machine has 2 GHz Intel Xeon proc., 4GB mem, 2 160GB IDE disks

‣ Gigabit Ethernet link

‣ Hosted in the same facility

M. D. Dikaiakos

Grep
• M = 15,000 of 64MB each split

• R = 1

• Entire computation finishes at 150s

• Startup overhead ~60s

‣ Propagation of program to workers

‣ Delays to interact with GFS to open 1,000 files

‣ …

• Picks at 30GB/s with 1,764 workers

M. D. Dikaiakos

Sort
• M = 15,000 splits, 64MB each

• R = 4,000 files

• Workers = 1,700

• Evaluated on three executions:

‣ With backup tasks

‣ Without backup tasks

‣ With machine failures

M. D. Dikaiakos

Sort Results
Top: 	 rate at which input is read
Middle: 	 rate at which data is sent from mappers to reducers
Bottom: 	 rate at which sorted data is written to output file by reducers

Without backup
tasks, 5 reduce
tasks stragglers,
44% increase

With machine failures,
200 out of 1746 workers,
▪ a 5% increase over

normal execution time

Normal execution
with backup

M. D. Dikaiakos

Implementation
• First MapReduce library in 02/2003

•Use cases (back then):
‣ Large-scale machine learning problems

‣ Clustering problems for the Google News

‣ Extraction of data for reports Google zeitgeist

‣ Large-scale graph computations

MapReduce jobs run in 8/2004

M. D. Dikaiakos

Summary
•MapReduce is a simple, very powerful and
expressive model.

•MapReduce libraries hide behind their simple
programming abstractions, important and complex
implementation details regarding management of
faults, scheduling and load-balancing.

•Performance depends a lot on implementation
details.

• Implementation becomes more challenging when
dealing with heterogeneous clusters.

M. D. Dikaiakos

Apache Hadoop
• The Apache Hadoop software library is a framework
that allows for the distributed processing of large data
sets across clusters of computers using simple
programming models.

• It is designed to scale up from single servers to 1000s of
machines, each offering local computation and
storage.

•Rather than rely on hardware to deliver high-
availability, the library itself is designed to detect and
handle failures at the application layer, so delivering a
highly-available service on top of a cluster of failure-
prone computers.

M. D. Dikaiakos

Hadoop Modules
•Hadoop Common: The common utilities that
support the other Hadoop modules.

•Hadoop Distributed File System (HDFS™): A
distributed file system that provides high-
throughput access to application data.

•Hadoop YARN: A framework for job scheduling
and cluster resource management.

•Hadoop MapReduce: A YARN-based system
for parallel processing of large data sets.

M. D. Dikaiakos

Hadoop Project Components

Image Credit: mssqpltips.com

GFS: The Google File System

Cloud Storage

M. D. Dikaiakos

GFS in a Nutshell
•Developed by Google as scalable distributed file system for large
distributed data intensive applications:
‣ Fault tolerance while running on inexpensive commodity hardware.
‣ High aggregate performance to a large number of clients.
‣ A distributed file storage.
‣ Efficient, reliable access to data.
‣ Co-designing the applications and the file system API benefits the

overall system by increasing GFS flexibility (relaxed GFS’s
consistency model to vastly simplify the file system without imposing
an onerous burden on the applications).

•Runs on clusters with 100,000s of commodity servers comprising:
‣ Commodity hardware (known as off-shelf hardware, inexpensive

hardware such as standard-issue PC or commodity hard disk RAID)
‣ Application servers to write and read

M. D. Dikaiakos

GFS Goals
•Performance

• Scalability

‣ The ease to add capacity to the system

•Reliability

‣ Main concern of a search engine

•Availability

• Three different points in the design space

‣ Component failure

‣ Large files

‣ File operation

M. D. Dikaiakos

Assumptions & Requirements
•Work for cheap servers, who come with failures:
‣ Disk /network or server
‣ OS bugs
‣ Human errors

•Optimized for:
‣ Storing and reading modest number of large files (expect few million)

(100MB to multi GB).
‣ Batch processing
‣ High sustained bandwidth chosen over low latency

• File operations:
‣ Most files are mutated by appending new data rather than overwriting

existing data.
‣ 2 kinds of reads – large streaming read (1MB), small random reads

(batch and sort)

M. D. Dikaiakos

GFS Interface
• Familiar file system interface; not an implementation of a
standard API such as POSIX.
• Files organized hierarchically in directories and identified by
path-names.
•Operations supported:
‣ Create, delete, open, close, read, and write files.
‣ Snapshot and record append operations:
• Snapshot creates a copy of a file or a directory tree at low cost.
• Record append allows multiple clients to append data to the same

file concurrently while guaranteeing the atomicity of each
individual client’s append.

• Useful for implementing multi-way merge results and producer-
consumer queues that many clients can simultaneously append to
without additional locking.

GFS Architecture & Operation

GFS: The Google File System

M. D. Dikaiakos

GFS Architecture
•A GFS cluster consists of a single master and
multiple chunk-servers and is accessed by multiple
clients.

•Each of these is typically a commodity Linux
machine running a user-level server process.

•Easy to run both a chunk-server and a client on the
same machine, as long as:

‣ machine resources permit this

‣ lower reliability caused by running possibly flaky
application code is acceptable.

M. D. Dikaiakos

GFS Architecture

M. D. Dikaiakos

GFS Architecture

M. D. Dikaiakos

Chunks
• Files split into chunks:

‣ Chunk size is 64MB - much larger than typical file system block size;
large size reduces client’s need to interact with master, overhead of
interaction, size of metadata in memory.

‣ Each chunk assigned at creation an immutable and globally
unique 64 bit chunk handle (chunk ID).

‣ Stored as plain Linux Files in chunk servers on local disks.

•Replicas

‣ Ensure durability of data (if chunk server goes down)

‣ Replica count by GFS client

‣ Each chunk replicated on multiple chunk-servers – default is 3

•R or W chunk data specified by chunk handle and byte range

M. D. Dikaiakos

M. D. Dikaiakos

Master Node
•Responsible for all system-wide activities: managing chunk leases,
reclaiming storage space, load-balancing, consistency protocol

•Master maintains all file system metadata

•Controls garbage collection of chunks

•Communicates with each chunk-server through HeartBeat messages:

‣ this let’s master determines chunk locations and assesses state of the
overall system

•Clients interact with master for metadata

‣ chunk-severs do the rest, e.g. R/W on behalf of applications

•No caching

• Important: The chunkserver has the final word over what chunks it
does or does not have on its own disks – not the master

M. D. Dikaiakos

1. Client calculates address:
• Translates file name/byte offset specified by application into a chunk

index within the file.
2. Client sends the master:
• Request with file name/chunk index.

3. Master’s reply with chunk handle/locations of replicas.
4. Client caches received information
• Uses file name/chunk index as key.

5. Client sends request to “closest” chunk server with replicas:
• The request specifies the chunk handle/byte range within that chunk.
• “Closeness” determined by IP address on simple rack-based

topology.
6. Chunkserver replies with data

Client Read (1)

M. D. Dikaiakos

M. D. Dikaiakos

Client Read (2)
• Further reads of the same chunk require no more
client-master interaction until the cached
information expires or the file is reopened.

•Clients typically ask for multiple chunks in the
same request.

•Master can also include the information for
chunks immediately following those requested.

• This extra information sidesteps several future
client-master interactions at practically no extra
cost.

M. D. Dikaiakos

Chunk index calculation
•Calculating chunk index from byte range:

• (Assumption: File position is 201,359,161 bytes)

•Chunk size = 64 MB = 1024 *1024 * 64 bytes = 67,108,864 bytes.

•201,359,161 bytes = 67,108,864 * 2 + 32,569 bytes.

• So, client translates 2048 byte range -> chunk index 3.

M. D. Dikaiakos

Client Write (synopsis)
•Client asks master for chunkserver with lease

•Ask for location to write

•Get replication locations

•Write data to closest replica

•Request commit to primary

•Primary instructs order of writes to secondaries

• Secondaries acknowledge

•Primary ack to client

M. D. Dikaiakos

Client Write (1)
1. Client asks the master which chunkserver holds the current lease for

the chunk and the locations of the other replicas.
• Some chunkserver is primary for each chunk
• Master grants lease to primary (typically for 60 sec.)
• Leases renewed using periodic heartbeat messages between

master and chunkservers
• If no one has a lease, the master grants one to a replica it chooses.

