DSC516: Cloud Computing
Part II: Cloud Building Blocks

Module 4: Virtualization,
Containers and Resource
Management

Topic 7

Containers and Docker

Lecture 18b

Containers and Docker

Learning
Objectives

« Examine, understand and explain
the concept of containers and the
main fechniques.

e Understand and explain how Docker
containers manage resource
conftrols.

e Understand and explain how is
software installed on Docker
containers

e Understand and explain how Docker
containers manage storage.

e Understand and explain the key
differences and comparison
between containers and VMs.

J. Nickoloff and S. Kuenzli (2019), "Docker in
Action" 2nd Edition, Manning.

Readings

Additional Readings

« P.Sharma, L. Chaufournier, P. Shenoy, and Y.
C. Tay, “Containers and virtual machines at
scale: A comparative study,” in
Proceedings of the 17th International
Middleware Conference, Middleware 2016,
2016, pp. 1-13.

« Manco, F., Mendes, J., Yasukata, K., Lupu,
C., Kuenzer, S., Raiciu, C., Schmidt, F, Sati, S.,
& Huici, F. (2017). My VM is Lighter (and
Safer) than your Container. SOSP 2017 -
Proceedings of the 26th ACM Symposium
on Operating Systems Principles, 16, 218-
233. hitps://doi.org/
10.1145/3132747.3132763

M. D. Dikaiakos

Containers and Docker

History and Introduction

Containers: History and Infroduction

Linux Containers

Prior Techniques

POSIX Capabilities (mid-1990s):

« Capabilities: a set of flags associated with a process or file, which determined whether a
process was permitted to perform certain actions;

» A process could execute a subprocess with a subset of its own capabilities; the
specification attempted to support the principle of least privilege.

» This feature was never adopted as a standard but formed the basis of the capabilities
feature added to the Linux Kernel in 1999.

Namespaces and resource usage controls for process isolation:

In 2000, FreeBSD added Jails, which isolated filesystem namespaces (using chroot),
processes and network resources in such a way that a process might be granted root
privileges inside the jail but blocked from performing operations that would affect
anything outside the jail.

*In 2001 & 2006, the Linux Kernel was patched to add filesystem namespaces and user
namespaces to support resource usage limits and isolation for filesystems, network
addresses, memory, process IDs, IPC, network stack and user IDs.

Access conirol and System Call Filtering offering secure isolation of processes through
restricted access to system calls

Resource sharing in large-scale cluster management: Borg, Mesos

University of Cyprus

Container techniques

In 2008, Linux Containers (LXC) combined cgroups, namespaces, and
capabilities from the Linux Kernel into a tool for building and launching low-
level system containers.

Cgroups: Control groups are a kernel mechanism for controlling the
resource allocation to process groups.

« Cgroups exist for each major resource type: CPU, memory, network, block-10,
and devices.

* The resource allocation for each of these can be controlled individually,
allowing the complete resource limits for a process or a process group to be
specified.

Namespaces. A namespace provides an abstraction for a kernel resource
that makes it appear to a container that it has its own private, isolated
instfance of the resource.

* In Linux, there are namespaces for isolating: process IDs, user IDs, file system
mount points, networking interfaces, IPC, and host names.

‘ University of Cyprus

Linux Containers

* A Linux Containeris a Linux process (or processes) that is a virtual
environment with its own process network space.

° |_|nUX COrTI'G”’]@I’S: Guest Application process M
. . . .) Runtime Virtualizing software
» Offer lightweight process virtualization mw P | Proes
machine
. Host
» Share portions of the host kernel Hardware

(a)
» Use namespaces (per-process isolation of OS resources -
filesystem, network and user ids) and cgroups (for resource
management and accounting per process)

* Examples of container adoption in large-scale services:

» hitps://www.netflix.com
» https://www.dotcloud.com/

» https://www.heroku.com/

‘ University of Cyprus

https://www.netflix.com
https://www.heroku.com/

Container Absiraction

« A container encapsulates a group of processes that are
Isolated from other containers or processes in the

system.

« The OS kernel is responsible for
Implementing the container
abstraction:

» It allocates CPU shares, memory
and network |/O to each
container

» Can provide also file system
Isolation

Container-1 Container-2
4 N\
Application Application
Libraries Libranes

/

\

\

Operating System Kernel

Hardware

‘ University of Cyprus M. D. Dikaiakos

Container behavior

« Containers may look like real computers from the
point of view of programs running in them.

e However:

» A computer program running on an ordinary
operating system can see all resources of that
computer (connected devices, files and folders,
network shares, CPU power, quantifiable hardware
capabilities).

» Programs running inside of a container can only see
the container's contents and devices assigned o the
container.

‘ University of Cyprus

Red Hat adds user
namespaces, limiting root
access in containers

Solaris Zones bring the

FreeBSD Jails expand concept of snapshots

on Unix chrootto
isolate files

2001 2006

Server

o,

M
-
SOLARIS

cgroups

Google

rednat

Docker provides
simple user tools
and images.
Containers go
mainstream

2013

2008

&
docker
=

2000 Google introduces 2008 IBM creates LXC,
Linux-VServer ports — p,o%%ss Containers, providing user
kernelisolation, but merged as cgroups tools for cgroups
requires recompilation and namespaces

9 University of Cyprus

M. D. Dikaiakos

Department of Computer Science

Containers: History and Infroduction

Containers vs Virtual Machines

Containers vs VMs

« Hardware virtualization: predominant virtualization
technology for deploying, packaging, and
Mmanaging applications.

« Containers are increasingly filling that role due to
the popularity of systems like Docker. .===.’.

« Containers promise: docker

» low-overhead virtualization since they do noft run
their own OS kernels, but instead rely on the
underlying kernel for OS services

» improved performance when compared to VMs.

‘ University of Cyprus

Virtual Machines VS Containers
(Similarities)

Virtual Machines

Process in one VM has not access to
processes in other VMs

Each VM has own root filesystem

Each VM gets its own virtual network
adapter

VMs run instances of physical files
(.VMX and .VMDK)

Host OS can be different from guest OS

University of Cyprus

Containers

Process in one container has not access
to processes in other containers

Each container has its own root file
system (not Kernel)

Each container has its own virtual
network adapter(s)

Containers run instances of Images.

Host OS distribution can be different
from container OS distribution

Virtual Machines VS Containers
(Differences)

Virtual Machines

Each VM runs its own OS

Boot up time is in minutes

VMs snapshots are used sparingly

Not version controlled

Cannot run more than couple of
VMs on a PC

University of Cyprus

Containers

All containers share the same Kernel of
the host

Containers instantiate in seconds
Images are built incrementally on top of
another like layers. Lots of images/
snapshots

Images can be diffed, version controlled

and stored into repositories (Dockerhub).

Can run many containers on a PC

Containers vs VMs

VIRTUAL MACHINES

VM

OS Dependencies

Kernel

virtual machines are isolated
apps are not

CONTAINERS

“ i
-
Container Host (Kernel)

App

Hardware

containers are isolated
so are the apps

University of Cyprus

Department of Computer Science

M. D. Dikaiakos

Virtual Machines VS Containers

VM CONTAINER
App A App B App C App A App B App C
Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS
Docker

Hypervisor Host OS

Infrastructure Infrastructure

e Each virtual machine (VM) includes the app, the necessary binaries and
libraries and an entire guest operating system. Containers are NOT VMs
because:

» Use the host kernel

» Can not boot a different OS (only if the host OS has pre-installed external
kernel eg windows)

» Do not have strict resource isolation (only on cgroups and namespace level)

‘ University of Cyprus M. D. Dikaiakos

Containers vs VMs: DevOps

Virtual Machine

Application

IT Ops

OS dependencies
(and Dev, sort of)

Operating System

Clear ownership boundary
between Dev and IT Ops
drives DevOps adoption

and fosters agility

. Optimized for stability
. Optimized for agility

Container

OS dependencies
Container Host

Infrastructure

University of Cyprus

M. D. Dikaiakos

Containers and Docker

Docker Overview

What is Docker?

 Facllitates the building, management and use of
containers.

* Most popular container solution:

» Built initially on LXC with namespaces and cgroups.

» Then replaced LXC with libcontainer, also using Linux
Kernel namespaces, cgroups, and capabilities.

« Doesn’'t provide the container technology- it makes
It simpler to use.

« Any software run with Docker is run inside ©
container.

‘ University of Cyprus

Container isolation in Docker

The containers that Docker builds are isolated with respect to
eight aspects

1. PID nomespace—Process identifiers and capabilities

. UTS namespace—Host and domain name

. MNT hamespace—rFile system access and structure

. IPC namespace—Process communication over shared memory
. NET namespace—Network access and structure

. USR namespace—User names and identfifiers

. chroot()—Controls the location of the file system root

00 N O O A LW DN

. Ccgroups—Resource protection

‘ University of Cyprus

Container isolation in Docker

* Namespace isolation allows groups of processes 1o be separated.
This ensures that they cannot see resources in other groups.

» Different namespaces used for process isolation, network interfaces,
access to inter-process communication, mount-points or for
isolating kernel and version identifiers.

e cgroups (control groups) manage and limit resource access for
process groups through limit enforcement, accounting and
Isolation, e.g., limiting the memory available to a specific

container:

» Enable better isolation between isolated applications on a host.
» Restrict containers in multi-tenant host environments.

» Allow sharing available hardware resources between containers
while setting up limits and constraints.

‘ University of Cyprus

Writable Container

Docker Image e

Base Image (Ubuntu)

* Building block from which containers are Bl
launched.

Linux Kernel

* Bundled snapshot of all the files that should be
available to a program running inside a container.

 Made up of file systems layered over each other.

* YOU Can create as many containers as you want
from an image.

« Containers started from the same image don’t
share changes to theirr file systems.

‘ University of Cyprus M. D. Dikaiakos

Shipping Docker Images

* A Docker container is like a physical shipping container. It's
a box where you store and run an application and all of its
dependencies.

* Docker can run, copy, and distribute containers with ease,
iIncluding a way to package and distribute software.

* Images are the shippable units in the Docker ecosystem:

» When you distribute software with Docker, you distribute
Docker images, and the receiving computers create
containers from them.

* Docker provides public infrastructure components that
simplify distributing Docker images: registries and indexes. _

%

‘ University of Cyprus dOCker

Docker Hub

Wdockerh ub Q Search for great content (e.g., mysql) Explore Repositories Organizations Get Help ~ dikaiakos ~ ﬁ)\

@& Docker [®] Containers W Plugins

Filters 1- 25 of 4,114,299 available images. Most Popular -

Docker Certified @

| | & Docker Certified Oracle Database Enterprise Edition (% DOCKER CERTIFIED 0
ORACLE' Stars

o By Oracle * Updated 3 years ago
Images) »
Oracle Database 12c Enterprise Edition

D Verified Publisher @
Docker Certified And Verified Publisher Content

D Official Images @

Official Images Published By Docker

Container Docker Certified Linux x86-64 Databases

VERIFIED PUBLISHER %

Categories @ — Oracle WebLogic Server (¥ DOCKER CERTIFIED i} 0
—) "ERSESM By Oracle + Updated 9 months ago ars
| | Analytics

["] Application Frameworks Oracle WebLogic Server

U. Application Infrastructure Container Docker Certified Linux x86-64 Application Frameworks Application Infrastructure

| | Application Services

| | Base Images VERIFIED PUBLISHER %

| | Databases Oracle Instant Client (¥ DOCKER CERTIFIED 0
o oRAQLE Stars
|| DevOps Tools BaTAbASY Bv Oracle * Undated 3 vears ago

$4% | University of ikai
Ax University of Cyprus M. D. Dikaiakos

Department of Computer Science

High level Docker Architecture

Client | DOCKER_HOST) @—*
docker build - {--- 4.+ Docker daemon
d ﬁ. \ '.." = — —~—
/ \ ~ -
docker pull ~-| [I| ¢ ' . !

—

,’ Containers)

docker run —f NGiNX

00eg

Uni it fC . .
niversity ot Cyprus M. D. Dikaiakos

Docker Overview

Running Docker

Running Docker

« Natively on Linux

e Inside a single, small VM on OS X and
Windows, where all its containers run:

» small and fixed overhead of running the VM
while the number of containers can scale up

« Convergence on Linux means that software
running in Docker containers need only be
written once against a consistent set of
dependencies.

‘ University of Cyprus

Running Docker

* RUNnNing two programs in user space:

» Docker daemon: if installed properly, this process should
always be running.

» Docker CLI: the Docker program that users interact with.

« |If you want to start, stop, or install software, you'll issue a
command using the Docker program. R

' Container Container Container
space A space B space C

Database

..................................

E Docker CLI ! Web server
User space E Command line / (] : Hello World
| Docker daemon |-

...

Operating system

10

CPU Memory
Network interface | Persistent storage Devices

University of Cyprus
Figure 1.2 Docker running three containers on a basic Linux computer system

Writable Container

Image (Apache)

Running Docker (ctd’) ==

layer nam— cgroups
FS spaces
« systemd, a container-aware daemon starts containers as application processes. i eeme

» It plays a key role as the root of the user’s process tree.

* BOOTt process:

» In a traditional Linux boot, the kernel first mounts the root file system as read-only, before
checking its integrity. It then switches the rootfs volume to read-write mode.

» Docker mounts the rootfs as read-only (as in a traditional Linux boot), but instead of changing
the file system to read-write mode, it uses a union mount to add a writable file system on top
of the read-only file system.

« Mounting: allows multiple read-only file systems to be stacked on top of each other.
» This property can be used to create new images by building on top of base images.

» Each of these file system layers is a separate image loaded by the container engine for
execution.

« Container: Only the top layer is writable, which is the container itself.
» The container can have state and is executable.
» It is a kind of directory for everything needed for execution.

» While they are normally stateful, containers can be made into stateless images to be reused
in more complex builds.

University of Cyprus M. D. Dikaiakos

Using Docker

« Containers can be run with virtual terminals attached to the user’s shell or in detached
mode.

* By default, every Docker container has its own PID namespace, isolating process
information for each container.

* Docker identifies every container by its generated container ID, abbreviated container
ID, or its human-friendly name.

 All containers are in any one of four distinct states: running, paused, restarting, or exited.

* The docker exec command can be used to run additional processes inside a running
container.

* A user can pass input or provide additional configuration to a process in a container by
specifying environment variables at container-creation time.

* Using the ——read-only flag at container-creation time will mount the container file
system as read-only and prevent specialization of the container.

* A container restart policy, set with the —=restart flag at container-creation time, will
help your systems automatically recover in the event of a failure.

» Docker makes cleaning up containers with the docker rm command as simple as
creating them.

University of Cyprus

Using Docker

l. Developer tells 3. Docker
Docker to build 2. Docker pushes image
and push image - builds image to registry

/ |
- Image
Developer <> - l

{

o

<> Image —-—

Container -

I~
Development machine Image registry Production machine > '|
|
4. Developer tells 5. Docker pulls 6. Docker runs
Docker on production image from container from
machine to run image registry image

Figure 1.6 Docker images, registries, and containers

()
J/
N

University of Cyprus

Department of Computer Science

M. D. Dikaiakos

Your host machine, on which you’ve
installed Docker. The host machine
will typically sit on a private network.

You invoke the Docker
client program to get
information from or
give instructions to
the Docker daemon.

The Docker daemon
receives requests and
returns responses from
the Docker client using
the HTTP protocol.

The private Docker
registry stores
Docker images.

N

i

Private network Internet
Your host machine
—>[Docker client]
A
HTTP
Y
] HTTP
L » | Docker daemon J< Docker Hub

A A

HTTP HTTP

N

Private Docker

registry

- e - - - - - - - - -]

Another public
Docker registry

/

The Docker Hub
is a public registry
run by Docker, Inc.

Other public
registries can
also exist on
the internet.

P>~

University of Cyprus

Department of Computer Science

M. D. Dikaiakos

Docker Overview

Using Docker Containers

WHAT HAPPENS WHEN YOU
EXECUTE THE FOLLOWING
COMMAND ©ON THIE
COMMAND LINE2

docker run --name hellow
dockerinaction/hello_world

M. D. Dikaiakos

qgéj

docker run --name hellow

dockerinaction/hello world

e Docker run:installs, runs, and stops a program inside a
container.

« Assigns hellow as name of this container

* The program that you tell it to run in a container is:
« dockerinaction/hello world.
 This is called the repository (or image) name.

e To learn more about this command, execute:

e docker help run

The lifecycle of “Hello World”

Gocker ruD

e

University of Cyprus

The lifecycle of “Hello World”

Docker looks

docker run for the wpage
on this
computer

The lifecycle of “Hello World”

Docker looks

docker run for the ".“age -
on this
computer

Is it
installed?

