
DSC516: Cloud Computing

Part II: Cloud Building Blocks

Module 4: Virtualization,
Containers and Resource

Management

Topic 7

Containers and Docker

Lecture 18b

Containers and Docker

M. D. Dikaiakos

•Examine, understand and explain
the concept of containers and the
main techniques.

•Understand and explain how Docker
containers manage resource
controls.

•Understand and explain how is
software installed on Docker
containers

•Understand and explain how Docker
containers manage storage.

•Understand and explain the key
differences and comparison
between containers and VMs.

Learning
Objectives

M. D. Dikaiakos

J. Nickoloff and S. Kuenzli (2019), "Docker in
Action" 2nd Edition, Manning.

Additional Readings

• P. Sharma, L. Chaufournier, P. Shenoy, and Y.
C. Tay, “Containers and virtual machines at
scale: A comparative study,” in
Proceedings of the 17th International
Middleware Conference, Middleware 2016,
2016, pp. 1–13.

• Manco, F., Mendes, J., Yasukata, K., Lupu,
C., Kuenzer, S., Raiciu, C., Schmidt, F., Sati, S.,
& Huici, F. (2017). My VM is Lighter (and
Safer) than your Container. SOSP 2017 -
Proceedings of the 26th ACM Symposium
on Operating Systems Principles, 16, 218–
233. https://doi.org/
10.1145/3132747.3132763

Readings

History and Introduction

Containers and Docker

Linux Containers

Containers: History and Introduction

M. D. Dikaiakos

Prior Techniques
POSIX Capabilities (mid-1990s):
•Capabilities: a set of flags associated with a process or file, which determined whether a
process was permitted to perform certain actions;

‣ A process could execute a subprocess with a subset of its own capabilities; the
specification attempted to support the principle of least privilege.

‣ This feature was never adopted as a standard but formed the basis of the capabilities
feature added to the Linux Kernel in 1999.

Namespaces and resource usage controls for process isolation:

• In 2000, FreeBSD added Jails, which isolated filesystem namespaces (using chroot),
processes and network resources in such a way that a process might be granted root
privileges inside the jail but blocked from performing operations that would affect
anything outside the jail.

• In 2001 & 2006, the Linux Kernel was patched to add filesystem namespaces and user
namespaces to support resource usage limits and isolation for filesystems, network
addresses, memory, process IDs, IPC, network stack and user IDs.

Access control and System Call Filtering offering secure isolation of processes through
restricted access to system calls

Resource sharing in large-scale cluster management: Borg, Mesos

M. D. Dikaiakos

Container techniques
In 2008, Linux Containers (LXC) combined cgroups, namespaces, and
capabilities from the Linux Kernel into a tool for building and launching low-
level system containers.

Cgroups: Control groups are a kernel mechanism for controlling the
resource allocation to process groups.

•Cgroups exist for each major resource type: CPU, memory, network, block-IO,
and devices.

• The resource allocation for each of these can be controlled individually,
allowing the complete resource limits for a process or a process group to be
specified.

Namespaces. A namespace provides an abstraction for a kernel resource
that makes it appear to a container that it has its own private, isolated
instance of the resource.

• In Linux, there are namespaces for isolating: process IDs, user IDs, file system
mount points, networking interfaces, IPC, and host names.

M. D. Dikaiakos

Linux Containers
•A Linux Container is a Linux process (or processes) that is a virtual
environment with its own process network space.

• Linux Containers:

‣ Offer lightweight process virtualization

‣ Share portions of the host kernel

‣ Use namespaces (per-process isolation of OS resources -
filesystem, network and user ids) and cgroups (for resource
management and accounting per process)

•Examples of container adoption in large-scale services:

‣ https://www.netflix.com

‣ https://www.dotcloud.com/

‣ https://www.heroku.com/

https://www.netflix.com
https://www.heroku.com/

M. D. Dikaiakos

Container Abstraction
• A container encapsulates a group of processes that are

isolated from other containers or processes in the
system.

• The OS kernel is responsible for
implementing the container
abstraction:

‣ It allocates CPU shares, memory
and network I/O to each
container

‣ Can provide also file system
isolation

M. D. Dikaiakos

Container behavior
•Containers may look like real computers from the
point of view of programs running in them.

•However:

‣ A computer program running on an ordinary
operating system can see all resources of that
computer (connected devices, files and folders,
network shares, CPU power, quantifiable hardware
capabilities).