2. Master replies with the identity of the primary and the locations of the
other (secondary) replicas.
• Client caches this data for future mutations.
• Client needs to contact the master again only when the primary

becomes unreachable or replies that it no longer holds a lease.
3. The client pushes the data to all replicas.

• A client can do so in any order. Each chunkserver will store the data
in an internal LRU buffer cache until the data is used or aged out.

• By decoupling the data flow from the control flow, we can improve
performance by scheduling the expensive data flow based on the
network topology regardless of which chunkserver is the primary.

M. D. Dikaiakos

Client Write (2)
4. Once all the replicas have acknowledged receiving

the data, the client sends a write request to the
primary.
• The request identifies the data pushed earlier to all

of the replicas.
• The primary assigns consecutive serial numbers to all

the mutations it receives, possibly from multiple
clients, which provides the necessary serialization.

• It applies the mutation to its own local state in serial
number order.

5. The primary forwards the write request to all
secondary replicas.
• Each secondary replica applies mutations in the

same serial number order assigned by the primary.
6. The secondaries all reply to the primary indicating

that they have completed the operation.

M. D. Dikaiakos

Client Write (3)
7. The primary replies to the client.

• Any errors encountered at any of the
replicas are reported to the client.

• In case of errors, the write may have
succeeded at the primary and an
arbitrary subset of the secondary
replicas.

• The client request is considered to have
failed, and the modified region is left in
an inconsistent state.

• Client code handles such errors by
retrying the failed mutation. It will make
a few attempts at steps (3) through (7)
before falling back to a retry from the
beginning of the write.

M. D. Dikaiakos

M. D. Dikaiakos

Client Write: Record Append
• In a traditional write, the client specifies the offset at which data is to be written.

•Concurrent writes to the same region are not serializable: the region may end
up containing data fragments from multiple clients.

•Record append - what is it? An atomic append operation offered by GFS:

‣ Client specifies only the data it wants to write.

‣ GFS appends it to the file at least once atomically (i.e., as one continuous
sequence of bytes) at an offset of GFS’s choosing and returns that offset to the
client.

•Record append is heavily used in Google’s distributed applications, in which
many clients on different machines append to the same file concurrently:

‣ Such files often serve as multiple-producer/single-consumer queues or contain
merged results from many different clients.

•Without record append, if using traditional writes, clients would need additional
complicated and expensive synchronization, for example through a distributed
lock manager in such workload scenarios.

M. D. Dikaiakos

Record Append (2)
• The client pushes the data to all replicas of the last chunk of the
file.

• Then, it sends its request to the primary.

• The primary checks to see if appending the record to the
current chunk would cause the chunk to exceed the maximum
size (64 MB).

‣ If so, it pads the chunk to the maximum size, tells secondaries to
do the same, and replies to the client indicating that the
operation should be retried on the next chunk.

‣ If the record fits within the maximum size, which is the common
case, the primary appends the data to its replica, tells the
secondaries to write the data at the exact offset where it has,
and finally replies success to the client.

M. D. Dikaiakos

Record Append (3)
• If a record append fails at any replica, the client retries the

•operation.

‣ As a result, replicas of the same chunk may contain different data possibly
including duplicates of the same record in whole or in part.

•GFS does not guarantee that all replicas are bytewise identical. It only
guarantees that the data is written at least once as an atomic unit. Note
that:

‣ For the operation to report success, the data must have been written at the
same offset on all replicas of some chunk.

‣ After this, all replicas are at least as long as the end of record and any future
record will be assigned a higher offset or a different chunk.

• In terms of consistency guarantees, the regions in which successful record
append operations have written their data are defined (hence consistent),
whereas intervening regions are inconsistent (hence undefined).

M. D. Dikaiakos

Metadata
•Master stores three types of metadata stored in main memory for fast
access:

‣ File and chunk namespaces

‣ Mapping from file to chunks

‣ Locations of the replicants

•Namespaces and Mapping info are kept persistent by logging mutations
to operation log stored on master’s disk and replicated.

• In memory-data structures scanned periodically to implement:

‣ Garbage collection

‣ Re-replication if chunkserver failure

‣ Chunk migration for better load balancing and disk space allocation across
chunkservers

• File namespace < 64B for each chunk (64MB) – not serious problem to add
more memory to Master

M. D. Dikaiakos

Operation Log
•Central to GFS:

‣ Contains historical record of critical metadata changes.

‣ The only persistent record of metadata.

‣ Serves as a logical time line that defines the order of concurrent operations: Files
and chunks, as well as their versions are uniquely and eternally identified by the
logical times at which they were created.

•Must be stored reliably; its changes are not visible to clients until metadata
changes are made persistent:

‣ Replicated on multiple remote machines and respond to a client operation only
after flushing the corresponding log record to disk both locally and remotely.

‣ Master batches several log records together before flushing for performance.

•Master recovers its file system state by replaying the operation log.

• Log kept small to minimize startup time: master checkpoints its state whenever
the log grows beyond a certain size so that it can recover by loading the latest
checkpoint from local disk and replaying only the

M. D. Dikaiakos

Consistency Model
•GFS has a relaxed consistency model that supports highly distributed applications
well but remains relatively simple and efficient to implement.

• The consistency protocol determines how mutations are handled. There are two
kinds of mutations:

• File namespace mutations (e.g., file creation):

‣ Atomic.

‣ Handled exclusively by the master: namespace locking guarantees atomicity and
correctness.

‣ Master’s operation log defines a global total order of these operations.

•Data mutations may be: writes or record appends:

•A write causes data to be written at an application-specified file offset.

•A record append causes data (the “record”) to be appended atomically at least
once even in the presence of concurrent mutations, but at an offset of GFS’s choosing

•A regular append is merely a write at an offset that the client believes to be the
current end of file.

M. D. Dikaiakos

Consistency w/ Data Mutations
• The state of a file region after a data
mutation depends on:

‣ the type of mutation

‣ whether it succeeds or fails, and

‣ whether there are concurrent mutations.

M. D. Dikaiakos

States after Mutations
Possible file-region states after mutation(s):

•Consistent: all clients always see the same data, regardless of
which replicas they read from.

•Defined (and by implication consistent): when the mutation
succeeds without interference from concurrent writers, and clients
see what the mutation writes in its entirety.

•Undefined but consistent: after concurrent successful mutations
where all clients see the same data, but it may not reflect what
any one mutation has written.

• Typically, consists of mingled fragments from multiple mutations.

• Inconsistent (and undefined): after a failed mutation, where
different clients may see different data at different times.

M. D. Dikaiakos

Consistency w/ Record Appends
•A record append causes the record to be appended atomically at least once
even in the presence of concurrent mutations, but at an offset of GFS’s
choosing.

• The offset marks the beginning of a defined region that contains the record.

‣ In addition, GFS may insert padding or record duplicates in between, which
occupy regions considered to be inconsistent and are typically dwarfed by the
amount of user data.

•After a sequence of successful mutations, the mutated file region is guaranteed to be
defined and contain the data written by the last mutation.

•GFS achieves this by:

•Applying mutations to a chunk in the same order on all its replicas,

•Using chunk version numbers to detect any replica that has become stale because
it has missed mutations while its chunkserver was down.

• Stale replicas will never be involved in a mutation or given to clients asking the
master for chunk locations. They are garbage collected at the earliest opportunity.

M. D. Dikaiakos

Namespace Management & Locks
•Master ops can take time, e.g. revoking leases – allow multiple ops
at same time, use locks over regions for serialization.

•Each absolute file name or absolute directory name has an
associated read-write lock

•GFS does not have per directory data structure listing all files –
Instead lookup table mapping full pathnames to metadata

•Each name in tree has R/W lock

• If accessing: /d1/d2/ ../dn/leaf, R lock on /d1, /d1/d2, etc., W lock
on /d1/d2 …/leaf

• Locks are required to prevent deadlock:

‣ First ordered by level in the namespace tree

‣ Lexicographically ordered within the same level

M. D. Dikaiakos

Shadow Master
•Master Replicated for reliability

‣ One master remains in charge of all mutations and background
activities

• If fails, start instantly

‣ If machine or disk fails, monitor outside GFS starts new master
with replicated log

‣ Clients only use canonical name of master

• Shadow master read replica of operation log, applies same
sequence of changes to data structures as the primary does

‣ Polls chunk-server at startup, monitors their status, etc.