University of Cyprus M. D. Dikaiakos

The lifecycle of “Hello World”

Docker looks Docker

Gocker ru9—> fortheimage | Is it searches
on this installed? Docker Hub
computer for the image

University of Cyprus M. D. Dikaiakos

The lifecycle of “Hello World”

Gocker ru9—>

Docker looks
for the image
on this
computer

Is it
installed?

Docker
searches
Docker Hub

for the image

Is it
on Docker
Hub?

Yes

University of Cyprus

M. D. Dikaiakos

The lifecycle of “Hello World”

Gocker ru9—>

Docker looks
for the image
on this
computer

Is it
installed?

Docker
searches
Docker Hub

for the image

Is it
on Docker
Hub?

Docker
downloads
the image

Yes

University of Cyprus

M. D. Dikaiakos

The lifecycle of “Hello World”

Gocker ru9—>

Docker looks
for the image
on this
computer

Is it
on Docker
Hub?

this computer

Docker
Is it searches
installed? Docker Hub
for the image
The image
layers a?e Docker
installed on |+ | downloads
the image

Yes

University of Cyprus

M. D. Dikaiakos

The lifecycle of “Hello World”

Gocker ru9—>

Docker looks
for the image
on this
computer

Docker creates
a new container
and starts
the program

Is it
installed?

Docker
searches
Docker Hub

for the image

The image
layers are
installed on
this computer

Docker
downloads
the image

Is it
on Docker
Hub?

Yes

University of Cyprus

M. D. Dikaiakos

The lifecycle of “Hello World”

Docker looks Docker
Gocker un) for the image Is it searches
on this installed? Docker Hub
computer for the image
Is it
on Docker
Hub?
Docker creates The image Docker
The container a new container layers are d oad Yes
is running! and starts installed on ownloads
: the image
the program this computer

University of Cyprus M. D. Dikaiakos

The lifecycle of “Hello World”

Docker looks Docker
Gocker un) for the image Is it searches
on this installed? Docker Hub
computer for the image
Is it
on Docker
Hub?
Docker creates The image Docker
The container a new container layers are d oad Yes
is running! and starts installed on ownloads
: the image
the program this computer

University of Cyprus M. D. Dikaiakos

The lifecycle of “Hello World”

/

Docker looks

docker run for the wpage
\ on this
computer

Is it
installed?

Docker creates
a new container
and starts
the program

e contain

Ch ED
- . .
is running!

University of Cyprus

M. D. Dikaiakos

Pull and Run an Image

* Problem: You want download, save and run an image to your PC

« Solution: Execute the docker pull command to fetch the image and
the docker run to execute the container

« Pull the image:
» docker pull busybox
» Check if the image is downloaded:
» docker image 1ls
* Run the busybox image:
» docker run busybox
* Run the busybox image with parameters:

» docker run busybox echo "hello from busybox”

‘ University of Cyprus

Check your Containers

* Problem: You want to check your containers
* Solution: Execute the docker ps command
* Check the running containers:
» docker ps
* Check all containers (even stopped):
» docker ps -a
* Run the busybox image and connect to it:
» docker run -it busybox
* Check again the running containers:

» docker ps

‘ University of Cyprus

Detaching without Stopping

* Problem: You want to detach from a
container interaction without stopping It.

e Solution: Press Cirl-P and then Ctrl-Q to
detach.

University of Cyprus

Removing Containers

* Problem: You want to remove the not running container instances
« Solution: Execute the docker rm command
« Remove specific containers
» docker rm 305297d7a235 ££0a5¢3750b9
* Find the containers that have status exited
» docker ps -a -q -f status=exited
« Remove all containers that have status exited
» docker rm S$(docker ps -a -q -f status=exited)
» docker container prune
« Remove the container after run

» docker run --rm busybox

‘ University of Cyprus M. D. Dikaiakos

Removing Docker Images

* Problem: You want to remove an image - You have to remove ALL
CONTAINERS that use the image you want to remove

* Solution: Execute the docker rmi command
* Enumerate all docker images that are in your pc
» docker image 1ls
*Select the correct image ID
* Remove specific containers
» docker rmi 305297d7a235 ££0a5c¢3750b9
 Remove all docker relative items like containers, images, networks

» docker system prune -a

‘ University of Cyprus

Starting a Stopped Container

* Problem: You have closed a container and you want to
restart

e Solution: Execute docker start command

* Check all closed containers: docker ps -a

(base) mdd@princeton ~ % docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

cf27476e@7f5 wordpress “docker-entrypoint.s.." 59 minutes ago Up 59 minutes 0.0.0.0:55000->80/tcp ch6_wordpress
daf774c8a269 mariadb:5.5 “docker-entrypoint.s.." 59 minutes ago Up 59 minutes 3306/tcp ch6_mariadb

« Start a specific container:
» docker start db39...

« Run again docker ps in order to check if your container is
running. docker ps

‘Lhﬁversny(ﬁ‘Cyprus

Connecting with Running Containers

* Problem: You want to connect with terminal or run commands
OoNn A running container

 Solution: Run the docker exec command
« Check all running containers: docker ps

 Find the ID of the specific running containe r:
3c¢3£f8e3£fb05d795...

* Run the docker exec with the same ID as parameter and open
an interactive terminal or run whatever command you like:

» docker exec -it 3c¢3£8e3£fb05d795 sh
» docker exec -it 3¢3£f8e3£fb05d795 {command}

‘ University of Cyprus

Start a Container as Daemon

* Problem: You want to start a container as daemon
 Solution: Use the parameter -d at the run command
« Start the iImage in background

» docker run -d --name sleeper busybox
sleep infinity

* The previous command returns the ID of the new
container 3c¢3£8e3£fb05d795...

* Run the docker exec with the same ID as parameter and
open an interactive terminal

» docker exec -it 3c¢3f8e3£fb05d795 sh

‘ University of Cyprus

Executing Commands on your
Container

* Problem: You want to perform commands on a running container.
 Solution: Use the docker exec command.
* Run a container as daemon

» docker run -d --name sleeper busybox sleep infinity
« Run an echo command from the container.

» docker exec sleeper echo "hello host from container”
* Run in the container as background process.

» docker exec -d sleeper \

find / -ctime 7 -name '*log' -exec rm {} \;

« Run an interactive terminal in the container

» docker exec -i -t sleeper sh

‘ University of Cyprus M. D. Dikaiakos

Inspecting a Container

« Problem: Find out all the information that Docker maintains regarding a
container (its metadata)

« Solution: The docker inspect command will display all the metadata (a
JSON document) that Docker maintains for a container.

» The format option transforms that metadata

» In this case it filters everything except for the field indicating the running
state of the container.

(base) mdd@princeton ~ % docker inspect wordpress

docker inspect --format "{{.State.Running}}" wp

"OpenStdin": false,

"StdinOnce": false,

]’) "Env": [

"RepoDigests": ["PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",

"wordpress@sha256: 7e46cf3373751b6d62b7a0f c3a7d6686f641a34a2a@eb18947da5: "PHPIZE_DEPS=autoconf \t\tdpkg-dev \t\tfile \t\tg++ \t\tgcc \t\tlibc-dev \t\tmake \t\tpkg-config \{
] "PHP_INI_DIR=/usr/local/etc/php",

- o " APACHE_CONFDIR=/etc/apache2",

Parent™: ’ "APACHE_ENVVARS=/etc/apache2/envvars"

"Comment™: "", "PHP_CFLAGS=-fstack-protector-strong -fpic -fpie -02 -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64",
"Created": "2022-11-16T19:39:59.255187332Z", "PHP_CPPFLAGS=-fstack-protector-strong -fpic -fpie -02 -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64"
" . n, n "PHP_LDFLAGS=-W1,-01 -pie",

Container”: "b1220397a25aal5fa59a0057cfd19e70376d7628fb463929cbI9807d4867¢ "GPG_KEYS=42670A7FE4D0441C8E4632349E4FDCO74A4EFO2D SA52880781F755608BF815FCO10DEB46F53EA312"

"ContainerConfig": { "PHP_VERSION=7.4.33",

"wordpress:latest”

"Hostname": "b1220f397a25", "PHP_URL=https://www.php.net/distributions/php-7.4.33.tar.xz",
"PHP_ASC_URL=https://www.php.net/distributions/php-7.4.33.tar.xz.asc",
"PHP_SHA256=924846abf93bc613815c55dd3f5809377813ac62a%ec4eb3778675b82a27b927"

"Domainname”: "",

"User": "

"AttachStdin": false, "Cmd": [

"AttachStdout": false, "/bin/sh",

"AttachStderr": false, e

" "#(nop) ",

ExposedPorts : "CMD [\"apache2-foreground\"]"
"80/tcp":

Docker CLI Basic Commands

Command

docker

docker

docker

docker

docker

docker

docker

docker

docker

docker

build

images / docker image 1s
run {image}

ps

commit {container}

tag {image}

logs {container}

stop {container}

rm {container}

rmi {image}

Purpose

Build a Docker image

List all images on a Docker host

Run a Docker image as a container

List all running (or stopped instances)
Commit a Docker container as an image
Tag a Docker image

Display the logs of an instance

Stop a running instance

Remove an instance

Remove an image

Web site
monitoring

nginx mailer

Port 80 \ / Port 33333

watcher

A container created A container created
from the nginx image, from the mailer image,
which depends on which depends on

network port 80 ’\ network port 33333

A container created from the watcher
image, which depends on the
nginx container and the mailer container

Three containers:
* The first will run NGINX;

* the second will run a program called a mailer.

* Both of these will run as detached containers.

» Detached means that the container will run in the background, without
being attached to any input or output stream.

* A third program, called an agent, will run in an
iInteractive container.

M. D. Dikaiakos

S

z

docker run --detach --name web nginx:latest

docker run -d --name mailer dockerinaction/ch2 mailer

docker run --interactive --tty \
--link web:web \
--name web test \
busybox:latest /bin/sh

wget -O - http://web:80

docker run -it \
—--name agent \
--link web:insideweb \
--1link mailer:insidemailer \
dockerinaction/ch2 agent

docker logs mailer

nginx

Port 80

A container created
from the nginx image,
which depends on
network port 80

N

mailer

Port 33333

e

watcher

\\

A container created
from the mailer image,
which depends on
network port 33333

A container created from the watcher
image, which depends on the

nginx container and the mailer container

S

&

docker run --detach --name web nginx:latest

docker run -d --name mailer dockerinaction/ch2 mailer

docker run --interactive --tty \
--link web:web \

--name web test \ [m&\\\ //AM@
busybox:latest /bin/sh Mmééd o Mﬁymd
ey mmw;%mmj@&&;

wget -O - http://web:80 i e ne

docker run -it \
--name agent \
--link web:insideweb \
--link mailer:insidemailer \
dockerinaction/ch2 agent

docker logs mailer

http://web:80

Linking Containers

* Network links Is a legacy mechanism to connect
containers:

» Injects IP addresses info dependent running
containers (containers that aren’t running don’'t
nave IP addresses).

» Links create a unidirectional network connection
from one container to other containers on the
same host.

e Bidirectional links can be created with user-
defined networks.

‘ University of Cyprus

Docker Overview

Namespaces in Docker

PID Namespaces

« Every running program—or process—on a Linux machine has a unique
number called a process identifier (PID).

* A PID namespace is the set of possible numbers that identify processes.

* Linux provides facilities to create multiple PID namespaces - each
namespace has a complete set of possible PIDs (1, 2, 3,...)

* Docker creates a new PID namespace for each container by default.

» The container’s PID namespace isolates processes in that container from
processes in other containers.

* You can optionally create containers without their own PID namespace
(e.g. to perform sysadmin tasks on a machine), using the —-pid host
flag to keep the host's namespace.

» The following lists all processes running on the computer which runs Docker:
docker run --pid host busybox:latest ps

University of Cyprus

Naming Containers

docker run --detach --name web nginx:latest

« By default Docker assigns a unigue (human-friendly) name to each
container it creates.

» The —-—name flag can override that.

* In systems with multiple containers, using fixed names like can create
conflicts.

 In addifion to the name, Docker assigns each container with a unique
1024-bit identfifier.

« To avoid conflict with fixed names and the complexity of long identifiers,
Docker enables the handling of container IDs by assigning them to
environment variables

CID=S (docker create nginx:latest)

or files (using the —cidfile flag):
docker create --cidfile /tmp/web.cid nginx

University of Cyprus

Docker Overview

Container State

Listing Containers

» To check which containers are currently running, use: docker ps This returns the
following information for running containers:

» The container ID

v

The image used

The command executed in the container

v

The tfime since the container was created

v

v

The duration that the container has been running
» The network ports exposed by the container
» The name of the container

» To see all the containers use: docker ps -a

* Note that whether you're using docker run or docker create, the resulting containers
need to be started in the reverse order of their dependency chain, otherwise you get
an error.

* A Docker container can be in one of four states: Running, Paused, Restarting, Exited
(also used if the container has never been started)

‘ University of Cyprus

Moving Between States

M. D. Dikaiakos

O KN
A'y'ﬁ ‘ University of Cyprus

Department of Computer Science

Docker Overview

Environment-agnostic Systems

Building Low-maintenance Systems

* If you build systems or software that know too much about their environment

(addresses or fixed locations of dependency services) it's difficult o change that
environment or reuse the software.

* Need to minimize environment dependences, namely specializations of the
computing environment, such as:

» Global-scoped dependencies - e.g., known host file system locations

» Hard-coded deployment architectures- e.g. environment checks in code or
configuration

» Data locality- e.g. data stored on a particular computer outside the deployment
architecture

* Building low-maintenance systems requires minimizing these aspects. To this end,
docker provides:

» Read-only file systems
» Environment variable injection

» Volumes

‘ University of Cyprus

Read-only F/S in Docker

* With a container with a read-only
filesystem:

» The container won't be specialized from
changes to the files it contains.

» There Is Increased confidence that an
attacker can't compromise files in the
container.

University of Cyprus

, WordPress is a popular open
Running source content-management
WordPress and blogging program (CMS).

 Each WordPress installation
can be customized/
specialized based on the
data/configuration
parameters it works with.

e Task: run WordPress and
iIntegrate it with the monitoring
iINnfrastructure developed in the
previous example!

M. D. Dikaiakos

3
1

* WordPress is published through Docker

Hub In a repository named wordpress.

docker run -d --name wp --read-only wordpress

e Let’s see if it works (instead of using docker
pS):

docker inspect --format "{{.State.Running}}" wp

docker logs wp
error: missing WORDPRESS_DB_HOST and MYSQL_PORT_3306_TCP environment variables

Did you forget to --link some_mysqgl_container:mysql or set an external db
with -e WORDPRESS_DB_HOST=hostname:porte

 WordPress has a dependency on a MySQL database
e Install MySQIL:
docker run -d --name wpdb -e MYSQL ROOT PASSWORD=ch2demo mysqgl
« Create a different WordPress container:
docker run -d --name wp2 --link wpdb:mysqgl -p 80 \
—-read-only wordpress:4

docker inspect --format "{{.State.Running}}" wp2
docker logs wp2
« Fails again!
« Why?
 WordPress’ Apache Web server cannot create a lock file to @
specific location (part of Apache’s standard config).

 Why it cannot create it?
« The container’s f/s is read-only.

« What can you do?
« Find which part of the /s should be made writeable
« Create an exception to the read-only f/s.

S

&

docker run -d --name wp writable wordpress

« Check where wordpress changes the container’s filesystem:
docker container diff wp writable
« Command reports:

» C /run
» C /run/apache?2
» A /run/apache2/apache2.pid

« Specify an exception to the read-only file system, using docker “volumes’:
docker run -d --name wp3 \

--link wpdb:mysqgl \

-p 8000:80 \

—--read-only

-v /run/apache2/ \

——tmpfs /tmp \

—-read-only wordpress

Problems with previous approach:
Web SiTe « The database is running in a container on the

monitoring

same computer as the WordPress container.

« WordPress is using several default values for
important settings like database name,
administrative user, administrative password,
database salt, and so on.

« To deal with this problem, you could create
several versions of the WordPress software, each
with a special configuration for each client,

* Doing so would turn your simple provisioning
script info a monster that creates images and
writes files.

* These problems can be simplified by:
« Using environment variables

* Running the database on a different
computer; specify its hostname with an
environment variable

M. D. Dikaiakos

Environment variable injection

* Environment variables: key-value pairs that are made available 1o
programs through their execution context.

* They let you change a program’s configuration without modifying any files or
changing the command used to start the program.