‣ Programs running inside of a container can only see
the container's contents and devices assigned to the
container.

M. D. Dikaiakos

Containers vs Virtual Machines

Containers: History and Introduction

M. D. Dikaiakos

Containers vs VMs
•Hardware virtualization: predominant virtualization
technology for deploying, packaging, and
managing applications.

•Containers are increasingly filling that role due to
the popularity of systems like Docker.

•Containers promise:

‣ low-overhead virtualization since they do not run
their own OS kernels, but instead rely on the
underlying kernel for OS services

‣ improved performance when compared to VMs.

M. D. Dikaiakos

Virtual Machines VS Containers
(Similarities)

Virtual Machines Containers

Process in one VM has not access to
processes in other VMs

Process in one container has not access
to processes in other containers

Each VM has own root filesystem Each container has its own root file
system (not Kernel)

Each VM gets its own virtual network
adapter

Each container has its own virtual
network adapter(s)

VMs run instances of physical files
(.VMX and .VMDK)

Containers run instances of Images.

Host OS can be different from guest OS Host OS distribution can be different
from container OS distribution

M. D. Dikaiakos

Virtual Machines VS Containers
(Differences)

Virtual Machines Containers

Each VM runs its own OS All containers share the same Kernel of
the host

Boot up time is in minutes Containers instantiate in seconds

VMs snapshots are used sparingly Images are built incrementally on top of
another like layers. Lots of images/
snapshots

Not version controlled Images can be diffed, version controlled
and stored into repositories (Dockerhub).

Cannot run more than couple of
VMs on a PC

Can run many containers on a PC

M. D. Dikaiakos

Containers vs VMs

M. D. Dikaiakos

Virtual Machines VS Containers

•Each virtual machine (VM) includes the app, the necessary binaries and
libraries and an entire guest operating system. Containers are NOT VMs
because:

‣ Use the host kernel

‣ Can not boot a different OS (only if the host OS has pre-installed external
kernel eg windows)

‣ Do not have strict resource isolation (only on cgroups and namespace level)

M. D. Dikaiakos

Containers vs VMs: DevOps

Docker Overview
Containers and Docker

M. D. Dikaiakos

What is Docker?
• Facilitates the building, management and use of
containers.

•Most popular container solution:

‣ Built initially on LXC with namespaces and cgroups.

‣ Then replaced LXC with libcontainer, also using Linux
Kernel namespaces, cgroups, and capabilities.

•Doesn’t provide the container technology- it makes
it simpler to use.

•Any software run with Docker is run inside a
container.

M. D. Dikaiakos

Container isolation in Docker
The containers that Docker builds are isolated with respect to
eight aspects

1. PID namespace—Process identifiers and capabilities

2. UTS namespace—Host and domain name

3. MNT namespace—File system access and structure

4. IPC namespace—Process communication over shared memory

5. NET namespace—Network access and structure

6. USR namespace—User names and identifiers

7. chroot()—Controls the location of the file system root

8. cgroups—Resource protection

M. D. Dikaiakos

Container isolation in Docker
•Namespace isolation allows groups of processes to be separated.
This ensures that they cannot see resources in other groups.

‣ Different namespaces used for process isolation, network interfaces,
access to inter-process communication, mount-points or for
isolating kernel and version identifiers.

•cgroups (control groups) manage and limit resource access for
process groups through limit enforcement, accounting and
isolation, e.g., limiting the memory available to a specific
container:

‣ Enable better isolation between isolated applications on a host.

‣ Restrict containers in multi-tenant host environments.

‣ Allow sharing available hardware resources between containers
while setting up limits and constraints.

M. D. Dikaiakos

Docker Image
•Building block from which containers are
launched.

•Bundled snapshot of all the files that should be
available to a program running inside a container.

•Made up of file systems layered over each other.

•You can create as many containers as you want
from an image.

•Containers started from the same image don’t
share changes to their file systems.

M. D. Dikaiakos

Shipping Docker Images
•A Docker container is like a physical shipping container. It’s
a box where you store and run an application and all of its
dependencies.

•Docker can run, copy, and distribute containers with ease,
including a way to package and distribute software.

• Images are the shippable units in the Docker ecosystem:

‣ When you distribute software with Docker, you distribute
Docker images, and the receiving computers create
containers from them.