‣ Depends only on primary for replica location updates

M. D. Dikaiakos

Replica Placement
•GFS cluster distributed across many machine racks

•Need communication across several network
switches: Challenge to distribute data

•Chunk replica – Maximize data reliability

•Maximize network bandwidth utilization: Spread
replicas across racks (survive even if entire rack
offline)

• R can exploit aggregate bandwidth of multiple racks

•W traffic has to go through multiple racks

M. D. Dikaiakos

Garbage Collection
• The system has a unique approach for this. Once a
file is deleted its resources are not reclaimed
immediately instead they are renamed with hidden
namespace. Such files are removed if they exist for
3 days during the regular scan.

• The advantages offered by it are:

‣ Simplicity

‣ Deleting of files can take place during master’s idle
periods

‣ Safety against accidental deletion

M. D. Dikaiakos

Summary
• Support large-scale data processing workload

•Component failures as the norm rather than the
exception

•Optimize for huge files mostly append to and then
read sequentially

• Fault tolerance by constant monitoring, replicating
crucial data and fast automatic
recovery(+checksum to detect data corruptions)

•Delivers high aggregate throughput to many
concurrent readers and writers

The Hadoop File System

Cloud Storage

M. D. Dikaiakos

Goal

“Hadoop provides a distributed file system
and a

framework for the analysis and
transformation of very large data sets”

M. D. Dikaiakos

Hadoop Project Components

Image Credit: mssqpltips.com

M. D. Dikaiakos

HDFS Architecture Overview

Rack Rack Rack

Core Switch

Server

Rack Switch

M. D. Dikaiakos

HDFS Architecture Overview

Rack Rack Rack

Core Switch

Server

Rack Switch

Name Node

M. D. Dikaiakos

NameNode
•NameNode maintains the name space tree and the mapping
of file blocks to DataNodes

•HDFS Keeps the entire namespace in RAM

.csv

128M
BBlocks:

Data
Nodes:

Work

Data

.txt

.csv .png

M. D. Dikaiakos

DataNode
• Stores the actual data

•Each block contains 2 files:

‣ First: Contains the actual data

‣ Second: Contains block’s metadata (e.g.
checksum)

• The size of the data file equals the block size

‣ No need for round up like traditional file systems

•On start up DataNode register to the NameNode
and gets a storage ID

M. D. Dikaiakos

DataNode
•Heartbeat: Each DataNode sends periodically a block report to
the NameNode

• Block Report: < BlockID, Generation Stamp, Length of each
block>

• Heartbeat Interval: 3 seconds

• If a NameNode does not receive a heartbeat for more than
10s then considers the specific DataNode as out of service.

• Additional Information:

‣ Total storage capacity,

‣ Fraction of storage in use,

‣ Number of data transfers

M. D. Dikaiakos

HDFS Client

Rack Rack Rack

Core Switch

Server

Rack
Switch

Name
Node

Data
Node

HDFS Client

Hadoop Cluster

Users

M. D. Dikaiakos

HDFS Write File Example

NameNodeHDFS Client

1. Add file work/data.csv 2. Choose DataNodes to
host blocks

3. Allocate to DN2
Success/Failure

DN1

DN2

DN3

DN4

4. Store block to Dn2

Iterative Process
for each block

M. D. Dikaiakos

HDFS File Read/Write
•HDFS implements a single-writer, multiple-reader model

• A clients granted a lease in order to write a file

• Lease Duration:

• Soft Limit: If expires another client can ask for lease

•Hard Limit: Close file and deallocate lease

• After data are written to an HDFS file, HDFS does not
provide any guarantee that data are visible to a new
reader until the file is closed

•Client can call hflush operation to guarantee visible
changes

M. D. Dikaiakos

HDFS File Read/Write (ctd.)
• The location of each replica block is
ordered by the distance from the client.

• When reading the content of a block,
the client tries to closest replica first.

• HDFS I/O is particularly optimized for
batch processing systems
(e.g. MapReduce)

M. D. Dikaiakos

HDFS Architecture Overview

Rack Rack Rack

Core Switch

Rack Switch

DN1

DN2

DN3

DN4

DN5

DN6

DN7

DN8

NN

.csv

Blocks:

Block Replicas

M. D. Dikaiakos

HDFS Architecture Overview

Rack Rack Rack

Core Switch

Rack Switch

DN1

DN2

DN3

DN4

DN5

DN6

DN7

DN8

NN

.csv

Blocks:

Block Replicas

M. D. Dikaiakos

HDFS Architecture Overview

Rack Rack Rack

Core Switch

Rack Switch

DN1

DN2

DN3

DN4

DN5

DN6

DN7

DN8

NN

.csv

Blocks:

Block Replicas

M. D. Dikaiakos

HDFS Architecture Overview

Rack Rack Rack

Core Switch

Rack Switch

DN1

DN2

DN3

DN4

DN5

DN6

DN7

DN8

NN

.csv

Blocks:

Block Replicas

M. D. Dikaiakos

HDFS Architecture Overview

Rack Rack Rack

Core Switch

Rack Switch

DN1

DN2

DN3

DN4

DN5

DN6

DN7

DN8

NN

.csv

Blocks:

Block Replicas

M. D. Dikaiakos

Image and Journal
• Image: An image of the whole namespace

• Journal: A log file which stores every transaction

•A persistent record of the image on the disk called
checkpoint!

• The storage of the checkpoint and the journal is crucial!
‣ Possible failure of the NameNode and the checkpoint or

the journal may lead to partly or entirely lost of data

•A common practice is the storage the files to different
volumes and one of them should be in a remote NFS
server

M. D. Dikaiakos

Checkpoint Node
• The CheckpointNode periodically
combines the existing checkpoint and
journal to create a new checkpoint and
an empty journal.

• Image + Journal = new checkpoint, then
empty Journal

• Create a new checkpoint every 1 hour to
keep the journal file small enough.

M. D. Dikaiakos

Backup Node
• Same as Checkpoint Node, with an in-
memory image of the file system namespace

• Synchronized with NameNode

• Includes all the information of the
NameNode except block location

• Read-only NameNode

• Help us run the NameNode without
persistent storage

M. D. Dikaiakos

Other Functionalities
•Replication Manager: Detects whether a block
becomes under-replicated or over-replicated.

‣ NameNode is responsible for the operation of
Replication Manager.

‣ When a block is under-replicated, Replication
Manager put it in the replication priority queue for
placement.

‣ When a block is over-replicated, Replication
Manager prefers to remove the block from host with
the list amount of storage, while maintain the
replication policy.

M. D. Dikaiakos

Rack Rack Rack

Core Switch

Rack Switch

DN1

DN2

DN3

DN4

DN5

DN6

DN7

DN8

NN

.csv

Blocks:

Block Replicas

M. D. Dikaiakos

Other Functionalities
•Replication Manager: Detects whether a block becomes under-
replicated or over-replicated.

‣ NameNode is responsible for the operation of Replication Manager.

‣ When a block is under-replicated, Replication Manager put it in the
replication priority queue for placement.

‣ When a block is over-replicated, Replication Manager prefers to
remove the block from host with the list amount of storage, while
maintain the replication policy.

•Balancer: Balance the disk space usage on the HDFS cluster

‣ HDFS block placement does not take into account disk space
utilization.

‣ Iteratively moves data from DataNodes with high utilization to
DataNodes with lower utilization.

M. D. Dikaiakos

Other Functionalities (cont.)
•Block Scanner: Periodically Scans block replicas to ensure that stored checksums
match block data.

‣ When the checksum verification succeeds, Block Scanner informs DataNode to
consider the replica as verified.

‣ When the block is corrupted, Block Scanner informs NameNode. Then, NameNode
schedules a replacement.

‣ NameNode does not delete the corrupted block immediately. (Over-replication)

• Decommissioning: System’s Administrator specifies which node can join the
cluster.

‣ When a DataNode marked as decommissioning, it will not be selected for
replication, but it will still serve read requests.