« Docker uses environment variables to communicate information about:
« dependent containers
» the container’s host name, and
« other convenient information for programs running in containers.

e Docker provides mechanism to inject environment variables info a new
container.

« Programs that know to expect important information through environment
variables can be configured at container-creation time.

docker run --env MY ENVIRONMENT VAR="this is a test" busybox:latest env

University of Cyprus

Web SITe « We want to support multiple WordPress
moni’roring installations, using a common monitoring
infrastructure, and a single database server
with multiple hosted databases

Wp_$CLIENT_ID - agent_S$CLIENT_ID
| |
[|
[|
Y Y
DB_CID MATLER_CID

M. D. Dikaiakos

S

&5

Setup the database and the mailer that will be
shared by the “clients” (Wordpress installations)

export DB CID=$(docker run -d
-e MYSQL ROOT PASSWORD=chZdemo
mysql)

export MAILER CID=$ (docker run -d

dockerinaction/ch2 mailer)

' \i

DB_CID MAILER_CID

S

%reo’re and run a client site provisioning script, which:
* Reads its client ID from an env variable

« Reads the db and mailer container IDs

e Launches the Wordpress container

* Launches that container’s monitoring agent

Wp_S$CLIENT_ID agent_S$CLIENT_ID

DB_CID MATLER_CID

« Read client ID from an env

#!/bin/sh variaple
P : X - Reads the db and mailer
if [! -n "SCLIENT ID"]; then .
echo "Client ID not set” container IDs
exit 1 « Launches the Wordpress
£ container
° 1 !
WP CID=$(docker create \ Louqchgs that container’s
_—link $DB CID:mysql \ monitoring agent
—-name wp S$CLIENT ID \
-p 8000:80\

—--read-only -v /run/apache2/ --tmpfs /tmp \
-e WORDPRESS DB NAME=S$CLIENT ID \
—--read-only wordpress:5.0.0-php7.2-apache)

docker start $WP_CID

AGENT CID=$(docker create \
--name agent S$CLIENT ID \
—-link $WP CID:insideweb \
--1link $MAILER CID:insidemailer \
dockerinaction/ch2 agent)

docker start $SAGENT CID

Building Durable Containers

* Docker provides restart policies to help deal with failures:
exponential backoff strategy for fiming restart attempts

docker run -d --name backoff-detector --restart always
busybox date

« However, during backoff periods, the container isn’'t
running.

* That means you can't do anything that requires the
container to be in a running state, like execute additional
commands in the container.

« To address this issue, you can adjust the supervisor process
INnside your container so that it deals with failures and
restarts the way you want.

‘ University of Cyprus

Supervisor Process

* A supervisor process, or init process, is a program that's used to launch and maintain the
state of other programes.

» On a Linux system, PID #1 is an init process. It starts all the other system processes and restarts
them in the event that they fail unexpectedly.

« Common practice to use a similar pattern inside containers to start and manage
processes.

« Using a supervisor process inside your container will keep the container running in the event
that the target process—a web server, for example—fails and is restarted.

« Popular supervisor programs for containers: init, systemd, runit, upstart, ANd supervisord.
* You can check the existence of this, as follows. First, run the lamp-test container:
docker run -d -p 80:80 --name lamp-test tutum/lamp

*Then, run the command below to kill the program inside the lamp-test container and tell
the apache2 process to shut down.

docker exec lamp-test ps
docker exec lamp-test kill <PID>

* When apache2 stops, the supervisord process will log the event and restart the process.

University of Cyprus

Startup Scripts and Entrypoints

« A common alternative 1o just using init or supervisor
programes:

» Checking precondifions for successfully starting the
contained software.

» Sometimes used as the default command for the container.

« Docker containers run a command or script called an
enfrypoint before executing the default command:

» |deal place to put code that validates the preconditions of
a container.

» Docker allows to override or specifically set the entrypoint of
a container on the command line.

‘ University of Cyprus

See T ey « Override the default command
point for the and use a command to view
orapress th tents of the start
container e contents O e STartup
script:
docker run wordpress \
cat /usr/local/bin/docker-entrypoint.sh

* Define "cat” as the entfrypoint
and pass its location as

argument fo catf:

« docker run --entfrypoint="cat" wordpress /usr/
local/bin/docker-entrypoint.sh

M. D. Dikaiakos

« What is the output of:

docker run dockerinaction/hello world

« What is the output of:

docker run —entrypoint “whoami”

dockerinaction/hello world

« What is the output of:

docker run dockerinaction/hello world

whoami

« What is the output of:

docker run dockerinaction/hello world 1s

M. D. Dikaiakos

Clean-up

* The isolation provided by containers simplifies the tasks of
stfopping processes and removing files.

* With Docker, you must first identify the container that you
want fo stop and/or remove and use the docker rm
command. For example, to delete the stopped container
named wp you'd run: docker rm wp

* The processes running in a container should be stopped
before the files in the container are removed with the docker
stop command or by using the -£ flag on docker rm.

« YOu can avoid the cleanup burden by specifying --rm on the
docker run command. Doing so will automatically remove
the container as soon as it enters the exited state

‘ University of Cyprus

Docker Overview

Software Installation & Images

WHAT DO YOU NEED TO DO
TO INSTALL AND RUN
SOFTWARE OF A CONTAINER?

M. D. Dikaiakos

Software Installation Simplified

« Software is distributed using images.
* Need to tell Docker exactly which image to install and launch a container with it.
e Steps:
1. ldentify the software you want to install:
* Name the program
e Specify its version
e Specify the source you want to install it from
2. Discover the repository where the identified software image is located.

3. Download the image containing the software required, install, built and run them
isolated from other files in your system.

How do |
identify
software?

University of Cyprus

Software Installation & Images

Docker Repositories

Named Repositories

A named repository is a hamed bucket of images
(hames are similar to URLs).

 Noming syntax:
» name of the host where the image is located
» the user account that owns the image

» A shorf naome.

Registry host Short name
* A repository can hold se AN AN
image identified UNIQUE oy 12 aockerinact ion /oo neito segioess
identify uniquely an imc -

aliases, etc. ™\

User name

‘ University of Cyprus

Locating Repositories

e There are several public Docker indexes, where you can
search for software images.

« Docker Hub is the default Docker registry: it is a registry
and index with a website run by Docker Inc.

You can find software on Docker Hub through either its
website or the docker command-line program, €.9.:
docker search Postgres

« To ensure that Docker is an open ecosystem, Docker Inc.:
» Provides a public image to run your own registry, and

» Allows to easily configure the docker command-line tool
to use alternative registries.

‘ University of Cyprus

Docker Registries

* The Docker Hub website allows registered users to start a repository and publish their images
on Docker Hub. Typical approaches:

» Use the command line to push images independently and on own system. Images pushed this
way are considered to be less trustworthy: not clear how exactly they were built.

» Make a Dockerfile publicly available and use Docker Hub's continuous build system.
« Dockerfiles are scripts for building images.

« Images created from dockerfiles are preferred because the Dockerfile is available for
examination prior to installing the image.

» Working with private Docker Hub registries or pushing into registries that you control on
Docker Hub requires that you authenticate.

» Closed source or proprietary projects may not want to risk publishing their software through a
third party. There are three other ways to install software:

» Use alternative repository reqgistries or run your own registry:

docker pull |quay.io/dockerinaction/ch3 hello registry:latest

» You can manually load images from a file.

» You can download a project from some other source and build an image using a provided
Dockerfile.

University of Cyprus ~ docker rmi quay.io/dockerinaction/ch3 hello registry

Working with Images as Files

e Docker provides the docker load command
to load images into Docker from a file, and
docker save tO save animage to a file.

» SO, you can load images that you acquired
through other channels.

The busybox:latest image is small
Install an image to export. and a good example.

AN / docker rmi busybox
~ N A N

docker pull busybox:latest

docker save -o myfile.tar busybox:latest
7 | Y\ . Y\

The save command Using -o you can Name of the image docker load -1 myf ile.tar
exports an image. specify the name of you want to export.

the output file.

University of Cyprus

Installing from a Dockerfile

* A dockerfile script describes the steps for
Docker to take to build a new image.

» Dockerfiles can be distributed along with
software that the author wanfts 1o be put
INfo an Image.

*E£.Q.:
git clone https://github.com/dockerinaction/ch3 dockerfile.git

docker build -t dia ch3/dockerfile:latest ch3 dockerfile

University of Cyprus

github.com/dockerinaction/ch3_dockerfile.qit:

FROM busybox:latest
MAINTAINER dia@allingeek.com
ADD demo.sh /demo/

WORKDIR /demo/

CMD ./demo.sh

University of Cyprus M. D. Dikaiakos

Department of Computer Science

http://github.com/dockerinaction/ch3_dockerfile.git:

Software Installation & Images

Installation Files and Isolation

Images and Image Hierarchies

* Most of the time, an image is actually a
collection of image layers.

* A layer is an image that's related to atf least one
other image:

» Images are usually related to other images in
parent/child relationships.

Files visible T

* Installing an image means installing: weemee |

>_ Layer 2 A

» a target image and

>_ Layer 1 A

» each image layerinits ineage. < iw [

Figure 7.3 Reading files that are located
‘ University of Cyprus on different layers

Install an image ch3_myapp (but don’t run if)

mdd@turandot ~ % docker pull dockerinaction/ch3_myapp
sing default tag: latest
| m O g es latest: Pulling from dockerinaction/ch3_myapp
5d23c7fed46: Pull complete
° ° Paa7ca%aléal: Pull complete
I ﬂ AC'I'I O n H7d34b884c95: Pull complete
H0f024Ff373b: Pull complete
P384c9efb97d: Pull complete
h7e74b426681: Pull complete
f1c51bc28c2: Pull complete
e0e70589db8: Pull complete
Hf420ec9fa4c: Pull complete
i sha256:2e492fedd50d9d4ef5e8ea92c32795¢c3153836199322ch85eafh93c2e139b3f1
Downloaded newer image for dockerinaction/ch3_myapp:latest
.1o/dockerinaction/ch3_myapp:latest
mdd@turandot ~ %

NS

Then, install another image ch3_myotherapp

mdd@turandot ~ % docker pull dockerinaction/ch3_myotherapp

sing default tag: latest

latest: Pulling from dockerinaction/ch3_myotherapp

5d23c7fed46: Already exists

paa7ca%aléal: Already exists

H7d34b884c95: Already exists

HOT024Ff373b: Already exists

b739d2c7836e: Pull complete

79f97461601b: Pull complete

1c2b86e90a51: Pull complete

b7ebdb20cé5a: Pull complete

1558a979f442: Pull complete

i sha256:5ec2875ca4b24ad5df22b03b4cT45181lad544cdc8b22dc85d27960e28131433e

Downloaded newer image for dockerinaction/ch3_myotherapp:latest

.1o0/dockerinaction/ch3_myotherapp:latest
mdd@turandot ~ %

See which images you have installed:

Images

(base) mdd@turandot ~ % docker images -a

° ° REPOSITORY TAG IMAGE ID CREATED SIZE
In A(:'l'lon Hockerinaction/ch3_myotherapp latest cPal6f5f469c 3 years ago 401MB
Hockerinaction/ch3_myapp latest 0858f7736a46 3 years ago 401MB

(base) mdd@turandot ~ %

Remove the images installed:

base) mddPturandot ~ % docker rmi dockerinaction/ch3_myotherapp dockerinaction/ch3_myapp

ntagged: dockerinaction/ch3_myotherapp:latest

ntagged: dockerinaction/ch3_myotherapp®sha256:5ec2875ca4b24ad5df22b03b4cf45181ad544cdec8b22dc85d27960e28131433e
sha256:c0al6f5f469cc9030b9f01078756900412117FF6725434349c1fe712a399f8bb
sha256:19f013f6c07e84b0233e285187¢c1e1891223dc938272cal21260d5cae243dbac
sha256:06d8fc641216539266705cd2aeb4107fe40b4d084ded278e99368210alaebalf
sha256:029fe81c6260b1b3f558789717f626cel70fcba9eea8l69c78a44cab23502eb0
sha256:d90c0c5350T86db71bf09de04d8e14196c43362935819ac73f78e92bbfcba323
sha256:a13f8d63a95b73afd55a02cb863cf9c8b85acfec28ab5b2ccécfbébeceeclScelfcéd
dockerinaction/ch3_myapp:latest
dockerinaction/ch3_myapp@Psha256:2e492fedd50d9d4ef5e8ea92c32795¢c3153836199322cb85eath93c2e139b3f1
sha256:085817736a46812e9c9497e80e3910a0da289d5adae3f326e286cab6d5d17d357
sha256:9d82415d5dd6eb130f7e31aé63blalfesteed211695a9107e99e31d6152317F3¢c0
sha256:56e5a73ed823387ff13046553f77b15e95¢cb46688de5904d1856617d19cfb7be
sha256:c084037b4ce4leedf0587475136e0891T87e91241b8bTbb802f75256c1fd7e326
sha256:4bc56a53687e59d4dlef77582cbcaabefdb54324ad96ceeb6dd72db3ddabelb70
sha256:ca944018b97b5a921636F79bd92cff411d87ded7ebae8854457b20261744004e
sha256:d6c429c96d03eb5c4cf9705a811ee83eddea254d1309ee599190672ef633bT13
sha256:a883d9e323e495560000111781898cdbec8fdf7a931be9dad47dalo9ab2a9e02
sha256:4cfe7f0f8661eefb6a97130742474149c45ce22e7ca8T93e9e069abe333d2e470
sha256:d8a33133e477d367977987129313d9072e0ec80894ed4c52c2d881861354c29a

NS

Layers

e Layer (or intermediate image): a set of files and file
metadata that is packaged and distributed as an
atomic unit.

» Internally, Docker treats each layer like an image.
» A layer can be promoted to an image if it is tagged.

* Most layers are built upon a parent layer by
applying filesystem changes 1o the parent
(software updates, installations).

» The resulting layer contains the combined set of files
from the parent and the layer added.

‘ University of Cyprus

Image Hierarchies

* Images maintain parent/child relationships:
» In these relationships they build from their parents and form layers.

» Images can have relationships with any other image, including images
in different repositories with different owners.

* The files available to a container are the union of all of the layers in
the lineage of the image the container was created from.

* An image is named when its author tags using the docker tag
command and publishes it.

» Until an image is tagged, the only way to refer to it is to use its 65 (base
16) digit unique identifier (UID) generated when the image was built.

« Docker truncates the UID from to 65 to12 digits for the benefit of its
human users.

« Internally and through API access, Docker uses the full 6.

University of Cyprus

TN ?r.\.':ev\»

SR SRR YA S L R

University of Cyprus

Department of Computer Science

M. D. Dikaiakos

Images and Isolation

« A container mage encapsulates almost all of an
application’s dependencies into a package that
can be deployed info the container:

» The only local external dependencies are on the
Linux kernel system-call inferface.

« Container images isolate applications from the
heterogeneous OS on which they run.

« Containers abstract away from the application
developer and the deployment infrastructure,
many OS and machine details.

‘ University of Cyprus

Images and Isolation

s Programs running inside containers know nothing about image layers.

» From inside a container, the filesystem operates as though it's not running in @
container or operating on an image.

» From its perspective, the container has exclusive copies of the files provided by the
image.

» This is made possible with something called a union file-system (UFS).

* Docker uses a variety of union filesystems and will select the best fit for your system.

* The tools used by Docker to create effective filesystem isolation:

» Union filesystem: used to create mount points on the host filesystem that abstract the
use of layers.

» MNT namespaces: the Linux kernel provides a namespace for the MNT system; when
Docker creates a container, that new container has its own MNT namespace, and a
new mount point will be created from the container to the image.

» The chroot system call: used to make the root of the image filesystem the root in the
container’s confext.

University of Cyprus

Image Hierarchies

e Benefits:

» Layer reuse and bandwidth/storage
saviNgs.

|58 [N
Files visible
to a container
) - - y- -
Layer 2 A 7
s —
‘. Layer1 A

Layer 0 A
Figure 7.3 Reading files that are located
on different layers

University of Cyprus

« Containers are an OS virtualization approach.

* Docker is the most popular solution for managing containers, infroduced by
Google. Docker containers were built initially on LXC with namespaces and
cgroups. Later, they replaced LXC with libcontainer, also using Linux Kernel
namespaces, cgroups, and capabilities.

» Containers can be run with virtual terminals attached to the user’s shell or in
detached mode.

* By default, every Docker container has its own PID namespace, isolating
process information for each container.

* Docker identifies every container by its generated container ID, abbreviated
container ID, or its human-friendly name.

* All containers are in any one of four distinct states: running, paused,
restarting, or exited.

* The docker exec command can be used to run additional processes inside a
running container.