•Docker provides public infrastructure components that
simplify distributing Docker images: registries and indexes.

M. D. Dikaiakos

Docker Hub

M. D. Dikaiakos

High level Docker Architecture

Running Docker

Docker Overview

M. D. Dikaiakos

Running Docker
•Natively on Linux

• Inside a single, small VM on OS X and
Windows, where all its containers run:

‣ small and fixed overhead of running the VM
while the number of containers can scale up

•Convergence on Linux means that software
running in Docker containers need only be
written once against a consistent set of
dependencies.

M. D. Dikaiakos

Running Docker
•Running two programs in user space:

‣ Docker daemon: if installed properly, this process should
always be running.

‣ Docker CLI: the Docker program that users interact with.

• If you want to start, stop, or install software, you’ll issue a
command using the Docker program.

M. D. Dikaiakos

Running Docker (ctd’)
• systemd, a container-aware daemon starts containers as application processes.

‣ It plays a key role as the root of the user’s process tree.

•Boot process:

‣ In a traditional Linux boot, the kernel first mounts the root file system as read-only, before
checking its integrity. It then switches the rootfs volume to read-write mode.

‣ Docker mounts the rootfs as read-only (as in a traditional Linux boot), but instead of changing
the file system to read-write mode, it uses a union mount to add a writable file system on top
of the read-only file system.

•Mounting: allows multiple read-only file systems to be stacked on top of each other.

‣ This property can be used to create new images by building on top of base images.

‣ Each of these file system layers is a separate image loaded by the container engine for
execution.

•Container: Only the top layer is writable, which is the container itself.

‣ The container can have state and is executable.

‣ It is a kind of directory for everything needed for execution.

‣ While they are normally stateful, containers can be made into stateless images to be reused
in more complex builds.

M. D. Dikaiakos

Using Docker
•Containers can be run with virtual terminals attached to the user’s shell or in detached
mode.

•By default, every Docker container has its own PID namespace, isolating process
information for each container.

•Docker identifies every container by its generated container ID, abbreviated container
ID, or its human-friendly name.

•All containers are in any one of four distinct states: running, paused, restarting, or exited.

• The docker exec command can be used to run additional processes inside a running
container.

•A user can pass input or provide additional configuration to a process in a container by
specifying environment variables at container-creation time.

•Using the --read-only flag at container-creation time will mount the container file
system as read-only and prevent specialization of the container.

•A container restart policy, set with the --restart flag at container-creation time, will
help your systems automatically recover in the event of a failure.

•Docker makes cleaning up containers with the docker rm command as simple as
creating them.

M. D. Dikaiakos

Using Docker

M. D. Dikaiakos

Using Docker Containers
Docker Overview

M. D. Dikaiakos

What happens when you
execute the following

command on the
command line?

docker run --name hellow
 dockerinaction/hello_world

docker run --name hellow

 dockerinaction/hello_world

• Docker run: installs, runs, and stops a program inside a
container.

• Assigns hellow as name of this container

• The program that you tell it to run in a container is:

• dockerinaction/hello_world.

• This is called the repository (or image) name.

• To learn more about this command, execute:

• docker help run

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

The lifecycle of “Hello World”

M. D. Dikaiakos

Pull and Run an Image
•Problem: You want download, save and run an image to your PC

• Solution: Execute the docker pull command to fetch the image and
the docker run to execute the container

•Pull the image:

‣ docker pull busybox

•Check if the image is downloaded:

‣ docker image ls

•Run the busybox image:

‣ docker run busybox

•Run the busybox image with parameters:

‣ docker run busybox echo "hello from busybox”

M. D. Dikaiakos

Check your Containers
•Problem: You want to check your containers

• Solution: Execute the docker ps command

•Check the running containers:

‣ docker ps

•Check all containers (even stopped):

‣ docker ps -a
•Run the busybox image and connect to it:

‣ docker run -it busybox
•Check again the running containers:

‣ docker ps

M. D. Dikaiakos

Detaching without Stopping
•Problem: You want to detach from a
container interaction without stopping it.

• Solution: Press Ctrl-P and then Ctrl-Q to
detach.