‣ NameNode starts to schedule replication of the blocks to another DataNode.

• Inter-Cluster Data Copy: HDFS provides a tool called DistCp for large inter/intra-
cluster parallel copying.

‣ Implemented by a Map/Reduce Job.

M. D. Dikaiakos

Real-World Experiences
•Yahoo:

‣ 3500 Nodes

‣ 70% of the total disk space is allocated to
HDFS

‣ 9.8 PB of available storage

‣ ~ 3.3 PB for application usage because of
the replication factor=3

M. D. Dikaiakos

Durability of Data
• For a large cluster, the probability of losing a block for
one year is less than .005. -> Quite small but not zero!

•What can cause the block loss?

‣ Rack Failures and Core Switch failures are a common
insistent in a large cluster

‣ Accidental or deliberate loss of electrical power to the
cluster.

• 0.5 – 1 % of the nodes will not survive a full power-on
restart

‣ 1-2 Node loss every day (Difficult to lead in a block loss
due to replication)

M. D. Dikaiakos

Evaluation
•What is bandwidth observed from a
contrived benchmark?

•What bandwidth is observed in a
production cluster with a mix of user jobs?

•What bandwidth can be obtained by the
most carefully constructed large-scale
user application?

M. D. Dikaiakos

Bandwidth from a contrived
benchmark

•DFSIO benchmark measures average
throughput for read, write, and append
operations. (Map/Reduce Application)

• Measures performance only during data
transfer.

DFSIO Read: 66 MB /s per node

DFSIO Write: 40 MB /s per node

M. D. Dikaiakos

Bandwidth from a contrived
benchmark (NN)

•NNThroughput benchmark measures the
performance of the NameNode.

• Each client performs the same NameNode
operation repeatedly

M. D. Dikaiakos

Bandwidth with a mix of jobs
•Collected data from a production cluster.
(Real Example)

Busy Cluster Read: 1.02 MB/s per node
Busy Cluster Write: 1.09 MB/s per node

M. D. Dikaiakos

Bandwidth on most-careful large-
scale user applications

•A common sort algorithm

• Table are about the best a user application can
achieve with the current design and hardware. (Came
from Gray Sort competition)

M. D. Dikaiakos

Future Work
• The Hadoop cluster is effectively unavailable
when its NameNode is down.

‣ Solution: Use of Zookeeper for automated
failover solution √

• Scalability of the NameNode has been a key
struggle. Problems when memory is close to
the maximum

‣ Solution: Allow multiple namespaces to share
physical storage within a cluster. √

Microservices

Cloud Applications Paradigms

M. D. Dikaiakos

Microservices
•A paradigm to architect large, complex and
long-lived applications as a set of (small)
cohesive services that evolve over time.

‣ How small? 10-100 LoC? (Not necessarily)

•Not a new concept!

‣ Essentially a distributed systems architecture.

‣ Resembles Service Oriented Architecture (SOA)
- called sometimes lightweight or fine-grained
SOA.

M. D. Dikaiakos

Micro-service Architecture
•An approach to developing a single application as a
suite of small services, each running in its own process
and communicating with lightweight mechanisms,
often an HTTP resource API.

• These services are built around business capabilities
and independently deployable by fully automated
deployment machinery.

• There is a bare minimum of centralized management
of these services, which may be written in different
programming languages and use different data
storage technologies.

https://martinfowler.com/articles/microservices.html

M. D. Dikaiakos

Monolithic Architectures
•Packages all server-side components of an application into a single unit.

• Simple to:

‣ Develop: IDEs are oriented around developing a single application.

‣ Test: launch and test one application.

‣ Deploy: copy the deployment unit (a file or directory) to a machine
running the appropriate type of server

•Complex applications:

‣ Can be difficult for developers to understand and maintain.

‣ Cumbersome to deploy changes to application components: you have
to build and deploy the entire monolith - risky, time consuming,
coordination-heavy, long test-cycles.

‣ Difficult to try and adopt new technologies, without rewriting the entire
application.

M. D. Dikaiakos

Key Characteristics
•Application logic is broken down into small-grained components with well-defined boundaries of
responsibility that coordinate to deliver a solution.

•Each component has a small domain of responsibility and is deployed completely independently of
one another. Microservices should have responsibility for a single part of a business domain. Also, a
microservice should be reusable across multiple applications.

•Microservices communicate based on a few basic principles (notice I said principles, not standards)
and employ lightweight communication protocols such as HTTP and JSON (JavaScript Object
Notation) for exchanging data between the service consumer and service provider.

• The underlying technical implementation of the service is irrelevant because

• the applications always communicate with a technology-neutral protocol (JSON

• is the most common). This means an application built using a microservice

•application could be built with multiple languages and technologies.

•Microservices—by their small, independent, and distributed nature—allow

•organizations to have small development teams with well-defined areas of

• responsibility. These teams might work toward a single goal such as delivering

•an application, but each team is responsible only for the services on which

• they’re working.

M. D. Dikaiakos

Monolithic vs Micro-service
Architecture

Source: Spring Microservices in Action, J. Carnell, 2017

M. D. Dikaiakos

Monolithic Architecture

https://www.infoq.com/articles/microservices-intro/

M. D. Dikaiakos

Decomposition Axes: The Scale Cube

M. DIkaiakos, EPL699https://martinfowler.com/articles/microservices.html

M. D. Dikaiakos

How to partition along y-Axis?
•How to partition a system into services: art rather than
science.

•Partitioning strategies:

‣ By use-case or verb: e.g. CheckoutUI implements the UI for
the checkout use case.

‣ By resource or noun: a service is responsible for all operations
that operate on entities/resources of a given type - e.g. a
Catalog service, manages a catalog of products.

• Ideally, each service should have only a small set of
responsibilities.

‣ Review the Single Responsibility Principle (SRP).

M. D. Dikaiakos

M. D. Dikaiakos

Benefits
•Each micro service can be:

‣ Relatively small:

• Code is easier for a developer to understand.

• Small code base doesn’t slow down the IDE making developers more
productive.

• Each service typically starts a lot faster than a large monolith: developers
more productive, deployment speeds up.

‣ Deployed independently:

• No need for coordination with other developers when deploying local
changes: continuous deployment feasible.

‣ Scaled independently of other services using X-axis cloning and Z-axis
partitioning.

‣ Deployed on hardware that is best suited to its resource requirements.

M. D. Dikaiakos

Microservice Architecture Benefits
•Easier to scale development.

‣ You can organize the development effort around multiple, small (e.g. two pizza) teams.

‣ Each team is solely responsible for the development and deployment of a single service
or a collection of related services.

‣ Each team can develop, deploy and scale their service independently of all of the
other teams.

•Better fault isolation. For example, a memory leak in one service only affects that
service. Other services will continue to handle requests normally. In comparison, one
misbehaving component of a monolithic architecture will bring down the entire
system.

•Eliminates any long-term commitment to a technology stack.

‣ In principle, when developing a new service the developers are free to pick whatever
language and frameworks are best suited for that service.

‣ Because the services are small, it becomes practical to rewrite them using better
languages and technologies. If the trial of a new technology fails you can throw away
that work without risking the entire project.

M. D. Dikaiakos

Drawbacks
•Additional complexity of creating a distributed system:

‣ Need an inter-process communication mechanism.
‣ Implementing use cases that span multiple services without using distributed transactions is difficult.
‣ IDEs and other development tools focused on building monolithic applications.
‣ Writing automated tests that involve multiple services is challenging.

• Significant operational complexity: many more moving parts – multiple instances of different types of
service – that must be managed in production through some automated continuous delivery tool.
•Deploying features that span multiple services requires careful coordination between the various
development teams: Rollout plan that orders service deployments based on the dependencies
between services.
•At what point during the lifecycle of the application you should use this architecture?

‣ When developing the first version of an application, you often do not have the problems that this
architecture solves.

‣ Moreover, using an elaborate, distributed architecture will slow down development. Using Y-axis splits
might make it much more difficult to iterate rapidly.

‣ Later on, however, when the challenge is how to scale and you need to use functional decomposition,
then tangled dependencies might make it difficult to decompose your monolithic application into a set
of services.

•Adopting a microservice architecture should not be undertaken lightly. However, for applications that
need to scale, such as a consumer-facing web application or SaaS application, it is usually the right
choice.