» A user can pass input or provide additional configuration to a process in a
container by specifying environment variables at container-creation time.

» Using the —-—read-only flag at container-creation time will mount the
container file system as read-only and prevent specialization of the
container.

« A container restart policy, set with the ——restart flag at container-creation
time, will help your systems automatically recover in the event of a failure.

* Docker makes cleaning up containers with the docker rm command as
simple as creating them.

Department of Computer Science M. D. Dikaiakos

{, $,
RN

Department of Computer Science

« Human Docker users use repository names to communicate
which software they would like Docker to install.

* Docker Hub is the default Docker registry. You can find
software on Docker Hub through either the website or the
docker command-line program.

* The docker command-line program makes it simple to install
software that's distributed through alternative registries or in
other formes.

* The image repository specification includes a registry host
field.

 The docker load and docker save commands can be used to
load and save images from TAR archives.

« Distributing a Dockerfile with a project simplifies image builds
on user machines.

* Images are usually related to other images in parent/child
relationships. These relationships form layers. When we say
that we have installed an image, we are saying that we have
installed a target image and each image layer in its lineage.

 Structuring images with layers enables layer reuse and saves
bandwidth during distribution and storage space on your
computer.

A Docker image consists of files and metadata.

Image files take up This is the base image for the containers below.
most of the space.
Because of the isolation The metadata has
each container provides, information on
they must have their ~ : ~ environment variables,
own copy of any required Docker image: Ubuntu | port mappings, volumes,
too!s, including Iapguage \ > Files: Metadata: - apd other details we'll
environments or libraries. Ibin/bash Port mappings discuss later.
/bin/bunzip2 Environment variables
Containers run one process /bin/bzcat
on startup. When this process [-]
completes, the container stops. Ivar/spoolirsyslog
This startup process can Nvarfmp
spawn others. ~ ~
f . aYa , aYa :)
l Ubuntu container 1 Ubuntu container 2 Ubuntu container 3
Process: nodejs Process: mysql Process: apache
Diffs from Ubuntu image: Diffs from Ubuntu image: Diffs from Ubuntu image:
MODIFIED: /opt/app/nodejs.log DELETE: /etc/nologin ADDED: /Nivar/log/apache/apache.log
/ AN AN J
- T)
Changes to files are stored Containers are created from images, inherit
within the container in a their filesystems, and use their metadata to
copy-on-write mechanism. determine their startup configuration.
The base image cannot be Containers are separate but can be
affected by a container. configured to communicate with
each other.
A% 4% | University of Cyprus

M. D. Dikaiakos

Department of Computer Science

Docker Overview

Storage and Volumes

SUPPOSE YOU LAUNCH A CONTAINER WITH A
WEB DATABASE APPLICATION

WHEN PROGRAMS CONNECT TO THE DATABASE AND ENTER
DATA, WHERE IS THAT DATA STORED? IS IT IN A FILE INSIDE THIE
CONTAINER?

WHAT HAPPENS TO THAT DATA WHEN YOU STOP THE
CONTAINER OR REMOVE T2

’ HOW WOULD YOU MOVE YOUR DATA IF YOU WANTED TO
UPGRADE THE DATABASE PROGRAM?2

WHERE WOULD YOU WRITE LOG FILES SO THAT THEY WILL
OUTLIVE THE CONTAINER?

HOW WOULD YOU GET ACCESS TO THOSE LOGS TO
TROUBLESHOOT A PROBLEM?

HOW CAN OTHER PROGRAMS SUCH AS LOG DIGEST TOOLS
GET ACCESS TO THOSE FILES?

Department of Computer Science

M. D. Dikaiakos

Union File System

« Without a storage solution, container users
are limited to working with the union file
system that provides image mounts.

* Although the union file system works for
building and sharing images, it's less than
ideal for working with persistent or shared
data.

University of Cyprus

* Linux unifies all storage info a single file system
tree:

» Storage devices such as disk partitions or USB
disk partitions are attached to specific locations
in that tree.

» Those locations are called mount points.

* A mount point defines:

» the location in the tree, the access properties to
the data at that point (for example, writability),
and

» the source of the data mounted at that point
(e.g., a specific hard disk, USB device, or
memorv-backed virtual disk).

Filesystem Access Block Devices
read — O use T h e
/ > /dev/sda ' .
e e —
/var read-write ——— nOWIr]g
/media/usb-drive > /dev/sdb ec |f| C

read S .
TR | N
~ /deb/usb0

Figure 4.1 Storage devices attached to a filesystem tree at
their mount point

1. D. Dikaiakos

Mount Points and Containers

« Every container has something called a MNT namespace
and a unigue file tree roof.

* The image that a container is created from is mounted at
that container's file free root- the / point

« Every container has a different set of mount poinfs.

«Since different storage devices can be mounted at
various points in a file tree, we can mount nonimage-
related storage at other points in a container file free.
That is exactly how:

» containers get access to storage on the host filesystem and

» share storage between containers.

‘ University of Cyprus M. D. Dikaiakos

Container Storage

* There are three most common types of storage
mounted info containers:

» Bind mounts
» In-memory storage
» Docker volumes

e These types of mount points can be created
using the ——mount flag on the docker run and
docker create subcommands.

University of Cyprus

Container Storage

S iversity of ikai
AXA University of Cyprus M. D. Dikaiakos

Department of Computer Science

Container Storage

S iversity of ikai
AXA University of Cyprus M. D. Dikaiakos

Department of Computer Science

Container Storage

S iversity of ikai
AXA University of Cyprus M. D. Dikaiakos

Department of Computer Science

Container Storage

S iversity of ikai
AXA University of Cyprus M. D. Dikaiakos

Department of Computer Science

Container Storage

Program

Container
Write to /
>‘ .
Write to /data File system
|

Layer
Write to /

Write to /data

|

University of Cyprus

M. D. Dikaiakos

Images vs Volumes

* A volume is a tool for sesgmenting and sharing data that has a scope or life
cycle that's independent of a single container.

« Volumes an important part of any containerized system design that shares
or writes files:

» Database software vs database data

» Web application vs log data

» Data processing application vs input and output data
» Web server vs static content

« Volumes enable separation of concerns and create modularity for
architectural components:

» Images: appropriate for packaging/distributing relatively static files (e.g.
programs)

» Volumes: hold dynamic data or specializations.

‘ University of Cyprus

Bind Mountis

* Bind mounts are mount points used to remount parts of @
filesystem tree onto other locations.

« When you use a bind mount, a file or directory on the host
machine (source) is mounted into a container, to a specific
point in a container file tree (destination). The file or directory
Is referenced by its absolute path on the host machine.

e Bind mounts are useful when:

» The host provides a file or directory that is needed by @
program running in a Container

» The containerized program produces a file or log that is
processed by users or programs running outside containers.

‘ University of Cyprus M. D. Dikaiakos

Bind Mount Scenario

«Consider that you're running a NGINX web server that
depends on sensitive configuration on the host and
emits access logs that need to be forwarded by your
log-shipping system.

*Use Docker to launch the web server in a container and
bind-mount the locations where you want the web
server to get the configuration and write the access-
logs.

docker run -d --name diaweb\
—-mount type=bind, src=${LOG SRC},dst=${LOG DST) \
—--mount type=bind, src=$(CONF SRC}, dst=${CONF DST}, readonly=true \
-p 80:80 \

nginx:latest

Bind Mount Cons and Pros

* Bind mounts tie otherwise portable container descriptions to the filesystem of @
specific host.

» If a container description depends on content at a specific location on the host file
system, that description isn't portable to hosts where the content is unavailable or

available in some other location.

* Bind mounts create an opportunity for conflict with other containers.

X

» E.g. start multiple instances of a database that all use the same host location as @
bind mount for data storage.

» In that case, each of the instances would compete for the same set of files. Without
other tools such as file locks, that would likely result in corruption of the database.

* Bind mounts are appropriate tools for workstations, machines with specialized
concerns, or in systems combined with more traditional configuration
management tooling.

* [t's better to avoid these kinds of specific bindings in generalized platforms or
hardware pools.

‘ University of Cyprus

In-memory Storage

* Most service software and web applications use private key files,
database passwords, APl key files, or other sensitive configuration
files, and need upload buffering space.

*In these cases, it is important that you never include those types of
files in an image or write them to disk.

 Instead, you should use in-memory storage.

* YOou can add in-memory storage to containers with a special type
of mount:

base) mdd@Pturandot ~ % docker run --rm —--mount type=tmpfs,dst=/tmp \

-—entrypoint mount alpine:latest -v

University of Cyprus

(base) mdd@Rturandot ~ % docker run —-rm —--mount type=tmpfs,dst=/tmp \
> ——entrypoint mount alpine:latest -v
overlay on / type overlay (rw,relatime,lowerdir=/var/lib/docker/overlay2/1/SUIXIOKI2PKWITGVLILCLUMCS4:/var/lib/docker/overlay
2/1/CWJIJOLUE34QTIFS5PH6DW4UKS7A, upperdir=/var/lib/docker/overlay2/ece940b70699b5ea7604c237e1c403bbb43f2df9abffbd80b8OTFFf 47730
212d/diff,workdir=/var/lib/docker/overlay2/ece940b70699b5ea7604c237elc403bbb43f2df9abffbd80b80ffff47730212d/work)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev type tmpfs (rw,nosuid, size=65536k, mode=755)
devpts on /dev/pts type devpts (rw,nosuid, noexec,relatime,gid=5,mode=620, ptmxmode=666)
sysfs on /sys type sysfs (ro,nosuid, nodev, noexec,relatime)
cgroup on /sys/fs/cgroup type cgroup2 (ro,nosuid,nodev,noexec,relatime)
mqueue on /dev/mqueue type mqueue (rw,nosuid,nodev,noexec,relatime)
shm on /dev/shm type tmpfs (rw,nosuid, nodev, noexec,relatime,size=65536k)
tmpfs on /tmp type tmpfs (rw,nosuid, nodev,noexec,relatime)
/dev/vdal on /etc/resolv.conf type ext4 (rw,relatime)
/dev/vdal on /etc/hostname type ext4 (rw,relatime)
/dev/vdal on /etc/hosts type ext4 (rw,relatime)
on /proc/bus type proc (ro,nosuid, nodev, noexec,relatime)
on /proc/fs type proc (ro,nosuid,nodev,noexec,relatime)
on /proc/irq type proc (ro,nosuid,nodev,noexec,relatime)
on /proc/sys type proc (ro,nosuid,nodev,noexec,relatime)
on /proc/sysrq-trigger type proc (ro,nosuid,nodev,noexec,relatime)
on /proc/kcore type tmpfs (rw,nosuid, size=65536k, mode=755)
on /proc/keys type tmpfs (rw,nosuid,size=65536k, mode=755)
on /proc/timer_list type tmpfs (rw,nosuid, size=65536k, mode=755)
on /proc/sched_debug type tmpfs (rw,nosuid, size=65536k, mode=755)
on /sys/firmware type tmpfs (ro,relatime)
(base) mdd@turandot ~ %]

Docker Volumes

* Docker volumes are named filesystem trees managed by Docker. They can be
implemented with:

» disk storage on the host file system, or
» as cloud storage.

* When using a volume, a new directory is created within Docker'’s storage directory on
the host machine, and Docker manages that directory’s contents.

* Using volumes decouples storage from specialized locations on the file system that you
might specify with bind mounts: their life-cycle is independent of a single container’s.

 All operations on Docker volumes can be accomplished using the docker volume
subcommand set: docker volume create dnd docker volume inspect.

* Volumes are an effective way to organize your data:
» Using them decouples volumes from other potential concerns of the system.

» When you're finished with a volume and you ask Docker to clean things up for you,
Docker can confidently remove any directories or files that are no longer being used by a
container.

(base) mdd@turandot ~ % docker volume create ——driver local --label example=location location-example
location—-example

(base) mdd@Pturandot ~ % docker volume inspect ——format "{{json .Mountpoint}}" location-example
"/var/lib/docker/volumes/location-example/_data"

Using volumes
with a NoSQL
Database

Apache Cassandra is a popular,
open source NoSQL distributed
database offering linear scalability
and fault-tolerance on commodity
hardware or cloud infrastructure.

e Task: run a container with @
Cassandra DB, using an external
volume 1o store its data:

e Create a docker volume

 Run a container with Cassandrqg,
inking It to the created volume

* Run another container and
connect through it fo the DB,
submitting instructions

Create volume on the disk space of the local machine
Using volumes and in a part managed by the Docker engine:

W|'|'h d NOSQL (base) mdd@turandot ~ % docker volume create \
——driver local \

[)C]TC]k)(]S€3 ——label example=cassandra \

cass-shared

cass—shared
Launch a container running Cassandra, with the cass-

shared volume mounted at /var/lib/cassandra/data

——volume cass-shared:/var/lib/cassandra/data \
——name cassl cassandra

Unable to find image 'docker:latest' locally
latest: Pulling from library/docker
9b18e9b68314: Already exists
e5833820420a: Pull complete
79069699b830: Pull complete
444a66d86b54: Pull complete
at8c662400cO: Pull complete
7851778f47af: Pull complete
969048075247: Pull complete
9d9d268b6129: Pull complete
71d72239e8c8: Pull complete
Digest: sha256:0e3e7e2033cf7779ab6985e24ad18déec415¢c9dd944acef5cab56119a3a0ddae
Status: Downloaded newer image for docker:latest
59bb65fc73714711968890bf321a8aacc97cc9abb51a93449a7beadlc8fad682

_ Connect to Cassandra from another container & subbmit
instructions

(base) mdd@Pturandot ~ % docker run -it ——rm —-link cassl:cass cassandra cqglsh cass
Connected to at cass:9042
[cqglsh 6.0.0 | Cassandra 4.0.7 | CQL spec 3.4.5 | Native protocol v5]
Use HELP for help.
cqglsh> select *
from system.schema_keyspaces
. where keyspace_name = 'docker_hello_world'

N\ ol

{ {,
MNu
¥

F&'\ b~ Department of Computer Science

Sharing Files between Containers

« Sharing access to the same set of files between multiple containers is
where the value of volumes becomes most obvious.

* Bind mounts are the most obvious way to share disk space between
containers.

« Unlike shares based on bind mounts, named volumes enable containers to
share files without any knowledge of the underlying host file system.

» Unless the volume needs to use specific setftings or plugins, it does not have
to exist before the first container mounts it.

» Docker will automatically create volumes named in run Or create
commands by using the defaults.

« Aftention: A named volume that exists on the host will be reused and
shared by any other containers with the same volume dependency.

« Name conflicts can be avoided by using anonymous volumes and
mountpoint definifion inheritance between containers.

‘ University of Cyprus

Department of Computer Science

* Volumes allow containers to share files with the host or other
containers;

« Volumes are parts of the host file system that Docker mounts into
containers at specified locations. There are two types of volumes:

» Docker-managed volumes that are located in the Docker part of
the host file system

» Bind mount volumes that are located anywhere on the host file
system.

* Volumes have life-cycles that are independent of any specific
container, but a user can only reference Docker-managed
volumes with a container handle.

« Orphan volume problem can make disk space difficult to recover.
» Use the docker rm -v option.

* A number of patterns can be followed to provide for volume
organization, storage efficiency on the host, static content
distribution, maximing reuse of storage etc

» Volume container pattern

» Data-packed volume container pattern: useful for distributing
static content for other containers

» The polymorphic container pattern: a way to compose minimal
functional components and maximize reuse

M. D. Dikaiakos

{, $,
RN

Department of Computer Science

« Mount points allow many f/s from many devices to be
attached to a single file tree.

« Every container has its own file tree.

« Containers can use bind mounts to attach parts of the
host f/s into a container.

« In-memory filesystems can be attached to a container file
tree so that sensitive or temporary data is not written to
disk.

e Docker provides anonymous or named storage references
called volumes.

« Volumes can be created, listed, and deleted using the
appropriate docker volume subcommand.

« Volumes are parts of the host filesystem that Docker
mounts into containers at specified locations.

« Volumes have life cycles of their own and might need to
be periodically cleaned up.

« Docker can provide volumes backed by network storage
or other more sophisticated tools if the appropriate
volume plugin is installed.

M. D. Dikaiakos

Docker Overview

Single-host networking

Docker Container Networking

« There are two specific networks of interest when examining the
networking capabilities of Docker containers running on a server:

» The first network is the one that the server is connected to.

» The second is a virtual network that Docker creates to connect all of the
running containers to the network that the computer is connected to.

* The second network is called a bridge. The bridge is an interface that
connects multiple networks so that they can function as a single
network.

» Bridges work by selectively forwarding traffic between the connected
networks based on another type of network address.