M. D. Dikaiakos

Removing Containers
•Problem: You want to remove the not running container instances

• Solution: Execute the docker rm command

• Remove specific containers

‣ docker rm 305297d7a235 ff0a5c3750b9
• Find the containers that have status exited

‣ docker ps -a -q -f status=exited
•Remove all containers that have status exited

‣ docker rm $(docker ps -a -q -f status=exited)
‣ docker container prune

•Remove the container after run

‣ docker run --rm busybox

M. D. Dikaiakos

Removing Docker Images
•Problem: You want to remove an image - You have to remove ALL
CONTAINERS that use the image you want to remove

• Solution: Execute the docker rmi command

•Enumerate all docker images that are in your pc

‣ docker image ls
• Select the correct image ID

•Remove specific containers

‣ docker rmi 305297d7a235 ff0a5c3750b9
•Remove all docker relative items like containers, images, networks

‣ docker system prune -a

M. D. Dikaiakos

Starting a Stopped Container
•Problem: You have closed a container and you want to
restart

• Solution: Execute docker start command

•Check all closed containers: docker ps -a

• Start a specific container:

‣ docker start db39...

•Run again docker ps in order to check if your container is
running: docker ps

M. D. Dikaiakos

Connecting with Running Containers
•Problem: You want to connect with terminal or run commands
on a running container

• Solution: Run the docker exec command

•Check all running containers: docker ps

• Find the ID of the specific running containe r:
3c3f8e3fb05d795…

•Run the docker exec with the same ID as parameter and open
an interactive terminal or run whatever command you like:

‣ docker exec -it 3c3f8e3fb05d795 sh
‣ docker exec -it 3c3f8e3fb05d795 {command}

M. D. Dikaiakos

Start a Container as Daemon
•Problem: You want to start a container as daemon

• Solution: Use the parameter -d at the run command

• Start the image in background

‣ docker run -d --name sleeper busybox
sleep infinity

• The previous command returns the ID of the new
container 3c3f8e3fb05d795...

•Run the docker exec with the same ID as parameter and
open an interactive terminal

‣ docker exec -it 3c3f8e3fb05d795 sh

M. D. Dikaiakos

Executing Commands on your
Container

•Problem: You want to perform commands on a running container.

• Solution: Use the docker exec command.

•Run a container as daemon

‣ docker run -d --name sleeper busybox sleep infinity

•Run an echo command from the container.

‣ docker exec sleeper echo "hello host from container”

•Run in the container as background process.

‣ docker exec -d sleeper \

 find / -ctime 7 -name '*log' -exec rm {} \;

•Run an interactive terminal in the container

‣ docker exec -i -t sleeper sh

M. D. Dikaiakos

Inspecting a Container
•Problem: Find out all the information that Docker maintains regarding a
container (its metadata)

• Solution: The docker inspect command will display all the metadata (a
JSON document) that Docker maintains for a container.

‣ The format option transforms that metadata

‣ In this case it filters everything except for the field indicating the running
state of the container.

docker inspect --format "{{.State.Running}}" wp

M. D. Dikaiakos

Docker CLI Basic Commands
Command Purpose

docker build Build a Docker image

docker images / docker image ls List all images on a Docker host

docker run {image} Run a Docker image as a container

docker ps List all running (or stopped instances)

docker commit {container} Commit a Docker container as an image

docker tag {image} Tag a Docker image

docker logs {container} Display the logs of an instance

docker stop {container} Stop a running instance

docker rm {container} Remove an instance

docker rmi {image} Remove an image

M. D. Dikaiakos

Web site
monitoring

Three containers:

• The first will run NGINX;

• the second will run a program called a mailer.
• Both of these will run as detached containers.

•Detached means that the container will run in the background, without
being attached to any input or output stream.

•A third program, called an agent, will run in an
interactive container.

docker run --detach --name web nginx:latest

docker run -d --name mailer dockerinaction/ch2_mailer

docker run --interactive --tty \
 --link web:web \
 --name web_test \
 busybox:latest /bin/sh

wget -O - http://web:80

docker run -it \
 --name agent \
 --link web:insideweb \
 --link mailer:insidemailer \
 dockerinaction/ch2_agent

docker logs mailer

docker run --detach --name web nginx:latest

docker run -d --name mailer dockerinaction/ch2_mailer

docker run --interactive --tty \
 --link web:web \
 --name web_test \
 busybox:latest /bin/sh

wget -O - http://web:80

docker run -it \
 --name agent \
 --link web:insideweb \
 --link mailer:insidemailer \
 dockerinaction/ch2_agent

docker logs mailer

http://web:80

M. D. Dikaiakos

Linking Containers
•Network links is a legacy mechanism to connect
containers:

‣ Injects IP addresses into dependent running
containers (containers that aren’t running don’t
have IP addresses).