M. D. Dikaiakos

Communication Mechanisms
• In a monolithic architecture, clients of the application make HTTP

requests via a load balancer to one of N identical instances of the
application.
• On a microservice architecture:

• Significant mismatch in granularity
between the APIs of the individual
services and data required by the clients;
e.g.:
• Displaying one web page could potentially

require calls to large numbers of services.
• amazon.com: some pages require calls to

100+ services
• Making that many requests, would be very

inefficient and result in a poor user
experience.

http://amazon.com

M. D. Dikaiakos

API Gateway
• Clients make a small number of requests per-page, perhaps as few as

one, over the Internet to a front-end server known as an API gateway.
• The API gateway sits between the application’s clients and the

microservices.
• It provides APIs that are tailored to the client
• The API gateway:
• Handles incoming requests by making requests to some number of

microservices over the high-performance LAN
• Optimizes communication between clients and the application and

encapsulates the details of the microservices.
• This enables the microservices to evolve without impacting the clients.

• For example, two microservices might be merged. Another microservice
might be partitioned into two or more services. Only the API gateway
needs to be updated to reflect these changes. The clients are
unaffected.

M. D. Dikaiakos

API Gateway
In this example, the desktop clients makes

multiple requests to retrieve information about a
product, where as a mobile client makes a single

request.

Fine-grained requests from a desktop client
are simply proxied to the corresponding

service,

Each coarse-grained request from a
mobile client is handled by aggregating

the results of calling multiple services.

M. D. Dikaiakos

Inter-service communication
mechanisms

• In a monolithic application, components call one another via regular method calls.

• In a microservice architecture, different services run in different processes: services must use an inter-
process communication (IPC) to communicate.

• There are two main approaches to inter-process communication in a microservice architecture:

• Synchronous HTTP-based mechanism such as REST or SOAP.

‣ Simple, firewall friendly, easy to implement the request/reply style of communication

‣ Doesn’t support other patterns of communication such as publish-subscribe.

‣ Both the client and the server must be simultaneously available, which is not always the case since
distributed systems are prone to partial failures.

‣ Also, an HTTP client needs to know the host and the port of the server => applications need to use a
service registry/discovery mechanism (Zookeeper, Consul, Eureka)

•Asynchronous message-based mechanism such as an AMQP-based message broker.

‣ Decouples message producers from consumers. Producers are completely unaware of the consumers.

‣ Message broker buffers messages until the consumer is able to process them. Producer simply talks to the
message broker and does not need to use a service discovery mechanism.

‣ Supports a variety of communication patterns: one-way requests and publish-subscribe, but request/
reply-style is not a natural fit.

M. D. Dikaiakos

Data Management in Microservices

•A consequence of decomposing the application
into services is that the database is also partitioned.

• To ensure loose coupling:

‣ Each service has its own database (schema).

‣ Different services might use different types of
database – (polyglot persistence architecture).

•Partitioning the database is essential, but we now
have a new problem to solve: how to handle those
requests that access data owned by multiple
services.

M. DIkaiakos, EPL699https://martinfowler.com/articles/microservices.html

M. D. Dikaiakos

Handling Reads
• If data not available within a service, make
RPC call to owner:

‣ Reduces availability, if owner is down.

‣ Reduces performance, due to extra RPC.

•Keep copy local to the service:

‣ Eliminates need for RPC, improving availability
and response time.

‣ Need to have an update mechanism in place.

M. D. Dikaiakos

Handling updates
•How to handle requests that update data owned by multiple services?

•Distributed transactions:

‣ Would ensure that the data is always consistent.

‣ Downside: reduces system availability since all participants must be available in order
for the transaction to commit.

‣ Distributed transactions really have fallen out of favor and are generally not
supported by modern software stacks, e.g. REST, NoSQL databases, etc.

•Event-driven asynchronous updates:

• Services publish events announcing that some data has changed.

•Other services subscribe to those events and update their data.

•Producers and consumers of the events decoupled: simplifies development and
improves availability. If a consumer isn’t available to process an event then the
message broker will queue the event until it can.

• Trades consistency for availability: the application has to be written in a way that can
tolerate eventually consistent data. Developers might also need to implement
compensating transactions to perform logical rollbacks.

M. DIkaiakos, EPL699

Serverless

Cloud Applications Paradigms

M. D. Dikaiakos

Cloud Deploying issues
1. Redundancy for availability, so that a single machine failure

doesn’t take down a service or application.

2. Geographic distribution of redundant copies to preserve the
service in case of disaster.

3. Load balancing and request routing to efficiently utilize resources.

4. Autoscaling in response to changes in load to scale up or down
the system.

5. Monitoring to make sure the service is still running well.

6. Logging to record messages needed for debugging or
performance tuning.

7. System upgrades, including security patching.

8. Migration to new instances as they become available.

M. D. Dikaiakos

Serveless: The Origins
• Seeking cost savings and scalability without needing
to have a high level of cloud computing expertise
that is time-consuming to acquire (scarcity of DevOps
expertise).

•A substantial gap between the resources that cloud
customers allocate and pay for (leasing VMs), and
actual resource utilization (CPU, memory, and so on).

•Need to improve resource utilization in Cloud
Computing infrastructures.

• The recent shift of enterprise application architectures
to containers and microservices.

M. D. Dikaiakos

Serveless: The Origins
• Serverless platforms can be considered an evolution of Platform-as-a-
Service (PaaS) as provided by platforms such as Cloud Foundry,
Heroku, and Google App Engine (GAE):

‣ PaaS was defined by NIST as "the capability provided to the consumer
is to deploy onto the cloud infrastructure consumer-created or
acquired applications created using programming languages and
tools supported by the provider. The consumer does not manage or
control the underlying cloud infrastructure including network, servers,
operating systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations."

• In this definition, users are expected to manage deployments of
applications and have control over hosting environment
configurations.

• Implementing auto-scaling in PaaS is not easy and it is very difficult to
scale to zero.

M. D. Dikaiakos

Serverless: Key Concepts
•Gives pay-as-you-go without additional work to start and stop
server and is closer to original expectations for cloud
computing to be treated like as a utility.

• Is about removing user control over hosting to provide simpler
scaling and more attractive billing model

‣ Cloud provider controls the hosting environment's configuration,
runs user-provided code only when it is invoked, and only bills
for actual usage while hiding the complexity of scaling.

‣ The user just writes a cloud function in a high-level language,
picks the event that should trigger the running of the function
and lets the serverless system handle everything else: instance
selection, scaling, deployment, fault tolerance, monitoring,
logging, security patches, etc.

M. D. Dikaiakos

Serverless: Popular Uses
•Most prominent cloud providers including Amazon
(AWS Lambda), IBM, Microsoft, Google, and others
have already released serverless computing
capabilities with several additional open source
efforts driven by both industry and academic
institutions (for example, see CNCF Serverless Cloud
Native Landscape).

•Gaining popularity as reported by the increasing rate
of the "serverless" search term by Google Trends.

•Market size is estimated to grow to 7.72 billion by
2021.

M. D. Dikaiakos

Serverless Definitions
“Serverless computing is a platform that hides server usage from
developers and runs code on-demand automatically scaled and billed
only for the time the code is running.” [CACM, 12/19]

"The concept of building and running applications that do not require
server management. It describes a finer-grained deployment model
where applications, bundled as one or more functions, are uploaded to
a platform and then executed, scaled, and billed in response to the
exact demand needed at the moment.” [CNCF]

"A serverless solution is one that costs you nothing to run if nobody is
using it (excluding data storage)." [Paul Johnston]

The name 'serverless computing' does not mean servers are not used,
but merely that developers can leave most operational concerns of
managing servers and other resources, including provisioning,
monitoring, maintenance, scalability, and fault-tolerance to the cloud
provider.

M. D. Dikaiakos

Key Features
•Cost billed only for what is running (pay-as-you-go).

‣ As execution time may be short, then it should be charged in fine-grained time units (like hundreds of
milliseconds) and developers do not need to pay for overhead of servers creation or destructions.

‣ Cost model supports "scaling to zero" = avoid need to pay for idle servers.

•Elasticity scaling from zero to "infinity."

‣ Decisions about scaling are left to cloud providers.