— —

Bridge
interface

Hosts in network 1 Hosts in network 2

Docker Networks

e Docker abstracts the underlying host-attached
network from containers.

« A container atfached to a Docker network will get
a unigue IP address that is routable from other

containers attac

e Docker freats nef

ned 1o the same Docker network.

'works as first-class enfities: they

have their own lifecycle and are not bound to
any other objects.

* They can be defined and managed with the
docker network subcommands.

‘ University of Cyprus

WHICH NETWORIKS AR
AVAILABLE BY DEFAULT WITIH
EVERY DOCKER
INSTALLATION?

mdd@triénemi ~ % docker network 1s
NETWORK ID NAME DRIVER
62d7f4f73e27 bridge bridge

Ofdc24b706ad host host
69bdd47f31be none null

Docker Default Networks

* By default, Docker includes three networks, each provided by a different driver.
* Bridge is the default network, provided by a bridge driver.

» This offers inter-container connectivity for all containers running on the same
machine.

» Included to maintain compatibility with legacy Docker and cannot take advantage
of modern Docker features including service discovery or load balancing - so if you
need a bridge network, you have to provide your own.

* The host network is provided by a host driver, which instructs Docker not to create
any special networking namespace or resources for attached containers.

» The containers on the host network interact with the host's network stack like
uncontained processes.

* The none network uses the null driver.

» Containers attached to the none network will not have any network connectivity

ouftside themselves. 2
mdd@trianemi % docker network 1s

NETWORK ID NAME DRIVER

62d7f4f73e27 bridge bridge
Ofdc24b706ad host host
69bdd47f31be none null

University of Cyprus

Docker Network Scope

* The scope of a network can take three values:

» Local: the network is constrained to the machine
where the network exists

» Global: should be created on every node in @
cluster but not route between them

» Swarm: seamlessly spans all of the hosts participating
IN a Docker swarm (multi-nost or cluster-wide)

e All of the default networks have the local scope,
and will not be able to directly route traffic between
containers running on different machines.

‘ University of Cyprus

Bridge Network

« Containers have their own
private loopback interfface and a
separate virtual Ethernet interface
linked to another virtual interface
in the host's namespace.

%/,,
.

.
)
.

» These two linked interfaces form za=-- B e et
a link between the host's . . e
. _ 11 }/ ,?”///1167', >
network and the container. -

747
.
.

////”//7
-

%7

/(y 79
7 /
G
.
7%

« Each container is assigned a
unique private IP address that's
not directly reachable from the
external network.

« Connections are routed through
another Docker network that
routes traffic between containers
and may connect to the host's
network to form a bridge.

,’fbyﬁ;defaUIt local Docker network topology and two attached

University of Cyprus

Department of Computer Science

M. D. Dikaiakos

User-defined Bridge Networks

* Docker allows you to create your own specific

and customizable virtual network topology, using
the Docker bridge network driver, which relies on:
LINnux hamespaces, virtual Ethernet devices, and
the Linux firewall.

* The resulting virtual network (the bridge):

» Is local to the machine where Docker is installed.

» Creates routes between parficipating containers
and the wider network where the host is

attached.

‘ University of Cyprus

Exploring
Docker
Networking

*Let’s see how to use containers
with user networks and inspect the
resulting network configuration.

e SCcenario:

« Create 2 bridge networks, user-
network dnd user-network?2.

 Create 2 containers, network-
explorer and lighthouse, and

connect them to the bridge
networks.

« Examine how these steps are
Implemented and how the
networks are configured.

M. D. Dikaiakos

» Before starting any containers, check which networks are available

(base) mdd@princeton docker % docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
(base) mdd@princeton docker % docker network ls

NETWORK ID NAME DRIVER SCOPE

b875a737161@ bridge bridge local

0d86df7c623b host host local

25512cc4ell? none null local

(base) mdd@princeton docker %

« Create a bridge network, user-network, and check what

rWC]F)ijerWS: (base) mdd@princeton docker % docker network create --driver bridge \
--label project=dockerinaction --label chapter=5 \
--attachable \
--scope local \
--subnet 10.0.42.0/24 \
--1p-range 10.0.42.128/25 \
user-network
c07fc44633221780bf39a9d6aa9b5cd8acd2d4b64013f9f67a60be51b522556b
(base) mdd@princeton docker ¥ docker network ls
NETWORK ID NAME DRIVER SCOPE
b875a7371610@ bridge bridge local
0d86df7c623b host host local
25512cc4ell? none null local
c07fc4463322 user-network bridge local

0O

)

« Creates a new local bridge network named user-network.

« Assigns the network with label metadata, to help identifying
it later.

* Marks the network as atftfachable to allow attaching and
detaching containers to it at any tfime.

« Sets the network scope property to the default value for ifs
driver.

e Creates a custom subnet 10.0.42.0/24, and an

assignable address range for this network's upper half of the
last octet (10.0.42.128/25).

* This means that as you add containers to this network,
they will receive |IP addresses in the range from
10.0.42.1281010.0.42.255.

&ﬁ% Configuration

-
docker

user-network

0O

l‘ﬁTl
« Launch a container, attach it to the created user-network, and run sh on
the container.

e From the shell, check the network interfaces available on the container.

base) mdd@princeton docker ¥ docker run -1t --network user-network \
> --name network-explorer alpine:3.8 sh
1p -f 1net -4 -0 addr
1: lo inet 127.0.0.1/8 scope host lo\ valid_lft forever preferred_Lft forever

16: eth@ inet 10.0.42.129/24 brd 10.0.42.255 scope global eth@\ valid_lft forever preferred_lLft forever
exit
base) mdd@princeton docker %

« Two network devices are available, with IPv4 addresses:
« 1o (loopback)

«eth0 (virtual ethernet device): has an IP address between 10.0.42.128
t010.0.42.255

« That IP address is the one that any other container on this bridge network
would use to communicate with services you run in this container.

* The loopback interface can be used only for communication within the
same container.

Eﬁ% Configuration

network-explorer

of| 14

ethO

o

docker

user-network

e Create another network named user-network?2

base) mdd@princeton docker % docker network create --driver bridge \
--label project=dockerinaction --label chapter=5 \
--attachable \
--scope local \

--subnet 10.0.43.0/24 \

--1p-range 10.0.43.128/25 \

user-network?2
18e1251cb@613b18c53023894ddcbdb90e8c595695717a9c9bdaa3f7ceaade2?

e Connect your container to the new network:

mdd@princeton docker % docker network connect user-networkZ network-explorer

e Affach your terminal to the conftainer and check ifs
network intferfaces: the network-explorer container is

attached to both user-defined bridge networks.

(base) mdd@princeton docker % docker attach network-explorer
/ # 1p -f inet -4 -0 addr
inet 127.0.0.1/8 scope host lo\ valid_Lft forever preferred_lLft forever

inet 10.0.42.129/24 brd 10.0.42.255 scope global eth@\ valid_Lft forever preferred_lLft forever
inet 10.0.43.129/24 brd 10.0.43.255 scope global ethl\ valid_lLft forever preferred_lLft forever

Eﬁ% Configuration

network-explorer

docker

User-network

ok

docker

user-network?2

e Install inside container network-explorer the nmap tool to scan network address ranges in its
network and find which services are running.

(base) mdd@princeton docker ¥ docker attach network-explorer

/ # 1p -f 1net -4 -0 addr

| inet 127.0.0.1/8 scope host lo\ valid_lft forever preferred_lft forever
11: eth@ inet 10.0.42.129/24 brd 10.0.42.255 scope global eth@\ valid_lLft forever preferred_lLft foreven
14: ethl inet 10.0.43.129/24 brd 10.0.43.255 scope global ethl\ valid_Lft forever preferred_lLft forevenr
/ # apk update && apk add nmap

fetch http://dl-cdn.alpinelinux.org/alpine/v3.8/main/x86_64/APKINDEX.tar.gz

fetch http://dl-cdn.alpinelinux.org/alpine/v3.8/community/x86_64/APKINDEX.tar.gz
v3.8.5-67-gf%del%ca [http://dl-cdn.alpinelinux.org/alpine/v3.8/main]
v3.8.5-66-gccbdba8ae? [http://dl-cdn.alpinelinux.org/alpine/v3.8/community]

OK: 9564 distinct packages available

(1/4) Installing libgcc (6.4.0-r9)

(2/4) Installing libpcap (1.8.1-rl)

(3/4) Installing libstdc++ (6.4.0-r9)

(4/4) Installing nmap (7.70-r2)

Executing busybox-1.28.4-r3.trigger

OK: 18 MiB 1n 17 packages

/ # nmap -sn 10.0.42.% -sn 10.0.43.* -o(G /dev/stdout | grep Status

Host: 10.0.42.128 (O Status: Up

Host: 10.0.42.129 (2faclabcd4f0) Status: Up

Host: 10.0.43.128 (O Status: Up

Hosti 10.0.43.129 (2faclabcd4f@) Status: Up

/ # |

- nmap finds that only two devices are attached to each of the bridge networks:

* The gateway drivers created by the bridge network driver

* The running container

O :
E‘IT]J. Create a second container named
lighthouse and atftach it 10 user-network?2.

(base) mdd@princeton docker % docker run -it \
--name Lighthouse \
--network user-networkZ \

alpine:3.8 sh

network-explorer lighthouse

eth

ethO ethO

& =

docker docker

User-network user-network2

« Use again the nmap tool to from container network-explorer to scan network address
ranges in its network and find which services are running.

/ # nmap -sn 10.0.42.*% -sn 10.0.43.* -oG /dev/stdout | grep Status
Host: 10.0.42.128 () Status: Up

Host: 10.0.42.129 (2faclabcd4f@) Status: Up

Host: 10.0.43.128 () Status: Up

Host: 10.0.43.129 (2faclabcd4f@) Status: Up

/ # nslookup lighthouse

nslookup: can't resolve '(null)': Name does not resolve

Name: Lighthouse

Address 1: 10.0.43.130 lighthouse.user-network?2

/ # nmap -sn 10.0.42.*% -sn 10.0.43.* -oG /dev/stdout | grep Status
Host: 10.0.42.128 () Status: Up

Host: 10.0.42.129 (2faclabcd4f@) Status: Up

Host: 10.0.43.128 (O Status: Up

Host: 10.0.43.130 (lighthouse.user-network2) Status: Up

Host: 10.0.43.129 (2faclabcd4f@) Status: Up

/ #

« The results show that the 1ighthouse confaineris up and running, and accessible from the
network-explorer container via its attachment to user-network2.

* SO network attachment works as expected. DNS-based service discovery system works.

« By scanning the network, you discover the new node by its IP address, and nmap is able
to resolve that IP address fo a name.

« Your code can discover individual containers on the network based on their name.

Beyond bridge networks

 Bridge networks work on only a single machine: They are not cluster-aware;
The container IP addresses are not routable from outside that machine.

» Useful for single-server deployments, e.g. for a LAMP stack running a CMS or for
local development work.

« For Docker networking in mulfi-server environments, options are:

» Underlay networks - (w. Docker on Linux and w. conftrol of the host network),
using drivers like macvlan or ipvlan:

o Create first-class network addresses for each container

« Addresses are discoverable & routable from the same network where the host is
attached - each container looks like an independent node of the network.

» Overlay networks: similar in construction to bridge networks but the logical
bridge component is multi-host aware and can route inter container
connections between every node in a swarm (swarm mode must be enabled).

« Containers on overlay network not routable outside the cluster.

University of Cyprus

Special Container Networks: Host

« When you specify the -—-network host optfion on a docker run command, you
are telling Docker to:

» create a new container without any special network adapters or network
namespace.

» Whatever software is running inside the resulting container will have the same degree
of access to the host network as it would running outside the container.

» All of the kernel tools for tuning the network stack are available for modification (as
long as the modifying process has access to do so).

« Containers running on the host network are able to:
» access host services running on localhost
» see and bind to any of the host network interfaces.
* Running on the host network
» Is useful for system services or other infrastructure components.

» Is not appropriate in multi-tenant environments and should be disallowed for third-
party containers.

University of Cyprus

(base) mdd@princeton docker ¥ docker run --rm --network host alpine:3.8 ip -o addr

#wNNNHr—-»—'

=

lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN glen 1000\ 1link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

lo inet 127.0.0.1/8 brd 127.255.255.255 scope host lo\ valid_lft forever preferred_lft forever

lo inet6 ::1/128 scope host \ valid_lft forever preferred_lft forever

eth@: <BROADCAST,MULTICAST,UP,LONER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000\ link/ether 02:50:00:00:00:01 brd ff:ff:ff:ff:ff:ff

eth@ inet 192.168.65.3/25 brd 192.168.65.127 scope global dynamic eth@\ valid_lft 2147474417sec preferred_lft 1717977687sec

eth@ inet6 fe80::50:ff:fed:1/64 scope link \ valid_lft forever preferred_lft forever

tunl@@NONE: <NOARP> mtu 1480 qdisc noop state DOWN glen 1000\ link/ipip 0.0.0.0 brd 0.0.0.0

ip6tnl@@NONE: <NOARP> mtu 1452 qgdisc noop state DOWN glen 1000\ link/tunnel6 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00 brd 00:00:00:00:00:00:00:00:00:00:

:00:00:00:00:00
: servicesl@if6: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue state UP \ link/ether 16:03:17:b5:87:1d brd ff:ff:ff:ff:ff:ff
: servicesl inet 192.168.65.4 peer 192.168.65.5/32 scope global servicesl\ valid_lft forever preferred_lft forever
: servicesl inet6 fe80::1403:17ff:feb5:871d/64 scope link \ valid_lft forever preferred_lft forever
: docker®: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN \ link/ether 02:42:66:01:0e:97 brd ff:ff:ff:ff:ff:ff
: docker® inet 172.17.0.1/16 brd 172.17.255.255 scope global dockerd\ valid_lft forever preferred_lft forever

: br-83difbfedafb: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP \ link/ether 02:42:93:a7:61:56 brd ff:ff:ff:ff:ff:ff

: br-83difbfedafb inet 10.0.42.128/24 brd 10.0.42.255 scope global br-83dlfbfedafb\ valid_lft forever preferred_lft forever

: br-83difbfedafb inet6 fe80::42:93ff:fea7:6156/64 scope link \ valid_lft forever preferred_lft forever

: vethb19c25a@1f11: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 gdisc noqueue master br-83dlfbfedafb state UP \ link/ether 46:76:72:0c:09:bc brd ff:ff:ff:
HATRAT

: vethb19c25a inet6 fe80::4476:72ff:fe@c:9bc/64 scope link \ valid_lft forever preferred_lft forever

: br-5149df35f46a: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP \ link/ether 02:42:f3:bf:63:35 brd ff:ff:ff:ff:ff:ff

: br-5149df35f46a inet 10.0.43.128/24 brd 10.0.43.255 scope global br-5149df35f46a\ valid_lft forever preferred_lft forever

: br-5149df35f46a inet6 fe80::42:f3ff:febf:6335/64 scope link \ valid_lft forever preferred_lft forever

: veth32ad014@if14: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 gqdisc noqueue master br-5149df35f46a state UP \ link/ether a2:e5:07:60:23:4e brd ff:ff:ff:
ff:ff

: veth32ad014 inet6 fe80::a0e5:7ff:fe60:234e/64 scope link \ valid_lft forever preferred_lft forever

: veth526605b@1f16: <BROADCAST ,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 gdisc noqueue master br-5149df35f46a state waer be:44:da:9f:5b:6d brd ff:ff:ff:
AT

: veth526605b inet6 fe80::bc44:daff:fe9f:5b6d/64 scope link \ valid_lft forever preferred_lft forever

Special Container Networks: None

 To create a container that cannot be attached to a network when building
systems of least privilege, you should use the none network whenever possible.

« Creating a container on the none network:

» Instructs Docker not to provision any connected virtual Ethernet adapters for the
new container.

» Gives the container its own network namespace and so it will be isolated: without

adapters connected across the namespace boundary, it will not be able to use the
network to communicate outside the container.

« Containers configured this way will still have their own loopback interface, and so
multiprocess containers can still use connections 1o localhost for inferprocess
communication:

» Any program running in the container can connect to or wait for connections on
the localhost interface.

» Nothing outside the container can connect to that interface.

» No program running inside that container can reach anything outside the container.

(base) mdd@princeton docker % docker run --rm --network none alpine:3.8 ping -w 2 1.1.1.1

ping: sendto: Network unreachable
PING 1.1.1.1 (1.1.1.1): 56 data bytes

Handling Inbound Traffic

« Bridge networks use network address translation (NAT):

» All outbound container traffic with destinations outside the bridge
network look like they are coming from the host itself.