‣ Links create a unidirectional network connection
from one container to other containers on the
same host.

•Bidirectional links can be created with user-
defined networks.

Namespaces in Docker

Docker Overview

M. D. Dikaiakos

PID Namespaces
•Every running program—or process—on a Linux machine has a unique
number called a process identifier (PID).

•A PID namespace is the set of possible numbers that identify processes.

• Linux provides facilities to create multiple PID namespaces - each
namespace has a complete set of possible PIDs (1, 2, 3,…)

•Docker creates a new PID namespace for each container by default.

‣ The container’s PID namespace isolates processes in that container from
processes in other containers.

•You can optionally create containers without their own PID namespace
(e.g. to perform sysadmin tasks on a machine), using the --pid host
flag to keep the host’s namespace.

‣ The following lists all processes running on the computer which runs Docker:
docker run --pid host busybox:latest ps

M. D. Dikaiakos

Naming Containers
•By default Docker assigns a unique (human-friendly) name to each
container it creates.

‣ The --name flag can override that.

• In systems with multiple containers, using fixed names like web can create
conflicts.

• In addition to the name, Docker assigns each container with a unique
1024-bit identifier.

• To avoid conflict with fixed names and the complexity of long identifiers,
Docker enables the handling of container IDs by assigning them to
environment variables

CID=$(docker create nginx:latest)

or files (using the —cidfile flag):
docker create --cidfile /tmp/web.cid nginx

docker run --detach --name web nginx:latest

Container State

Docker Overview

M. D. Dikaiakos

Listing Containers
• To check which containers are currently running, use: docker ps This returns the
following information for running containers:

‣ The container ID

‣ The image used

‣ The command executed in the container

‣ The time since the container was created

‣ The duration that the container has been running

‣ The network ports exposed by the container

‣ The name of the container

• To see all the containers use: docker ps -a
•Note that whether you’re using docker run or docker create, the resulting containers
need to be started in the reverse order of their dependency chain, otherwise you get
an error.

•A Docker container can be in one of four states: Running, Paused, Restarting, Exited
(also used if the container has never been started)

M. D. Dikaiakos

Moving Between States

Environment-agnostic Systems

Docker Overview

M. D. Dikaiakos

Building Low-maintenance Systems
• If you build systems or software that know too much about their environment
(addresses or fixed locations of dependency services) it’s difficult to change that
environment or reuse the software.

•Need to minimize environment dependences, namely specializations of the
computing environment, such as:

‣ Global-scoped dependencies - e.g., known host file system locations

‣ Hard-coded deployment architectures- e.g. environment checks in code or
configuration

‣ Data locality- e.g. data stored on a particular computer outside the deployment
architecture

•Building low-maintenance systems requires minimizing these aspects. To this end,
docker provides:

‣ Read-only file systems

‣ Environment variable injection

‣ Volumes

M. D. Dikaiakos

Read-only F/S in Docker
•With a container with a read-only
filesystem:

‣ The container won’t be specialized from
changes to the files it contains.

‣ There is increased confidence that an
attacker can’t compromise files in the
container.

M. D. Dikaiakos

Running
WordPress

•WordPress is a popular open
source content-management
and blogging program (CMS).

•Each WordPress installation
can be customized/
specialized based on the
data/configuration
parameters it works with.

• Task: run WordPress and
integrate it with the monitoring
infrastructure developed in the
previous example!

•WordPress is published through Docker
Hub in a repository named wordpress.

docker run -d --name wp --read-only wordpress

• Let’s see if it works (instead of using docker
ps):

docker inspect --format "{{.State.Running}}" wp  
docker logs wp

error: missing WORDPRESS_DB_HOST and MYSQL_PORT_3306_TCP environment variables

Did you forget to --link some_mysql_container:mysql or set an external db

with -e WORDPRESS_DB_HOST=hostname:port?