‣ Developers do not need to write auto-scaling policies or define how machine-level usage (CPU,
memory, and so on) translates to application usage: depend on the cloud provider.

‣ Developers can assume cloud provider will take care of maintenance, security updates, availability
and reliability monitoring of servers.

• Typically favors small, self-contained units of computation to make it easier to manage and scale in
the cloud.

•However, a computation, which can be interrupted or restarted, cannot depend on the cloud
platform to maintain its state. This inherently influences the serverless computing programming
models.

‣ No equivalent notion of scaling to zero when it comes to state, since a persistent storage layer is
needed. which supports powerful auto-scaling capabilities but requires minimum memory and CPU
allocations and hence does not scale to zero and has ongoing costs.

M. D. Dikaiakos

Critical Distinctions
•Decoupled computation and storage.

‣ The storage and computation scale separately and are provisioned
and priced independently.

‣ Storage is provided by a separate cloud service and the computation
is stateless.

•Executing code without managing resource allocation.

‣ Instead of requesting resources, the user provides a piece of code and
the cloud automatically provisions resources to execute that code.

•Paying in proportion to resources used instead of for resources
allocated.

‣ Billing done by some dimension of the execution (exec. time) rather
than by a dimension of the base cloud platform, such as size and
number of VMs allocated.

M. D. Dikaiakos

Opportunities & Risks: App
Developer

•Opportunities:

‣ A simplified programming model for creating cloud applications that abstracts
away most, if not all, operational concerns.

‣ No longer have to worry about availability, scalability, fault tolerance, over/
underprovisioning of VM resources, managing servers, and other infrastructure
issues.

‣ Can focus on the business aspects of applications.

‣ Lower cost of deploying cloud code by charging for execution time rather than
resource allocation.

•Risks:

‣ Deploying applications requires relinquishing design decisions to the platform
provider: quality-of-service (QoS) monitoring, scaling, and fault-tolerance
properties.

‣ Application's requirements may evolve to conflict with the capabilities of the
platform.

M. D. Dikaiakos

Opportunities & Risks: Cloud
Operator

•Opportunities:

‣ Control the entire development stack

‣ Reduce operational costs by efficient optimization and
management of cloud resources

‣ Offer a platform that encourages the use of additional
services in their ecosystem

‣ Lower the effort required to author and manage cloud-scale
applications

•Risks:

‣ Slow adoption because of lack of proper tools and
frameworks.

M. D. Dikaiakos

Serverless vs Serverful

Specifications and prices correspond to AWS Lambda and to on-demand AWS
EC2 instances (2019)

M. D. Dikaiakos

Serverless Architecture
• Serverless layer sits between applications and the

base cloud platform.

•Cloud functions (i.e., FaaS) provide general compute
services and are complemented by an ecosystem of
specialized Backend as a Service (BaaS) offerings
such as object storage, databases, or messaging:

•On AWS: Lambda with S3 (object storage) and
DynamoDB (key-value database).

•On Google’s cloud: Cloud Functions with Cloud
Firestore (mobile backend database) and Cloud
Pub/Sub (messaging).

• Serverless also comprises
certain big data services such
as AWS Athena and Google
BigQuery (big data query),
and Google Cloud Dataflow
and AWS Glue (bigdata
transform).

M. D. Dikaiakos

Function as a Service
•What is the most natural way to use serverless computing?

‣ Provide a piece of code (function) to be executed by the serverless platform.

• Leads to the rise of Function-as-a-service (FaaS) platforms focused on:

‣ allowing small pieces of code represented as functions to run for limited amount
of time (at most minutes),

‣ with executions triggered by events or HTTP requests (or other triggers),

‣ and not allowed to keep persistent state (function may be restarted any time).

•By limiting time of execution and not allowing functions to keep persistent state
FaaS platforms can be easily maintained and scaled by service providers.

‣ Cloud providers can allocate servers to run code as needed and can stop
servers after functions finish as they run for limited amount of time.

‣ For functions to maintain state, they can use external services to persist their
state.

M. D. Dikaiakos

Function as a Service
• FaaS is an embodiment of serverless

computing principles, which we define as
follows:

Function-as-a-Service is a serverless
computing platform where the unit of
computation is a function that is executed
in response to triggers such as events or
HTTP requests.

M. D. Dikaiakos

FaaS vs SaaS vs PaaS vs IaaS

M. D. Dikaiakos

FaaS vs SaaS vs PaaS vs IaaS

M. D. Dikaiakos

FaaS vs SaaS vs PaaS vs IaaS

M. D. Dikaiakos

FaaS vs SaaS vs PaaS vs IaaS

M. D. Dikaiakos

FaaS vs SaaS vs PaaS vs IaaS

M. D. Dikaiakos

Serverless Implementation
•Core functionality?

‣ Event processing system

•Main activity?

‣ Once a request is received over HTTP from an event data source
(a.k.a. triggers), the system determines which action(s) should handle
the event, create a new container instance, send the event to the
function instance, wait for a response, gather execution logs, make
the response available to the user, and stop the function when it is no
longer needed.

•Key abstraction level?

‣ A short-running stateless function.

‣ Expressive enough to build useful applications, but simple enough to
allow the platform to autoscale in an application agnostic manner.

M. D. Dikaiakos

Request Lifecylce
1. Upon the arrival of an event, the platform proceeds to

validate the event ensuring it has the appropriate
authentication and authorization to execute.

2. Platform also checks the resource limits for that particular
event.

3. Once the event passes validation, the platform the event is
queued to be processed.

4. A worker fetches the request, allocates the appropriate
container, copies over the function - use code from storage -
into the container and executes the event.

5. The platform also manages stopping and deallocating
resources for idle function instances.

M. D. Dikaiakos

High-level Serverless FaaS platform
Architecture

M. D. Dikaiakos

Implementation Challenges
•Relies on strong performance & security isolation to make multi-tenant
hardware sharing possible.

•How?

‣ VM-like isolation: current standard for multi-tenant hardware sharing for
cloud functions

•But: VM provisioning can take many seconds

•Need elaborate techniques to speed up the creation of function
execution environments:

‣ [AWS Lambda]: maintain a “warm pool” of VM instances that need only be
assigned to a tenant, and an “active pool” of instances that have been
used to run a function before and are maintained to serve future
invocations.

‣ Reduce the overhead of providing multi-tenant isolation by leveraging
containers (Docker), unikernels, library OSes, or language VMs.

M. D. Dikaiakos

Implementation Challenges
•Cold-start problem: latency of creating,
instantiating, and destroying a new
container for each function invocation.

‣ Warm containers are containers that were
already instantiated and executed a
function

‣ Stem-cell containers: warm-container reuse

• Library installation delay

M. D. Dikaiakos

In previous lecture
•Explored the underpinnings of Serverless
Cloud Computing.

•Covered the definitions, reference
architecture of server less and key
differences with SaaS, PaaS, IaaS

•Discussed the programming model of
serverless computing

M. D. Dikaiakos

Today
• Finish the discussion on serverless
computing and see presentations of
recent articles on serverless.

M. D. Dikaiakos

Examples of Serverless Services
• Serverless computing services and their
corresponding programming interfaces
and cost models:

Serverless = FaaS + BaaS
• For BigQuery, Athena,and cloud
functions, the user pays separately for
storage (e.g., in Google Cloud Storage,
AWS S3,or Azure Blob Storage)

M. D. Dikaiakos

FaaS Programming Model
•A typical FaaS programming model consists of two major primitives: Action
(ενέργεια) and Trigger (έναυσµα).

•An Action is a stateless function that executes arbitrary code.

‣ Actions can be invoked directly via REST API or executed based on a trigger.

‣ Invocation can be:

• Asynchronous: invoker caller request does not expect a response, or

• Synchronous: invoker expects a response as a result of the action execution.

•A Trigger is a class of events from a variety of sources:

‣ Εvents can trigger multiple functions (parallel invocations), or

‣ The result of an action can trigger another function (sequential invocations).

• Some serverless frameworks provide higher level programming
abstractions such as function packaging, sequencing, and composition.

M. D. Dikaiakos

FaaS Programming Model
• Serverless frameworks execute a single main function that takes a
dictionary (such as a JSON object) as input and produces a dictionary as
output (circa 2020).