» The service software you have running in containers is isolated from
the rest of the world, where most of your clients and customers are
located.

« For inbound traffic o reach a container from external network
Inferfaces, you have 1o specifically tell Docker how to forward
traffic to the container, specifying:

» A TCP or UDP port on the host inferface and
» A target container and container port

similar fo forwarding traffic through a NAT barrier on your home
network.

‘ University of Cyprus

Handling Inbound Traffic

« Port publication configuration is provided at container creation fime
and cannot be changed later.

e The docker run and docker create commands provide a -p or —
publish list option, with arguments specifying:

» Host inferface

» Port on the host to forward
» Target port

» Port protocol

« Map port 8080 of the host inferface to port 8080 of the container

listenerl:

(base) mddPturandot docker % docker run -d -p 8080:8080 --name listenerl alpine:3.8 sleep 300
c7782b28belcce838c67111f83Te4751722259a5b59f8e54e7bd769¢c5737283bc
(base) mdd@turandot docker % docker port listenerl

8080/tcp -> 0.0.0.0:8080

(base) mdd@turandot docker % docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c7782b28belc alpine:3.8 "sleep 300" 10 seconds ago Up 9 seconds 0.0.0.0:8080->8080/tcp listenerl

University of Cyprus

Handling Inbound Traffic

* Map some (randomly chosen by the host operating system) port
of the host interface to port 8080 of the container listener2:

(base) mdd@Pturandot docker % docker run -d -p 8080 ——name listener2 alpine:3.8 sleep 300
Pe3d4ca554dd4el99da7901b2ecbcd302f4ef35ac9718412b807c2b2d6445a18

(base) mdd@Pturandot docker % docker port listener2

B080/tcp —> ©.0.0.0:55769

(base) mdd@turandot docker % docker ps -a

ONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Pe3d4ca554dd alpine:3.8 "sleep 300" 27 seconds ago Up 26 seconds 0.0.0.0:55769->8080/tcp listener2

 Ports are scarce resources - choosing a random port avoids
potential conflicts.

* Note: programs running inside a container have no way of
knowing that they are:

» running inside a container
» bound to a container network,
» which port is being forwarded from the host

‘ University of Cyprus

Handling Inbound Traffic

« Docker allows you to define multiple port
mMappings:

(base) mdd@turandot ~ % docker run --rm --name testl -p 127.0.0.1:8080:8080/tcp -p 127.0.0.1:3000:3000/tcp \
alpine:3.8 sleep 200

(base) mddPturandot ~ %
(base) mdd@turandot ~ % docker run -d -p 8080 -p 3000 —-p 7500 —-name multil alpine:3.8 sleep 300
3e2c4e2d73aaebada5Tda5171b3b858731a17744bcb6d6T8T90aa35d7fe80b36¢C

 With docker port subcommand you can specify
the specific port of your container for which you are
looking for its mapping on a port of its host machine:

(base) mdd@Pturandot ~ % docker port 3e2c4e2d73aa
8080/tcp -> 0.0.0.0:55841
3000/tcp -> 0.0.0.0:55839
7500/tcp -> 0.0.0.0:55840

(base) mdd@turandot ~ % docker port 4ddfclefla3d
3000/tcp -> 127.0.0.1:3000

8080/tcp -> 127.0.0.1:8080

(base) mdd@Pturandot ~ % docker port 4ddfclefla3d 3000
127.0.0.1:3000

Firewalls in Docker

« Docker networking follows the namespace model, wherein containers in the
same container network know each other’'s names and through that
knowledge they can communicate.

» Resource access-control problems are fransformed into addressability problems.

» Containers on the same container network will have mutual (bidirectional)
unrestricted network access.

« However, different applications carry different vulnerabilities and might be
running in containers with different security postures.

« Consequently:

» A firewall will not protect you against a compromised application running in a
container of your network.

» Nothing short of application-level authentication and authorization can protect
containers from each other on the same network.

» Always deploy containers with appropriate application-level access-control
mechanisms.

‘ University of Cyprus

Containers and DNS

 Typically, containers on the bridge network and other computers on your network have private P
addresses that aren't publicly routable:

» unless you're running your own DNS server, you can't refer to them by a name.
« Options for customizing the DNS configuration for a new container, use docker run with:

«The --hostname flag to set the hostname of the new container. adds this entry to the DNS override
system inside the container.

» The entry maps the provided hostname to the container's bridge.

» Setting the hosthame of a container is useful when programs running inside a container need to look up

their own IP address or must self-identify. However, other containers don't know this hosthame: its uses are
limited.

» If you use an external DNS server, you can share those hostnames.

«The --dns flag to specify one or more DNS servers to use.

«The --dns-search flag allows you to specify a DNS search domain, which is like a default hosthame
suffix.

» With a DNS search domain set, any hostnames that don't have a known top-level domain (for
example, .com or .net) will be searched for with the specified suffix appended.

«The --add-host flag allows overriding the DNS system, providing a custom mapping for an IP address
and hosthame pair.

University of Cyprus

(base) mdd@turandot ~ % docker run —-rm —-hostname dsc516 alpine:3.8 ping dsc516
PING dsc516 (1Z2+87=8+2): 56 data bytes

64 bytes from/172. 3 seq=0 ttl=64 time=0.045 ms

64 bytes from|172. d seq=1 ttl=64 time=0.207 ms

64 bytes from|172. d seq=2 ttl=64 time=0.165 ms

64 bytes from|172. 4 seq=3 ttl=64 time=0.224 ms

64 bytes from\172. J seq=4 ttl=64 time=0.237 ms

AC

-—— dsc516 ping statistics ———

5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.045/0.175/0.237 ms

(base) mddPturandot ~ %

el
NN

B
NN

COOO®®

NINDNNDN

[
N

(base) mdd@princeton docker % docker run --rm {--dns 8.8.8.8)alpine:3.8 nslookup docker.com

nslookup: can't resolve '(null)': Name does not resolve
Name: docker.com

Address 1: 141.193.213.20

Address 2: 141.193.213.21

(base) mdd@princeton docker % docker run --rm(--dns-search docker.comjalpine:3.§ nslookup hub

nslookup: can't resolve '(null)': Name does not resolve

Name: hub

Address 18.206.20.10 ec2-18-206-20-10.compute-1.amazonaws . com

Address 18.210.197.188 ec2-18-210-197-188.compute-1.amazonaws .com

Address 3.228.146.75 ec2-3-228-146-75. compute-1.amazonaws . com hU b-doc ker-com
Address 2600:1f18:2148:bc02:c4d:bd64:5587:68e0

Address 2600:1f18:2148:bcl0:b293:3938:d3bl:c2db

Address 6: 2600:1f18:2148:bc01; -

(base) mdd@princeton docker %{nslookup hub.docker.com

Server: 213.140.209.239 DO The SOme SeOrCh from
Non-authoritative answer:

Address: 213.140.209.239#53
hub.docker.com canonical name = elb-default.us-east-1.aws.dckr.10.

elb-default.us-east-1.aws.dckr.10 canonical name = prodextdefblue-1lcc51s331ft-b42d79a68e9f190c.elb.us-east-1.amazonaws.com.
Name: prodextdefblue-lcc51s331ft-b42d79a68e9f190c.elb.us-east-1.amazonaws.com

Address: 18.210.197.188

Name: prodextdefblue-lcc51s331ft-b42d79a68e9f190c.elb.us-east-1.amazonaws.com

Address: 3.228.146.75

Name: prodextdefblue-1cc51s331ft-b42d79a68e9f190c.elb.us-east-1.amazonaws . com

Address: 18.206.20.10

V1S WN =

(base) mdd@princeton docker % docker run --rm (--add-host test:10.10.10.255 Yalpine:3.8 nslookup test

nslookup: can't resolve "(null)': Name does not resolve

Name: test
Address 1: 10.10.10.255 test

Externalizing Network Management

« SOome organizations, infrastructures, or products require direct
management of container network configuration, service discovery,
and other network-related resources.

In those cases, you or the container orchestrator you are using will
create containers by using the Docker none network.

« Then use some other container-aware tooling to create and manage
the container network interfaces, manage NodePort publishing,
register containers with service-discovery systems, and integrate with
upstream load-balancing systems.

« When you externalize network management, Docker is still responsible
for creating the network namespace for the container, but it will not
create or manage any of the network interfaces.

« You will not be able to use any of the Docker tooling to inspect the
network configuration or port mapping.

‘ University of Cyprus

{, $,
RN

Department of Computer Science

« Docker networks are first-class entities that can be created,
listed, and removed just like containers, volumes, and images.

 Bridge networks are a special kind of network that allows
direct inter-container network communication with builtin
container name resolution.

* Docker provides two other special networks by default: host
and none.

 Networks created with the none driver will isolate attached
containers from the network.

» A container on a host network will have full access to the
network facilities and interfaces on the host.

« Forward network traffic o a host port info a target container
and port with NodePort publishing.

* Docker bridge networks do not provide any network firewall
or access-control functionality.

 The network name-resolution stack can be customized for
each container. Custom DNS servers, search domains, and
statfic hosts can be defined.

* Network management can be externalized with third-party
tooling and by using the Docker none network.

Docker Overview

Conftrolling Resources

Conftrolling Resources

Resource Limits (CPU, Memory)

Overview

o If The resource consumption of processes on a computer
exceeds the available physical resources, the processes
will experience performance issues and may stop
running:

» Container systems that provide strong isolation include
providing resource allowances / setting limits on resource
use on individual containers.

* By default, Docker containers may use unlimited CPU,
memory, and device |I/0 resources.

 However, Docker allows the management of resources
provided to its containers, upon their creation or launch.

‘ University of Cyprus

Resource Limits: Memory

« Memory limits restrict the amount of main memory that can
be used by processes inside a container.

« Memory limits ensure that one container can't allocate all
of the system's memory, starving other programs for the
memory they need.

« Memory limits are not reservations: They don't guarantee
that the specified amount of memory will be available:
They're only a protection from overconsumption.

« Memory limit enforcement by the Linux kernel is very
efficient: its runtime overhead is minimal.

* TO see memory consumption of a container. docker stats

‘ University of Cyprus

docker container run -d --name ch6é mariadb \
——memory 256me\ Set a memory

—--cpu-shares1024) \ constraint of 256 MB
—-cap-drop net raw \

—--e MYSQL ROOT PASSWORD=test \
mariadb:5.5

docker container run -d -P --name ch6 wordpress \
—-memory 512m

(--cpu-shares 512) \< Set relative CPU
—-cap-drop net raw \ shares

--link chémariadb:mysqgl\
-e WORDPRES DB PASSWORD=test \
wordpress:5.0.0-php7.2-apache

WordPress
@512 or
~33%

Total shares: | MariaDB
1536 @1024 or ~66%

&

locker container run -d -P --name ché6 wordpress \

:zgxszrg%h{l \ 3 Use 3/5 of the available

—--cap-drop net raw \ CPUs
—-1link ch6 mariadb:mysqgi \

-e WORDPRESS DB PASSWORD=test \
vordpress:5.0.0-php7.2-apache

Resource Limits: CPU

e Starvation of a process’ processing time results in performance
degradation:

» A process waiting for time on the CPU is still working correctly, but

» A slow process may be worse than a failing one, if it is running a latency-
sensitive program.

« Docker can limit a container's CPU resources by limiting:

» The sum of the computing cycles of all processors available to the container,
relatively to other containers (relative weight of the container).

» The total number of CPU cores used by a container (cpus option).

« Linux uses the relative weight to determine the percentage of CPU time
the container should use relatively to other running containers.

» CPU shares enforced only when there is contention for fime on the CPU.

* The cpus option allocates a quota of CPU resources the container may use by
configuring the Linux Completely Fair Scheduler (CES).

» CPU quota allocated, enforced, refreshed every 100ms by default

‘ University of Cyprus

Resource Access Control: Devices

« Conftrolling access to devices refers 1o
providing (or not) a container with access to
a host's device (cameras, microphones, etc).

e More like a resource-authorization control
than a limit.

Mount videoO
docker -it --rm \ ‘//////////////

(-——device /dev/videoO:/dev/videoO)\
ubuntu:latest 1ls -al /dev

University of Cyprus M. D. Dikaiakos

Conftrolling Resources

Sharing Memory

Shared Memory

 Linux provides a tools for sharing memory between
processes running on the same computer.

« Sharing memory between processes enable inter-process
communication (IPC) performed at memory speed.

e Docker creates a unique IPC namespace for each
container by default.

» The Linux IPC namespace partitions, share memory primifives
such as named shared memory blocks, semaphores, and
message queues.

» In Docker, the IPC namespace prevents processes in one

container from accessing the memory on the host or in other
containers.

‘ University of Cyprus

by

standalone

producer

consumer
--ipc container:producer

—

M~
IPC

e

N A
IPC

/

~N_

Operating system kernel

* TOo enable shared memory, the consumer needs
to join the IPC namespace of the producer, at

run time:

docker -d --name ch6_ipc_consumer(——ipc container:ch6_ipc_producer)\

dockerinaction/ch6_ipc -consumer

Open Memory Containers

o [f a container needs to operate in the same memory
namespace as the rest of the host, it can be
launched as open memory container.

« To enable this feature specify host on the —-ipc flag.

« Open memory containers are a risk, but it's better to
use them than to run those processes outside a
container.

docker -d --name ché6_ipc_producer (--ipc host)\

dockerinaction/ch6_ ipc —producer

docker -d --name ch6_ipc_consumer(——ipc host)\

dockerinaction/ch6_ipc -consumer

‘ University of Cyprus

Conftrolling Resources

Users and User Namespaces

Default Docker User: root

« Docker starts containers as the user that is specified
by the image metadata by default, which is often
the root user.

« The root user has almost full privileged access to the
state of the container.

* ANy processes running as that user inherit those
PEermissions.

base) mdd@princeton ~ % cd Dropbox/teaching/DSC516-CloudComputing/src/docker
base) mdd@princeton docker % docker run ——rm ——entrypoint "" busybox:1.29 id
id=0(root) gid=0(root) groups=0(root),10(wheel)

base) mdd@princeton docker % docker run ——rm —entrypoint "" busybox:1.29 whoami
oot

‘ University of Cyprus M. D. Dikaiakos

Avoiding Root

* YOu can entirely avoid the default user problem if you
change the run-as user when you create the container.

» However, the username must exist on the image.

» Note that different Linux distributions ship with different
users pre-defined.

» You can get a list of available users in an image with the
following command:

(base) mdd@princeton ~ % docker container run --rm busybox:1.29 cat /etc/passwd
root:x:0:0:root:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/false

bin:x:2:2:bin:/bin:/bin/false

sys:x:3:3:sys:/dev:/bin/false

sync:x:4:100:sync:/bin:/bin/sync
mail:x:8:8:mai1l:/var/spool/mail:/bin/false
ww-data:x:33:33:www-data:/var/ww:/bin/false
operator:x:37:37:0perator:/var:/bin/false
nobody : x:65534:65534 :nobody: /home: /bin/false

Setting Run-as User

« ONnce you've identified the user you want to use, you
can create a new container with a specific run-as user:

» Docker provides the —-user or —--u flag on container
run ONd docker container create for seffing the
user.

* The —-user flag can accept any user or group pair:
name or UID.

» When you specify a user by name, that name is
resolved to the user ID (UID) specified in the container's
passwd file.

(base) mdd@princeton ~ % docker container run --rm --user nobody busybox:1.29 1id

u1d=65534(nobody) g1d=65534(nogroup) groups=65534(nogroup)

‘ University of Cyprus

Setting Run-as User

e Problem: How can you run software in a container as a
user that does not exist in its underlying Linux distribution.

 Solution: Using the --user flag to set the run-as a user
(UID) and group (GID) that do not exist in the container.

» When that happens, the IDs won't resolve 1o a user or
group name, but all file permissions will work as if the user
and group did exist.

» Depending on how the software packaged in the
container is configured, changing the run-as user may
cause problems.

(base) mdd@princeton ~ % docker container run --rm{--user 10000:120000 usybox:1.29 1d

u1d=10000 g1d=120000 groups=120000 Sets UID and GID

‘ University of Cyprus

Linux User Namespaces

e Linux's user (USR) namespaces can map users in one
namespace to users in another

* By default, Docker containers do not use the USR namespace,
so containers and their hosts share the same user ID space:

» A container running with a user ID (hnumber, not name) that is

the same as a user on the host machine has the same host file
permissions as that user.

» However, the filesystem available inside a container has been
mounted so that changes made inside that container will stay
inside that container’s filesystem.

» But this does impact volumes in which files are shared between
containers or with the host.