•WordPress has a dependency on a MySQL database
• Install MySQL:
docker run -d --name wpdb -e MYSQL_ROOT_PASSWORD=ch2demo mysql
•Create a different WordPress container:
docker run -d --name wp2 --link wpdb:mysql -p 80 \
 --read-only wordpress:4
docker inspect --format "{{.State.Running}}" wp2
docker logs wp2
• Fails again!
•Why?
•WordPress’ Apache Web server cannot create a lock file to a

specific location (part of Apache’s standard config).
•Why it cannot create it?
• The container’s f/s is read-only.

•What can you do?
• Find which part of the f/s should be made writeable
•Create an exception to the read-only f/s.

docker run -d --name wp_writable wordpress
• Check where wordpress changes the container’s filesystem:
docker container diff wp_writable
• Command reports:

‣ C /run
‣ C /run/apache2
‣ A /run/apache2/apache2.pid

• Specify an exception to the read-only file system, using docker “volumes”:
docker run -d --name wp3 \
 --link wpdb:mysql \
 -p 8000:80 \
 --read-only
 -v /run/apache2/ \
 --tmpfs /tmp \
 --read-only wordpress

M. D. Dikaiakos

Web site
monitoring

Problems with previous approach:

• The database is running in a container on the
same computer as the WordPress container.

•WordPress is using several default values for
important settings like database name,
administrative user, administrative password,
database salt, and so on.

• To deal with this problem, you could create
several versions of the WordPress software, each
with a special configuration for each client.

•Doing so would turn your simple provisioning
script into a monster that creates images and
writes files.

• These problems can be simplified by:

•Using environment variables

•Running the database on a different
computer; specify its hostname with an
environment variable

M. D. Dikaiakos

Environment variable injection
• Environment variables: key-value pairs that are made available to

programs through their execution context.

• They let you change a program’s configuration without modifying any files or
changing the command used to start the program.

•Docker uses environment variables to communicate information about:

• dependent containers

• the container’s host name, and

• other convenient information for programs running in containers.

• Docker provides mechanism to inject environment variables into a new
container.

• Programs that know to expect important information through environment
variables can be configured at container-creation time.

docker run --env MY_ENVIRONMENT_VAR="this is a test" busybox:latest env

M. D. Dikaiakos

Web site
monitoring

•We want to support multiple WordPress
installations, using a common monitoring
infrastructure, and a single database server
with multiple hosted databases

Setup the database and the mailer that will be
shared by the “clients” (Wordpress installations)
export DB_CID=$(docker run -d
 -e MYSQL_ROOT_PASSWORD=ch2demo
 mysql)
export MAILER_CID=$(docker run -d
 dockerinaction/ch2_mailer)

•Create and run a client site provisioning script, which:

•Reads its client ID from an env variable

•Reads the db and mailer container IDs

• Launches the Wordpress container

• Launches that container’s monitoring agent

#!/bin/sh

if [! -n "$CLIENT_ID"]; then
echo "Client ID not set"
exit 1

fi

WP_CID=$(docker create \
 --link $DB_CID:mysql \
 --name wp_$CLIENT_ID \
 -p 8000:80\
 --read-only -v /run/apache2/ --tmpfs /tmp \
 -e WORDPRESS_DB_NAME=$CLIENT_ID \
 --read-only wordpress:5.0.0-php7.2-apache)

docker start $WP_CID

AGENT_CID=$(docker create \
 --name agent_$CLIENT_ID \
 --link $WP_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

docker start $AGENT_CID

• Read client ID from an env
variable
• Reads the db and mailer

container IDs
• Launches the Wordpress

container
• Launches that container’s

monitoring agent

M. D. Dikaiakos

Building Durable Containers
•Docker provides restart policies to help deal with failures:
exponential backoff strategy for timing restart attempts
docker run -d --name backoff-detector --restart always

busybox date

•However, during backoff periods, the container isn’t
running.

• That means you can’t do anything that requires the
container to be in a running state, like execute additional
commands in the container.

• To address this issue, you can adjust the supervisor process
inside your container so that it deals with failures and
restarts the way you want.

M. D. Dikaiakos

Supervisor Process
•A supervisor process, or init process, is a program that’s used to launch and maintain the
state of other programs.

‣ On a Linux system, PID #1 is an init process. It starts all the other system processes and restarts
them in the event that they fail unexpectedly.

•Common practice to use a similar pattern inside containers to start and manage
processes.

•Using a supervisor process inside your container will keep the container running in the event
that the target process—a web server, for example—fails and is restarted.

•Popular supervisor programs for containers: init, systemd, runit, upstart, and supervisord.