• Serverless functions have limited expressiveness as they are built to scale.

• To maximize scaling, functions do not maintain state between executions.

‣ Instead, the developer can write code in the function to retrieve and
update any needed state.

‣ The function is also able to access a context object that represents the
environment in which the function is running (such as a security context).

• The stateless nature of serverless functions leads to application structure
similar to those found in functional reactive programming

‣ Applications that exhibit event-driven and flow-like processing patterns

M. D. Dikaiakos

Current Cloud Provider Serverless offerings support Java, Python,
Swift, C#, and Node.js etc.

Some of the platforms also support extensibility mechanisms for code
written in any language as long as it is packaged in a Docker image

that supports a well-defined API.

M. D. Dikaiakos

Use case: Event Processing
• [Netflix] Uses serverless functions to process video files:

‣ The videos are uploaded to Amazon S3 which emits events that

‣ trigger Lambda functions that split the videos and transcode
them in parallel to different formats.

• The function is completely stateless and idempotent:

‣ In the case of failure, the function can be executed again with
no side effects.

•Combine serverless functions with other services from the
cloud provider, to develop more complex applications, e.g.:

‣ stream processing, filtering and transforming data on the fly,
chatbots, and Web applications.

M. D. Dikaiakos

Use case: Event Processing

M. D. Dikaiakos

Use Case: API Composition
•Mobile app that sequentially invokes a
geolocation, weather, and language
translation APIs to render the weather
forecast for a user's current location.

•A short serverless function can be used to
invoke these APIs:
‣ The mobile app avoids

invoking multiple APIs over
a potentially resource
constrained mobile
network connection, and

‣ offloads the filtering and
aggregation logic to the
backend.

M. D. Dikaiakos

Use Case: API Composition
•Problem:

‣ Main function is acting as an orchestrator
that is waiting for a response from a
function before invoking another, thus
incurring a cost of execution while the
function is basically waiting for I/O.

• Such a pattern of programming is referred
to as a serverless anti-pattern.

M. D. Dikaiakos

Use Case: API Composition
• The serverless programming approach
would be to encapsulate each API call as
serverless function, and chain the
invocation of these functions in a
sequence.

• The sequence itself behaves as a
composite function.

M. D. Dikaiakos

Use Case: Map-Reduce Style Analytics

•Python-based system that utilizes the
serverless framework to help users avoid
the significant development and
management overhead of running
MapReduce jobs.

‣ Able to get up to 40TFLOPS peak
performance from AWS Lambda, using
AWS S3 for storage and caching.

M. D. Dikaiakos

Use Case: Multi-Tenant Cloud Services

•Cloud Guru provides users with cloud training that
includes videos:

‣ on-demand

‣ optimizing delivery cost

•Has unpredictable usage patterns; subject to
change depending on holidays or promotions.

•Must scale and isolate users for security reasons
while providing for each user backend functionality
such as payment processing or sending email
messages.

M. D. Dikaiakos

Lifecycle
1. A user makes a request from a frontend

application (Web browser).

2. Request is authenticated by using an external
service.

3. Request sent either to a cloud service (such as
object store to provide video files) or to a
serverless function.

4. Function makes necessary customizations and
typically invokes other functions or cloud
services.

M. D. Dikaiakos

Readings
•P. Castro, V. Ishakian, V. Muthusamy, and
A. Slominski, “The rise of serverless
computing,” Commun. ACM, vol. 62, no.
12, pp. 44–54, Nov. 2019.

•E. Jonas et al., “Cloud Programming
Simplified: A Berkeley View on Serverless
Computing,” Feb. 2019.

M. D. Dikaiakos

Serveless Applications Study

M. D. Dikaiakos

Serveless Applications Study

M. D. Dikaiakos

Limits of Serverless
• Inadequate storage for fine-grained
operations

• Lack of fine-grained coordination

•Poor performance for standard
communication patterns

•Achieving predictable performance

M. D. Dikaiakos

Inadequate storage
•Difficult to support applications that have fine-grained state sharing needs:

‣ mostly due to the limitations of existing storage services offered by cloud
providers.

•Object storage services such as AWS S3, Azure Blob Storage, and Google
Cloud Storage are highly scalable and provide inexpensive long-term object
storage, but exhibit high access costs and high access latencies:

‣ At least 10 milliseconds to read or write small objects.

‣ You can get high IOPS throughput, but with a high cost: 100K IOPS sustained,
costs $30/min.

‣ Key-value databases, such as AWS DynamoDB, Google Cloud Datastore, or
Azure CosmosDB provide high IOPS, but are expensive and can take a long time
to scale up.

• In-memory storage instances based on popular open source projects such as
Memcached or Redis, are offered by Cloud providers but are not fault tolerant
and do not autoscale.

M. D. Dikaiakos

Characteristics of storage services
•Costs are monthly values for storing 1 GB (capacity), transferring 1
MB/s (throughput), and issuing 1 IOPS(or 2.4 million requests in 30
days).

•All values reflect a 50/50 read/write balance and a minimum
transfer size of 4 KB.

•Color codings of entries are green for good, orange for medium,
and red for poor.

•Persistence and availability guarantees describe how well the
system tolerates failures:

‣ local provides reliable storage at one site

‣ distributed ensures the ability to survive site failures, and

‣ ephemeral describes data that resides in memory and is subject to
loss, e.g., in the event of software crashes.

M. D. Dikaiakos

Characteristics of storage services

M. D. Dikaiakos

Storage Services: what is needed?
• The serverless ideal would provide cost and
performance comparable to block storage, while
adding:

•Access for cloud functions.

• Transparent provisioning (the storage equivalent of
compute autoscaling)

•Different guarantees of persistence and availability.

•Guarantees for latency or other performance
measures.

M. D. Dikaiakos

Coordination Mechanisms
• To expand support to stateful applications, serverless

frameworks need to provide a way for tasks to
coordinate:
‣ If task A uses task B’s output there must be a way for A to

know when its input is available, even if A and B reside on
different nodes.

‣ Many protocols aiming to ensure data consistency also
require similar coordination.

•Cloud providers offer stand-alone notification services
(SNS, SQS), but:
‣ these services add significant latency, sometimes

hundreds of milliseconds
‣ can be costly when used for fine grained coordination.

M. D. Dikaiakos

Coordination: What is needed?
• Stateful applications are left with no choice but to:
‣ Manage a VM-based system that provides

notifications (ElastiCache and SAND) or
‣ Implement own notification mechanism, that

enables cloud functions to communicate with each
other via a long-running VM-based rendezvous
server.

‣ Explore new variants of serverless computing:
‣ Naming function instances
‣ Allowing direct addressability of functions, for

access to their internal state (e.g., Actors as a
Service)

M. D. Dikaiakos

Poor communication performance
•Most common communication patterns: Broadcast, aggregation, and shuffle.

‣ Commonly employed by applications such as machine learning training and big data analytics.

•Each VM instance runs two functions/tasks.

•Note the significantly lower number of remote messages for the VM-based solutions:

‣ VM instances offer ample opportunities to share, aggregate, or combine data locally across tasks
before sending it or after receiving it.

M. D. Dikaiakos

Predictable Performance
•Cloud functions have a much lower startup latency than traditional VM-
based instances.

•However, the delays incurred when starting new instances can be high for
some applications, because of:

‣ the time it takes to start a cloud function (can take less than 1 sec);

‣ the time it takes to initialize the software environment of the function, e.g.,
load Python libraries (it might take tens of seconds to load all application
libraries); and

‣ application-specific initialization in user code.

• The latter two can dwarf the former.

•Variability in the hardware resources can result from giving the cloud
provider flexibility to choose the underlying server.

‣ A fundamental tradeoff between the cloud provider’s desire to maximize
their resources’ use and predictability

M. D. Dikaiakos

Research Challenges
• System-level research opportunities:

‣ Minimizing cold-starts while still scaling to zero

‣ Containers vs Unikernels

• Legacy code in serverless

• Stateful serverless:

‣ Will there be inherently stateful serverless applications in the future with
different degrees of QoS without sacrificing the scalability and fault-
tolerance properties?

• Service-level agreements (SLA): Serverless computing is poised to make
developing services easier, but providing QoS guarantees remains difficult.