‘ University of Cyprus

Users and Volumes

* File permissions set by the host for
directories mounted as volumes on O
container, are respected inside the
container.

e Unless you want a file to be accessible to
a container, don't mount it into that
container with a volume.

University of Cyprus

USR Namespaces & Containers

* When a user namespace is enabled for a container, the container's UIDS are re-
mapped to a range of unprivieged UIDS on the host.

» Operators activate user namespace remapping by defining subuid and subgid maps
for the host in Linux and configuring the Docker daemon's userns-remap option.

* The mappings determine how user IDs on the host correspond to user IDs in a
container namespace.

*E.Q.

» UID remapping could be configured to map container UIDS to the host starting with host
UID 5000 and a range of 1000 UIDS.

» The result is that UID O in containers would be mapped to host UID 5000, container UID 1
to host UID 5001, and so on for 1000 UIDS.

» Since UID 5000 is an unprivileged user from Linux' perspective and doesn't have
permissions to modify the host system files, the risk of running with uid=0 in the container is
greatly reduced.

» Even if a containerized process gets ahold of a file or other resource from the host, the
containerized process will be running as a remapped UID without privileges to do
anything with that resource unless an operator specifically gave it permissions to do so.

University of Cyprus

Reducing Container Capabilities

« Capabilities: a set of flags associated with @
process or file, which determine whether o
process was permitted to perform certain
actions.

« Docker drops all capabilities for new containers,
except an explicit list of capabilities that are
necessary and safe to run most applications.

e Purpose: further isolates the running process
from the administrative functions of the
operating system.

‘ University of Cyprus

Dropped Capabilities

* A sample of the 37 dropped capabilities follows:
*SYS MODULE Insert/remove kernel modules
*SYS RA WIO Modify kernel memory

*SYS NICE Modify priority of processes

*SYS RESOURCE Override resource limits

*SYS TIME Modify the system clock

«AUDIT CONTROL Configure audit subsystem
*MAC ADMIN Configure MAC configuration

* SYSLOG Modify kernel print behavior

*NET ADMIN Configure the network

*SYS ADMIN Catchall for administrative functions

‘ University of Cyprus

Removing Exira Capabilities

e The default capabillities of a containerized
orocess can be viewed as follows:

(base) mddPturandot docker % _docker container run ——rm —u nobody \

ubuntu:16.04 /bin/bash -c("capsh —-print | grep net_raw"
Bounding set =cap_chown, cap_dac_override, cap_fowner,cap_fsetid,cap_kill, cap_setgid, cap_s

etuid, cap_setpcap,cap_net_bind_service,cap_net_raw, cap_sys_chroot, cap_mknod, cap_audit_wr

ite,cap_setfcap
(base) mddPturandot docker % docker container run ——rm \

ubuntu:16.04 /bin/bash -c "whoami ; capsh —--print | grep net_raw"

root
Current: = cap_chown,cap_dac_override.cz pwner, cap_fsetid, cap_kill, cap_setgid, cap_setu

id, cap_setpcap, cap_net_bind_servic = cap_sys_chroot, cap_mknod, cap_audit_write
, cap_setfcap+ep

e To drop an extra capability, you can use the —-
cap-drop flag with container create or run:

docker % docker container run --rm -u nobody
-—cap—-drop net_raw)ubuntu:16.04 /bin/bash -c "capsh --print | grep net_raw"

(base) mdd@turandot docker % [

‘ University of Cyprus

Adding Capabilities

» To add extra capabilities, you can use the —--cap-add flag with
container create or run:

(base) mddRturandot docker % docker container run —--rm -u nobody \
—--cap—-add sys_admin \

ubuntu:16.04 \

/bin/bash -c "capsh —--print | grep sys_admin"

Bounding set =cap_chown, cap_dac_override, cap_fowner,cap_fsetid,cap_kill,cap setgid,cap_s
etuid, cap_setpcap, cap_net_bind_service,cap_net_raw, cap_sys_chroot,cap_sys_admin, ap_mkno
d,cap_audit_write, cap_setfcap

* These flags can be used to build containers that will let a process
perform exactly and only what is required for proper operation.

* E.g. you might be able to run a network management daemon as
the nobody user and give it the NET ADMIN capability instead of
running it as root directly on the host or as a privileged container.

University of Cyprus

Docker API

« The docker command-line program interacts with the Docker daemon almost
entirely via the Docker API.

* Any program that can read and write to the Docker APl can do anything
docker can do, subject to Docker's Authorization plugin system.

» The Docker daemon APl is accessible via a UNIX domain socket located on the
host at /var/run/docker.sock.

» The domain socket is protected with filesystem permissions ensuring that only the
root user and members of the docker group may send commands or refrieve
data from the Docker daemon.

» Some programs are built fo interact directly with the Docker daemon APl and
know how to send commands to inspect or run containers.

« Be careful about which users or programs on your systems can control your
Docker daemon:

» If a user or program controls your Docker daemon, it effectively controls the root
account on your host and can run any program or delete any file.

‘ University of Cyprus

* Docker uses egroups, which let a user set memory limits, CPU
weight, limits, and core restrictions as well as restrict access to
specific devices.

* Docker containers each have their own IPC namespace that can be
shared with other containers or the host in order to facilitate
communication over shared memory.

* Docker supports isolating the USR namespace. By default, user and
group IDs inside a container are equivalent to the same IDs on the
host machine. When the user namespace is enabled, user and
group IDs in the container are remapped to IDs that do not exist on
the host.

* You can and should use the —=u option on docker container run
and docker container create torun containers as non-roof
users.

» Avoid running containers in privileged mode whenever possible.

* Linux capabilities provide operating system feature authorization.
Docker drops certain capabilities in order to provide reasonably
isolating defaults.

* The capabilities granted to any container can be set with the —-
cap-add and --cap-drop flags.

* Docker provides tooling for integrating easily with enhanced isolation
technologies such as seccomp, SELinux, and AppArmor. These are
powerful tools that security-conscious Docker adopters should
investigate.

Department of Computer Science M. D. Dikaiakos

Packaging Software for Distribution

Packaging Software in Images

Creating Docker Images

e Alternatives:

» Modify an existing image inside @
container

» Define and execute a build script called o
Dockertfile.

University of Cyprus

Building Images from Containers

1. Create a container from an existing image.

e Choose the image based on what you want to be
iIncluded with the new finished image and the tools
you Will need 1o make the changes.

2. Modity the file system of created container.

e Changes will be written to a new layer on the union
file system for the container.

3. Commit those changes.

 Once the changes are committed, you'll be able to
create new containers from the resulting image.

‘ University of Cyprus

Building Images from Containers

Docker creates T .
. . . he file is
/ doc.-cer run --Irname a new Contalner ‘ touch co |ed tO a
container ... /bin/sh and UFS mount /HelloWorld.txt P
\ new UFS layer

of the image

exit

A it The container is
/ docker images iy rePOSI ory docker commit stopped and the
ot i . " named image N ,
\ # list includes “image is created container image user is returned to
the host terminal

docker commit [OPTIONS] CONTAINER-NAME [REPOSITORY-NAME[:TAG]]

‘ University of Cyprus M. D. Dikaiakos

File System Changes

e Use the diff subcommand to review changes
made Inside a container’s file system, before
committing it Into a new image:

docker container diff image-dev

* Returns large list of directories and files with
prefixes A (added), C (changed) or D (deleted)

« When committing the container into a new
Image, these changes will comprise a new
UFS layer added to the new image.

‘ University of Cyprus

Attribute Changes

« Besides the new layer added to an image with docker
commit, O hew image carries forward from the container
used to commit the new image:

» All environment variables

» The working directory

» The set of exposed ports

» All volume definitions

» The container entrypoint

» Command and arguments

o [f these values were not specifically set for the container, the
values will be inherited from the original image.

‘ University of Cyprus

2
1
* Create a new container, UFS mount the
Image, copy a new file to a new UFS layer:

(base) mdd@princeton ~ ¥ docker run --name hw_container ubuntu:latest touch /HelloWorld

e COmmit change to a new imaage:

(base) mdd@princeton ~ % docker commit hw_container hw_image
sha256:a95cabaSdeaac3bbbcddca7c835c6a23444d0c2df21a3003cc465516ec951a89

e Remove changed container:

(base) mdd@princeton ~ ¥ docker rm -vf hw_container
hw_container

e LAUNCh and examine new container:

(base) mdd@princeton ~ ¥ docker run --rm hw_image ls -1 /HelloWorld
-rw-r--r-- 1 root root @ Dec 3 20:33 /HelloWorld
(base) mdd@princeton ~ % docker 1images

REPOSITORY TAG IMAGE ID CREATED SIZE
hw_1image Latest a95cabaSdeaa 9 minutes ago 72.9MB

« Create an image that contains Linux
Ubuntu and has installed inside Git:.

(base) mdd@princeton ~ ¥ docker run -it --name image-dev ubuntu:latest /bin/bash

root@b6af8dc513f7:/# apt-get install git
Reading package lists... Done
Building dependency tree
Reading state information... Done
E: Unable to locate package git
root@baf8dc513f7:/# apt-get update
Get:1 http://security.ubuntu.com/ubuntu focal-security InRelease [114 kB]
Get:2 http://archive.ubuntu.com/ubuntu focal InRelease [265 kB]
Get:3 http://security.ubuntu.com/ubuntu focal-security/universe amd64 Packages [972 kB]
Get:4 http://archive.ubuntu.com/ubuntu focal-updates InRelease [114 kB]
Get:5 http://archive.ubuntu.com/ubuntu focal-backports InRelease [108 kB]
Get:6 http://archive.ubuntu.com/ubuntu focal/multiverse amd64 Packages [177 kB]
Get:7 http://archive.ubuntu.com/ubuntu focal/universe amd64 Packages [11.3 MB]
Get:8 http://security.ubuntu.com/ubuntu focal-security/main amd64 Packages [2350 kB]
Get:9 http://security.ubuntu.com/ubuntu focal-security/multiverse amd64 Packages [27.7 kB]
Get:10 http://security.ubuntu.com/ubuntu focal-security/restricted amd64 Packages [1772 kB]
Get: http://archive.ubuntu.com/ubuntu focal/restricted amd64 Packages [33.4 kB]
Get: http://archive.ubuntu.com/ubuntu focal/main amd64 Packages [1275 kB]
Get: http://archive.ubuntu.com/ubuntu focal-updates/restricted amd64 Packages [1887 kB]
Get: http://archive.ubuntu.com/ubuntu focal-updates/multiverse amd64 Packages [30.4 kB]
Get: http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages [2820 kB]
Get: http://archive.ubuntu.com/ubuntu focal-updates/universe amd64 Packages [1273 kB]
Get: http://archive.ubuntu.com/ubuntu focal-backports/main amd64 Packages [55.2 kB]
Get: http://archive.ubuntu.com/ubuntu focal-backports/universe amd64 Packages [28.6 kB]
Fetched 24.6 MB in 4s (6194 kB/s)
Reading package lists... Done
root@6af8dc513f7:/# apt-get install git
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
ca- certificates 91t man krbS locales less 11basn1 8 helmdal llbbrotlll 11bbsd0 11bcbor® 6 11bcurl3 gnutls 11bed1t2 llberror perl 11bexpat1 libfido2-1

Loo~NOTUVL A WN

0O

!E _
S!reo’re an image that contains Linux Ubuntu and has installed inside Git

1. Launch a container named image-dev, which runs the
ubuntu:latest image; inside the container run the bash shell

docker run -1t --name image-dev ubuntu:latest /bin/bash

2. From inside the bash shell, install git:

root@v82409d3679a:/# apt-get update; apt-get -y install git

3. Commit the container w git in a new image named ubuntu-git:

docker container commit -m "added git" image-dev ubuntu-git

4. Launch the image ubuntu-git and test that git runs:
% docker run --rm ubuntu-git git version

git version 2.34.1

5. Launch new container emd-git and replace its default command to

be executed at launch time with a call to git --version.
docker run --name cmd-git --entrypoint git ubuntu-git --version
6. Commit the updated container into a new image with the same

name ubuntu-git:

docker commit -m "Set CMD git" -a "@dockerinaction" cmd-git ubuntu-git

« To create an image from a container, use the
docker commit command:

» This commits a new layer to the image of the
container.

* The new image inherits as default starfing
command, the one used by the original
container:

» This will be executed when launching a container
from the new image.

* Best practices:

» use -a flag that signs the image with an author
string

» use —m flag, which sefs a commit message

» To set a different entrypoint for the new image,
create a new container with the ——entrypoint
flag properly set, and then create a new image
from that container.

{, $,
RN

Department of Computer Science M. D. Dikaiakos

0O

1)
e Create environment variable
specialization for container created with

busybox image:

mdd@rinceton ~ % docker run --name rich-image-example \
-e ENV_EXAMPLE1=Rich -e ENV_EXAMPLEZ=Example \

busybox:latest

« COommit new image - no files changed
from busybox, Just variables:

mdd@princeton ~ % docker commit rich-image-example rie
sha256:7ceb042ef889b7612552e71314fa672da4d470599ca647224793111dd48b4e8

* Launch container with the new image and
check if it has the variables defined:

(base) mdd@princeton ~ % docker run --rm rie \

/bin/sh -c "echo \$ENV_EXAMPLE1 \$ENV_EXAMPLEZ2"
Rich Example

0O
&7
« Next, consider a container that infroduces an
entrypoint and command specialization as o
new layer on top of the previous example:

% docker run --name rich-image-example-2 \
--entrypoint "/bin/sh" rie -c "echo \$ENV_EXAMPLE1 \$ENV_EXAMPLE2"

&‘ﬂ?
* The two commits build two additional layers on top of
BusyBox.

[N neither case are files changed, but the behavior

changes because the context metadata has been
altered.

* These changes include:

» TWo new environment variables in the first new layer,
inherited by the second new layer too.

» The entrypoint and default command to display the
environment variables’ values.

e The last command uses the final image without specitying
any alternative behavior, but it's clear that the previous
defined behavior has been inherited.

Packaging Software in Images

Exploring Union Filesystems

Revisiting the Union File System

* The union file system is made up of layers.

« EQch time a change is made to a UFS, that change is recorded
on a new layer on top of all of the others.

« The “union” of all of those layers, or fop-down view, is what the
container (and user) sees when accessing the file system.

o o

« When you read a file from UFS, that file will be Files visile

read from the fop-most layer where it exists. B o Y)

» If a file was not created or changed on the top Layer2 A
layer, the read will fall through the layers unftil it =4
reaches a layer where that file does exist. e | A

PIIOELE TNV, S
« All this layer functionality is hidden by the " Layero A

UFS. No special actions need to S p—
be taken by the software running in a container
to take advantage of these features.

‘ University of Cyprus

A simple file write example on a union

file system from two perspectives

- -
-
- .
- -
- -
- -
s ~
.

’

+ Union file system mount:

/mychange is written to the . Perspective from the container

Container created with: union file system mount 4 1
created from ubuntu:latest

docker run

:' = /mychange

--name mod_ubuntu] other -
ubuntu:latest - v files ;
touch /mychange Files are read by the container \ ’
from its union file system mount 9 :)/
.~~~ Union file system mount: °
/mychange is written to a .l -Lay_ered persP_e(ft,'Y?- o

new layer that depends
Container created with: on ubuntu:latest

docker run
--name mod_ubuntu
ubuntu:latest

ubuntu:latest

C s s sssadMoacacacaacsasas?

-
-

touch /mychange
All reads from unchanged files

are read from the layers that
University of make up the original image

File Changes and Deletions

e Like additions, both file changes and deletions work by
moditying the top layer of the UFS.

* When a file is deleted, a delete record is written to the top
layer:

» This record overshadows any versions of that file on lower
layers.

« When a file is changed, that change is written to the top
layer, which again shadows any versions of that file on lower
layers.

« Changes to filesystem afttributes (file ownership, permissions)
are also recorded in the same way, as changes to files.

‘ University of Cyprus

Copy-on-write

* Most union file systems use the copy-on-write
mechanism o implement changes.

 When a file in a read-only layer is modified:

4

4

The whole file is copied from the read-only layer into
the writable layer

The change is made on the file

« When you commit the layer, a new ID is generated
for it, and copies of all the file changes are saved.

 This approach results iIn a negative impact on runtime
performance and image size.

‘ Unive

rsity of Cyprus

rrosotiowacoaner | [1[1[I [)

. __.'--'-r----c---__: __________ L o -_:.-,,_—:'_-_‘-"::\\

. Layer 1 D | ‘ AW Cw A \ ' AW DW
’’’’’’’ T e R iy - o

' Layer O AT A‘W A \ A \ A \ A \

-
e o - -
- - - -
- - - -

- - - -

Various file addition, change, and delefion combinations over a three-layered image

File-change mechanics are the most important thing to understand about union file
systems.