•You can check the existence of this, as follows. First, run the lamp-test container:

docker run -d -p 80:80 --name lamp-test tutum/lamp

• Then, run the command below to kill the program inside the lamp-test container and tell
the apache2 process to shut down.

docker exec lamp-test ps

docker exec lamp-test kill <PID>

•When apache2 stops, the supervisord process will log the event and restart the process.

M. D. Dikaiakos

Startup Scripts and Entrypoints
•A common alternative to just using init or supervisor
programs:

‣ Checking preconditions for successfully starting the
contained software.

‣ Sometimes used as the default command for the container.

•Docker containers run a command or script called an
entrypoint before executing the default command:

‣ Ideal place to put code that validates the preconditions of
a container.

‣ Docker allows to override or specifically set the entrypoint of
a container on the command line.

M. D. Dikaiakos

See the entry
point for the
WordPress
container

•Override the default command
and use a command to view
the contents of the startup
script:

docker run wordpress \
 cat /usr/local/bin/docker-entrypoint.sh

• Define "cat" as the entrypoint
and pass its location as
argument to cat:
•docker run --entrypoint="cat" wordpress /usr/
local/bin/docker-entrypoint.sh

M. D. Dikaiakos

•What is the output of:
docker run dockerinaction/hello_world

•What is the output of:
docker run —entrypoint “whoami”
 dockerinaction/hello_world

•What is the output of:
docker run dockerinaction/hello_world
 whoami

•What is the output of:
docker run dockerinaction/hello_world ls

M. D. Dikaiakos

Clean-up
• The isolation provided by containers simplifies the tasks of
stopping processes and removing files.

•With Docker, you must first identify the container that you
want to stop and/or remove and use the docker rm
command. For example, to delete the stopped container
named wp you’d run: docker rm wp

• The processes running in a container should be stopped
before the files in the container are removed with the docker
stop command or by using the -f flag on docker rm.

•You can avoid the cleanup burden by specifying --rm on the
docker run command. Doing so will automatically remove
the container as soon as it enters the exited state

Software Installation & Images

Docker Overview

M. D. Dikaiakos

What do you need to do
to install and run

software of a container?

M. D. Dikaiakos

Software Installation Simplified
• Software is distributed using images.

•Need to tell Docker exactly which image to install and launch a container with it.

• Steps:

1. Identify the software you want to install:

• Name the program

• Specify its version

• Specify the source you want to install it from

2. Discover the repository where the identified software image is located.

3. Download the image containing the software required, install, built and run them
isolated from other files in your system.

Docker Repositories

Software Installation & Images

M. D. Dikaiakos

Named Repositories
•A named repository is a named bucket of images
(names are similar to URLs).

•Naming syntax:

‣ name of the host where the image is located

‣ the user account that owns the image

‣ a short name.

•A repository can hold several images, with each
image identified uniquely with tags, which can
identify uniquely an image (its version), create useful
aliases, etc.

M. D. Dikaiakos

Locating Repositories
• There are several public Docker indexes, where you can
search for software images.

•Docker Hub is the default Docker registry: it is a registry
and index with a website run by Docker Inc.

You can find software on Docker Hub through either its
website or the docker command-line program, e.g.:

docker search Postgres

• Τo ensure that Docker is an open ecosystem, Docker Inc.:

‣ Provides a public image to run your own registry, and

‣ Allows to easily configure the docker command-line tool
to use alternative registries.

M. D. Dikaiakos

Docker Registries
• The Docker Hub website allows registered users to start a repository and publish their images
on Docker Hub. Typical approaches:

‣ Use the command line to push images independently and on own system. Images pushed this
way are considered to be less trustworthy: not clear how exactly they were built.

‣ Make a Dockerfile publicly available and use Docker Hub’s continuous build system.

• Dockerfiles are scripts for building images.

• Images created from dockerfiles are preferred because the Dockerfile is available for
examination prior to installing the image.

•Working with private Docker Hub registries or pushing into registries that you control on
Docker Hub requires that you authenticate.

•Closed source or proprietary projects may not want to risk publishing their software through a
third party. There are three other ways to install software:

‣ Use alternative repository registries or run your own registry:

docker pull quay.io/dockerinaction/ch3_hello_registry:latest

‣ You can manually load images from a file.

‣ You can download a project from some other source and build an image using a provided
Dockerfile.