• Serverless at the edge: There is a natural connection between serverless
functions and edge computing as events are typically generated at the
edge with the increased adoption of IoT and other mobile devices.

M. D. Dikaiakos

Research Challenges
•Abstraction challenges
‣ Resource requirements

‣ Data dependencies

• System challenges

‣ High-performance, affordable, transparently provisioned storage

‣ Coordination/signalling service

‣ Minimize startup time

•Networking challenges

• Security challenges

‣ Scheduling randomization and physical isolation

‣ Fine-grained security contexts

‣ Oblivious serverless computing

•Computer architecture challenges

‣ Hardware Heterogeneity, Pricing, and Ease of Management

M. D. Dikaiakos

Resource Requirements
•Developers can specify: cloud function’s memory size and execution time limit.

•Often more control needed: specify number of CPUs, GPUs, accelerators.

•Approach: enable specification of extra resource requirements. However:

‣ This adds more constraints on function scheduling: harder to achieve high utilization
through statistical multiplexing

‣ Increases the management overhead for cloud application developers.

•Other alternative: raise the level of abstraction, having the cloud provider infer
resource requirements.

•How?
‣ Static code analysis

‣ Profiling previous runs

‣ Dynamic(re)compilation to retarget the code to other architectures.

‣ Provisioning just the right amount of memory automatically (hard in the presence of
automatic garbage collection).

M. D. Dikaiakos

Data dependencies
•Cloud function platforms have no knowledge of:

‣ data dependencies between the cloud functions

‣ the amount of data exchange between these
functions

• This can lead to suboptimal placement that could
result in inefficient communication patterns.

•Approach: the cloud provider to expose an API that
allows an application to specify its computation
graph, enabling better placement decisions that
minimize communication and improve performance.

M. D. Dikaiakos

Research Challenges
•Abstraction challenges

‣ Resource requirements

‣ Data dependencies

• System challenges

‣ High-performance, affordable, transparently provisioned storage

‣ Coordination/signalling service

‣ Minimize startup time

•Networking challenges

• Security challenges

‣ Scheduling randomization and physical isolation

‣ Fine-grained security contexts

‣ Oblivious serverless computing

•Computer architecture challenges

‣ Hardware Heterogeneity, Pricing, and Ease of Management

M. D. Dikaiakos

Serverless Ephemeral Storage
•Why/where is it needed?

‣ To transfer state between cloud functions and maintain application state during
the application lifetime.

‣ Once the application finishes, the state can be discarded. Such ephemeral
storage might also be configured as a cache in other applications

•Possible approach: distributed in-memory service

•Expectations:

‣ Microsecond-level latency.

‣ Automatic scaling the storage capacity and the IOPS with application’s demands.

‣ Transparent allocation and release of memory.

‣ Access protection and performance isolation across applications.

‣ Lleverage statistical multiplexing, to provide improved memory-efficiency over
today’s serverful computing: any memory not used by one serverless application
can be allocated to another.

M. D. Dikaiakos

Durable Storage
•Why/where is it needed?

‣ Serverless databases

‣ Serverless applications that require longer retention and greater durability than
ephemeral storage, with low-latency, high IOPS and mutable-state semantics of a file
system.

•Possible approach: leverage an SSD-based distributed store paired with a
distributed in-memory cache, and novel non-volatile memory (NVM) -
microsecond-level access times.

•Expectations / challenges:

‣ Offer low tail latency in the presence of heavy tail access distributions, although in-
memory cache capacity is likely to be much lower than SSD capacity.

‣ Transparent provisioning.

‣ Isolation across applications and tenants for security and predictable performance.

‣ Explicit release of memory resources.

‣ Durability, so that acknowledged writes survive failures.

M. D. Dikaiakos

Minimize Startup Time
• Three factors of startup time:

1. scheduling and starting resources to run the cloud function

2. downloading application software environment(e.g., operating system, libs) to run the function code,

3. performing application-specific startup tasks such as loading and initializing data structures and libraries.

•Resource scheduling and initialization can incur significant delays and overheads from creating an
isolated execution environment, and from configuring customer’s VPC and IAM policies.

•Possible approaches for reducing factor 2:

‣ Unikernels:

• Preconfigured OS kernel based on hardware they are running on and statically allocating the data structures.

• Include only the drivers and system libraries strictly required by the application => much lower footprint.

‣ Load the libraries dynamically and incrementally as they are invoked by the application.

•Possible approaches for reducing factor 3:

‣ Include a readiness signal in Cloud providers’ API to avoid sending work to function instances before they
can start processing it.

‣ Seek to perform startup tasks ahead of time (maintain “warm pool” of VMs to be shared between tenants).

M. D. Dikaiakos

Research Challenges
•Abstraction challenges

‣ Resource requirements

‣ Data dependencies

• System challenges

‣ High-performance, affordable, transparently provisioned storage

‣ Coordination/signalling service

‣ Minimize startup time

•Networking challenges
• Security challenges

‣ Scheduling randomization and physical isolation

‣ Fine-grained security contexts

‣ Oblivious serverless computing

•Computer architecture challenges

‣ Hardware Heterogeneity, Pricing, and Ease of Management

M. D. Dikaiakos

Networking Challenges
•What?

‣ Cloud functions can impose significant overhead on popular
communication primitives such as broadcast, aggregation, and shuffle.

•Possible approaches:

‣ Provide cloud functions with a larger number of cores, so multiple tasks can
combine and share data among them before sending over the network or
after receiving it.

‣ Allow the developer to explicitly place the cloud functions on the same VM
instance. Offer distributed communication primitives that applications can
use out-of-the-box so that cloud providers can allocate cloud functions to
the same VM instance.

‣ Let applications provide a computation graph, enabling the cloud provider
to co-locate the cloud functions to minimize communication overhead.

•Cons?

M. D. Dikaiakos

Security Challenges
• Scheduling randomization and physical isolation, to avoid
hardware-level side-channel attacks inside the cloud.

• Fine-grained security contexts required by Cloud functions:

‣ Access to private keys, storage objects, and even local
temporary resources.

‣ Highly-expressive security APIs available for dynamic use: for
example, a cloud function may have to delegate security
privileges to another cloud function or cloud service.

‣ More fine-grained security isolation for each function, as an
option.

‣ Share state between repeated function invocations to maintain
a short startup time while providing function-level sandboxing.

M. D. Dikaiakos

Research Challenges
•Abstraction challenges

‣ Resource requirements

‣ Data dependencies

• System challenges

‣ High-performance, affordable, transparently provisioned storage

‣ Coordination/signalling service

‣ Minimize startup time

•Networking challenges
• Security challenges

‣ Scheduling randomization and physical isolation

‣ Fine-grained security contexts

‣ Oblivious serverless computing

•Computer architecture challenges
‣ Hardware Heterogeneity, Pricing, and Ease of Management

M. D. Dikaiakos

Computer Architecture Challenges
• The end of Moore’s law:

‣ The x86 microprocessors that dominate the cloud are barely improving in
performance.

‣ In 2017, single program performance improvement only 3%. Assuming the trends
continue, performance won’t double for 20 years.

‣ Similarly, DRAM capacity per chip is approaching its limits; 16 Gbit DRAMs are for
sale today, but it appears infeasible to build a 32 Gbit DRAM chip.

•Performance problems for general purpose microprocessors do not reduce the
demand for faster computation. There are two paths forward:

‣ For functions written in high-level scriptingl anguages like JavaScript or Python,
hardware-software co-design could lead to language-specific custom processors
that run one to three orders of magnitude faster.

‣ Domain Specific Architectures: tailored to a specific problem domain and offering
significant performance and efficiency gains for that domain, but perform poorly
for applications outside that domain: Tensor Processing Units (TPUs). TPUs can
outperform CPUs by a factor of 30x.

M. D. Dikaiakos

Implications for Serveless
• Serverless could embrace multiple instance types, with a
different price per accounting unit depending on the
hardware used.

• The cloud provider could select language-based
accelerators and DSAs automatically:

‣ Implicitly based on the software libraries or languages
used in a cloud function, e.g. GPU hardware for CUDA
(Compute Unified Device Architecture) code and TPU
hardware for TensorFlow code.

‣ The cloud provider could monitor the performance of the
cloud functions and migrate them to the most
appropriate hardware the next time they are run.