{
&
N

University of Cyprus

Department of Computer Science

M. D. Dikaiakos

Immutable Layers

 All layers below the writable layer created for a
container are immutable - they can never be

modified.

« Consequently:

» |1 Is possible to share access to images instead of
creating independent copies for every container.

» Individual layers are highly reusable.

» Anytfime you make changes to an image, you need
to add a new layer, and old layers are never
removed.

‘ University of Cyprus

Image Layer Metadata

 The metadata for an image layer include:
» The generated ID of the new layer
» The identifier of the layer below it (parent)

» The execution context of the container that the layer was
created from.

« To review all the layers of an image, you can use the: docker
image history command. It will give you:

» Abbreviated layer ID
» Age of the layer
» Inifial command of the creating container

» Total file size of that layer

‘ University of Cyprus

Packaging Software in Images

Revisiting Images

What is an Image?

« An image is a stack of layers constructed by
traversing a layer dependency graph from some
starting layer - the top of the stack.

* The layer dependency graph comprises:
» Layers as nodes

» Links connecting each layer to its parent layer, as
represented in its metadata, which contained the
parent-layer’s ID.

* The layer’s ID is also the ID of the image that is
derived from If.

‘ University of Cyprus

Collection of all layers

-
- -
- -

' Layer ac94 .
[ubuntu-git } -Lgyer 6435- N
~ . . ,' . Layer 2044 \‘

C_ Layer49dd)

-
-

Layers
forming an
image

TN
w

Layer 4b23
Layer 2044

Layer 1104
Layer 78d3

Layer bb53

Figure 7.5 An image is the collection of layers produced by traversing the parent graph from a

top layer.

{
N
N

),

University of Cyprus

Department of Computer Science

M. D. Dikaiakos

Images & Repositories

« Layer and image IDs are large hexadecimal numbers.

« Docker provides repositories to help users organize their images with
mnemonic hames and tags.

* A repository is a location/name pair that points to a set of specmc
layer identifiers.

e This reposifory IS dockerinaction/ . ..

» located in the registry hosted at quay. io. ‘ [t

(ch3 hello registry).

 Pulling this repository would pull all the images defined for each tag
iINn the repository.

‘ University of Cyprus

Repositories

e Each repository contains:

» At least one tag that points to a specific layer
idenftifier and thus the image definifion.

» A¥latest” tag by default, if definifion of specific tag
IS omitted at creation time.

« Repositories and tags are created with the docker
tag, docker commit, Oor docker build commands.

Usage: docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]

Create a new 1mage from a container's changes

Options:

-a, --author string Author (e.g., "John Hannibal Smith <hannibal@a-team.com>")
-c, --change list Apply Dockerfile instruction to the created image
-m, --message string Commit message

-p, --pause Pause container during commit (default true)

University of Cyprus

2
1)

e Launch a container, add a file mychange in if,
check images installed on your computer and verity
the change done in the container:

% docker run --name mod_ubuntu ubuntu:latest touch /mychange
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
be3729cf69e@: Pull complete
' : sha256:27cbbebccef575a4698bbbfSde@bc7ecd61589132d5a91d098f7f319285415a9
: Downloaded newer image for ubuntu:latest

SIZE
77.8MB

REPOSITORY TAG IMAGE ID CREATED
ubuntu latest ob7dfa7e8fdb 10 days ago
6 docker diff mod_ubuntu

« Commit the altered container, creating an un-
named image:

% docker commit mod_ubuntu
sha256:36cb491a770772292b7f486abafc39bcbf34a9b0a8427b6397c9bd4453fdc49c

% docker 1images

REPOSITORY TAG IMAGE ID CREATED SIZE
<none> 36cb491a7707 4 seconds ago 77.8MB
latest ob7dfa7e8fdb 10 days ago 77.8MB

« Commit again the altered container, but under a given
name and fag:

TAG IMAGE ID CREATED

mytag 5265e062504b 3 seconds ago
<none> 36cb491a7707 34 seconds ago 77.8MB
latest ob7dfa7e8fdb 10 days ago 77 .8MB

e Use docker tag to create a repository from myuser/
myfirstrepo:mytag with the name myuser/
mod ubuntu. Since a tag is not specified, it takes by
default the tag latest:

docker tag myuser/myfirstrepo:mytag myuser/mod_ubuntu

(base) mdd@princeton ~ % docker images

REPOSITORY TAG IMAGE ID CREATED

myuser/mod_ubuntu latest 5265e062504b About a minute ago 77.8MB

mytag 5265e062504b About a minute ago 77.8MB
<none> 36cb491a7707 2 minutes ago
latest ob7dfa7e8fdb 10 days ago

Title Text

Container Management Frameworks

Application-oriented Infrastructure

Container tfechnology enables the development of management APIs
around containers instead of machines.

* App developers and operations teams relieved from having to worry
about specific details of machines & OS.

e Infrastructure teams have the flexibility to roll out new hardware and
upgrade OS with minimal impact on running apps & their developers.

 Ties telemetry collected by the management system to applications rather
than machines:

» No need to demultiplex signals from multiple apps running inside a physical
or virtual machine.

» Dramatically improves application monitoring and introspection.
« Management system can communicate information info the container:

» Resource limits, container metadata for propagation to logging &
monitoring, termination warnings

‘ University of Cyprus

Applications as Containers

 In reality, an application does not “consume” only one
container.

« Applications use nested-containers that are co-
scheduled on the same machine:

» Quter-most container is called a resource allocation: alloc
In Borg, pod in Kubernetes

» Major part of the application sits in one of the child
containers

» Other child containers run supporting functions

« Advantages: robustness, composability, fine-grained
resource isolation

‘ University of Cyprus

Container Management Services

« Basic services provide resource orchestration and allocation, application
configuration and control, monitoring, load balancing.

« Additional services arising:
» Naming and service discovery (the Borg Name Service, or BNS).
» Master election.
» Application-aware load balancing.
» Horizontal (number of instances) and vertical (size of an instance) autoscaling.

» Rollout tools that manage the careful deployment of new binaries and
configuration data.

» Workflow tools (e.g., to allow running multijob analysis pipelines with
interdependencies between the stages).

» Monitoring tools to gather information about containers, aggregate it, present
it on dashboards, and use it to trigger alerts

‘ University of Cyprus

 Docke

« Docker swarm is a container orchestration too

Overview

r compose

meaning that it allows the user to manage multiple

contai
One o

operation of a docker swarm is

ners deployed across mu
- the key benefits associan

tiple host

ed with 1

machines.
he

he high

availability offered for applications.

* Borg

«Omega

« Kubernetes

‘ University of Cyprus

evel of

Docker Compose

« A tool for defining and running mulfi-container Docker applications.

« Using Compose is a three-step process:

» Define your app’s environment with a bockerfile so it can be reproduced
anywhere.

» Define the services that make up your app in a YAML file docker-
compose.yml sO they can be run together in an isolated environment.

» Run docker-compose up and Compose starts and runs your entire app.
« Docker Compose features that make it effective are:

» Support for multiple isolated environments on a single host

» Preserve all volumes used by your services when containers are created

» Only recreate containers that have changed

» Support for variables in the Compose file, and moving a compaosition
between environments

‘ University of Cyprus

Docker Compose and YAML

 Docker Composes uses YAML
("YAML Ain't Markup Language’) to
describe is a human-readable
data-serialization language.

« Commonly used for configuration
files and in applications where
data is being stored or transmitted.

University of Cyprus

Docker Swarm

* A container orchestration tool that allows the user to manage multiple
containers deployed across mulfiple host machines.

» Included in Docker Engine & command-line tool.

* Provides a platform for deploying and operating a containerised
application across a set of Docker hosts.

« Automates the process of deploying:
» A new Docker service to the cluster
» Changes to an existing service
« Supervises deployed applications to detect and repair possible problems.

« Schedules tasks according to the application’s resource requirements
and machine capabilifies.

* Routes user requests to service containers.

‘ University of Cyprus

Docker Swarm Structure

Machines joining a Swarm cluster can be Managers or Workers.

« Managers:

» Listen for instructions to create, change, remove definitions for Docker services,
configuration and secrefs.

» Instruct worker nodes to create containers and volumes that implement Docker
service instances.

» At least one manager per cluster - production clusters have 3-5.
« Workers: clusters can scale reliably to hundreds of worker nodes.

« Client requests may be sent to any node of the cluster on the port published
for that service.

» Swarm’s network mesh routes the request from whichever node received the
request to a healthy service container that can handle it.

« Swarm deploys and manages a load-balancer and network traffic
components to receive and fransport network fraffic for each published port.

‘ University of Cyprus

Docker Swarm Resource Types

Ports (Load
Balancer)

— Services
<& Tasks

University of Cyprus M. D. Dikaiakos

Docker Swarm Resource Types

« Services—A Docker service defines the application processes that run on the Swarm
cluster’'s nodes. Swarm managers interpret the service definition and create tasks
that are executed on the cluster’'s manager and worker nodes.

 Tasks—Tasks define a containerized process that Swarm will schedule and run once
until completion.

» Restart policies

» Dependencies

* Networks—Applications can use Docker overlay networks for traffic between
services.

» Docker networks have low overhead, so you can create network topologies that suit
your desired security model.

« Volumes—Volumes provide persistent storage to service tasks.
» Volumes are bound to a single node.

« Configs and secrets— provide environment—specific configurations to services
deployed on the cluster.

‘ University of Cyprus

Borg

* Borg: unified container-management system, built at Google to manage
both:

» long-running services
» batch jobs.
* Expanded with mechanisms for:

» configuring and updating jobs;

v

predicting resource requirements;

v

dynamically pushing configuration files to running jolbs;

v

service discovery and load balancing;

v

auto-scaling;

v

machine- lifecycle management;

» quota management etc

‘ University of Cyprus

Omega

« Built from the ground up to have a more
consistent, principled architecture than Borg.

e Stored the state of the cluster in a centralized
Paxos-based transaction-oriented store that was
accessed by the different parts of the cluster
control plane (such as schedulers).

« Decoupling, allowed the Borgmaster’s
functionality to be broken into separate
components that acted as peers.

« Omega’s innovations folded into Borg.

‘ University of Cyprus

Paxos

* Family of protocols for solving consensus
IN a network of unreliable or fallible
Orocessors.

« COonsensus is the process of agreeing on
one result among a group of participants.

* This problem becomes difficult when the
participants or their communications may
experience failures.

‘ University of Cyprus

Kubernetes

« Open source container management system: emerged from
experiences with Borg and Omega.

 Allows you to easily deploy and manage containerized
applications on top of if.

e Relies on the features of Linux containers to:

» Run heterogeneous applications without having to know their
internal details.

» Deploy automatically these applications on each host.

* At its core a shared persistent store, with components watching
for changes to relevant objects.

« State in Kubernetes is accessed exclusively through a domain-
specific REST API.

‘ University of Cyprus

Kubernetes absiraction

« Kubernetes enables you to run your software
applications on thousands of computer nodes as if
all those nodes were a single, enormous computer.

o [T abstracts away the underlying infrastructure and
simplifies development, deployment, and
management for both development and the
operations feams.

* Deploying applications through Kubernetes is
always the same, whether your cluster contains
only a couple of nhodes or thousands of them.

‘ University of Cyprus

Kubernetes basic view

* The system is composed of a master node
and any number of worker nodes.

 When the developer submits a list of apps
to the master, Kubernetes deploys them to
the clus’rer of worker nodes.

dfwkod pd

oo | % [y 'Q on doesn’t
[9)g© | o th

ﬁ] - Q .| Kubemetes _> Q A O e

o Ao ole o ministrator.

Figure 1.8 Kubernetes exposes the whole datacenter as a single deployment platform.

Kubernetes functionality

« Kubernetes can be thought of as an operating system for the cluster.

» It relieves application developers from having to implement certain
infrastructure-related services into their apps; instead they rely on
Kubernetes to provide these services.

» Application developers can therefore focus on implementing the actual
features of the applications and not waste time figuring out how to
integrate them with the infrastructure.

« Kubernetes services:
» service discovery
» scaling
» load-balancing
» self-healing, and even

» leader election.

‘ University of Cyprus

Architecture of a Kubernetes cluster

e The Kubernetes master node hosts the
Kubernetes Control Plane that controls
and manages the whole Kubernetes

system.

e The Kubernetes worker nodes run the
actual applications you deploy.

Controller

/!

eeeeeee

kkkkkkkkkk

Ficgure 1.9 The compnonents that make un a Kubernetes cluster

Kubernetes Control Plane

e Controls the cluster and makes it function.

o [T consists of multiple components that can run on a single master
node or be split across multiple nodes and replicated to ensure
high availability:

* The Kubernetes APl Server, which you and the other Control Plane
components communicate with.

* The Scheduler, which schedules your apps (assigns a worker node
to each deployable component of your application)

* The Conftroller Manager, which performs cluster-level functions,
such as replicating components, keeping track of worker nodes,
handling node failures, and so on

e efcd, areliable distributed data store that persistently stores the
cluster configuration.

‘ University of Cyprus

Kubernetes Worker Nodes

 The machines that run your containerized applications.

e The task of running, monitoring, and providing services
to your applications is done by the following
components:

» Docker, rkt, or another container runtime, which runs
your containers

» The Kubelet, which talks to the API server and manages
containers on its node

» The Kubernetes Service Proxy (kube-proxy), which load-
balances network fraffic between application
components

‘ University of Cyprus

Running Applications on
Kubernetes

1. Package you application up info one or more container images.
2. Push those images to an image reqistry

3. Post a description of your app to the Kubernetes APl server.

e The description includes information such as:

e The container image or images that contain your application
components.

e How those components are related to each other
* Which components need to be run co-located and which don'’t.

e For each component, you can also specify how many copies (or replicas)
you want to run.

 Which of those components provide a service to either internal or external
clients and should be exposed through a single IP address and made
discoverable to the other components.

‘ University of Cyprus

From Description to Running Containers

* When the APl server processes an app description, the Scheduler schedules the
specified groups of containers onto the available Worker Nodes.

» The Scheduler takes into account the computational resources required by each
group and the unallocated resources on each node at that moment.

* The Kubelets on those nodes then instruct the Container Runtime (Docker, for
example) to pull the required container images and run the containers.

* Once the application is running, Kubernetes continuously makes sure that the
deployed state of the application always matches the description you provided.

» For example, if you specify that you always want five instances of a web server
running, Kubernetes will always keep exactly five instances running.

» If one of those instances stops working properly, like when its process crashes or
when it stops responding, Kubernetes will restart it automatically.

» Similarly, if a whole worker node dies or becomes inaccessible, Kubernetes will
select new nodes for all the containers that were running on the node and run them
on the newly selected nodes.

‘ University of Cyprus

Image registry

COOA

|

AN

« [

5X Q .| Control Plane
(master)

VAN

App descriptor

Legend

<> Container image Q Multiple containers
running “together”

<> Container A (not fully isolated)

Vorker nodes

\\\ Docker T Docker
Kubelet\\\ kube-proxy Kubelet | kube-proxy
Docker " H-- Docker
Kubelet | kube-proxy Kubelet | kube-proxy
Docker Docker
Kubelet | kube-proxy Kubelet | kube-proxy

Figure 1.10 A basic overview of the Kubernetes architecture and an application running on top of it

Scaling and Moving Around

* While the application is running, you can decide you want to
increase or decrease the number of copies of running
containers:

» Kubernetes will spin up additional ones or stop the excess ones,
respectively.

« Alternatively, Kubernetes can decide itself the optimal number
of copies:

» It can automatically keep adjusting the number, based on real-
time meifrics, such as CPU load, memory consumption, queries
per second, or any other metric your app exposes.

» It can move containers around the cluster, when a node they
were running on has failed or when they are evicted from @
node to make room for other containers.

‘ University of Cyprus

Service interface

o If the container is providing a service to external clients or other containers
running in the cluster, how can they use the container properly if it's
constantly moving around the clustere

 And how can clients connect to containers providing a service when
those containers are replicated and spread across the whole cluster?

« To dllow clients to easily find containers that provide a specific service, you
can tell Kubernetes which containers provide the same service and
Kubernetes will expose all of them at a single static IP address and expose
that address to all applications running in the cluster.

» This is done through environment variables, but clients can also look up the
service |IP through good old DNS.

» The kube-proxy will make sure connections to the service are load balanced
across all the containers that provide the service.

» The IP address of the service stays constant, so clients can always connect
to its containers, even when they're moved around the cluster.

‘ University of Cyprus