[REGISTRYHOST/][USERNAME/]NAME[:TAG]docker rmi quay.io/dockerinaction/ch3_hello_registry

M. D. Dikaiakos

Working with Images as Files
•Docker provides the docker load command
to load images into Docker from a file, and
docker save to save an image to a file.

‣ So, you can load images that you acquired
through other channels.

M. D. Dikaiakos

Installing from a Dockerfile
•A dockerfile script describes the steps for
Docker to take to build a new image.

‣ Dockerfiles can be distributed along with
software that the author wants to be put
into an image.

•E.g.:
git clone https://github.com/dockerinaction/ch3_dockerfile.git

docker build -t dia_ch3/dockerfile:latest ch3_dockerfile

M. D. Dikaiakos

github.com/dockerinaction/ch3_dockerfile.git:

FROM busybox:latest
MAINTAINER dia@allingeek.com
ADD demo.sh /demo/
WORKDIR /demo/
CMD ./demo.sh

http://github.com/dockerinaction/ch3_dockerfile.git:

Installation Files and Isolation

Software Installation & Images

M. D. Dikaiakos

Images and Image Hierarchies
•Most of the time, an image is actually a
collection of image layers.

•A layer is an image that’s related to at least one
other image:

‣ Images are usually related to other images in
parent/child relationships.

• Installing an image means installing:

‣ a target image and

‣ each image layer in its lineage.

M. D. Dikaiakos

Images
in Action

Install an image ch3_myapp (but don’t run it)

Then, install another image ch3_myotherapp

Layers already installed are not downloaded again

M. D. Dikaiakos

Images
in Action

See which images you have installed:

Remove the images installed:

M. D. Dikaiakos

Layers
• Layer (or intermediate image): a set of files and file
metadata that is packaged and distributed as an
atomic unit.

‣ Internally, Docker treats each layer like an image.

‣ A layer can be promoted to an image if it is tagged.

•Most layers are built upon a parent layer by
applying filesystem changes to the parent
(software updates, installations).

‣ The resulting layer contains the combined set of files
from the parent and the layer added.

M. D. Dikaiakos

Image Hierarchies
• Images maintain parent/child relationships:

‣ In these relationships they build from their parents and form layers.

‣ Images can have relationships with any other image, including images
in different repositories with different owners.

• The files available to a container are the union of all of the layers in
the lineage of the image the container was created from.

•An image is named when its author tags using the docker tag
command and publishes it.

‣ Until an image is tagged, the only way to refer to it is to use its 65 (base
16) digit unique identifier (UID) generated when the image was built.

• Docker truncates the UID from to 65 to12 digits for the benefit of its
human users.

• Internally and through API access, Docker uses the full 65.

M. D. Dikaiakos

M. D. Dikaiakos

Images and Isolation
•A container image encapsulates almost all of an
application’s dependencies into a package that
can be deployed into the container:

‣ The only local external dependencies are on the
Linux kernel system-call interface.

•Container images isolate applications from the
heterogeneous OS on which they run.

•Containers abstract away from the application
developer and the deployment infrastructure,
many OS and machine details.

M. D. Dikaiakos

Images and Isolation
•Programs running inside containers know nothing about image layers.

‣ From inside a container, the filesystem operates as though it's not running in a
container or operating on an image.

‣ From its perspective, the container has exclusive copies of the files provided by the
image.

‣ This is made possible with something called a union file-system (UFS).

•Docker uses a variety of union filesystems and will select the best fit for your system.

• The tools used by Docker to create effective filesystem isolation:

‣ Union filesystem: used to create mount points on the host filesystem that abstract the
use of layers.

‣ MNT namespaces: the Linux kernel provides a namespace for the MNT system; when
Docker creates a container, that new container has its own MNT namespace, and a
new mount point will be created from the container to the image.

‣ The chroot system call: used to make the root of the image filesystem the root in the
container’s context.

M. D. Dikaiakos

Image Hierarchies
•Benefits:

‣ Layer reuse and bandwidth/storage
savings.

M. D. Dikaiakos

•Containers are an OS virtualization approach.

•Docker is the most popular solution for managing containers, introduced by
Google. Docker containers were built initially on LXC with namespaces and
cgroups. Later, they replaced LXC with libcontainer, also using Linux Kernel
namespaces, cgroups, and capabilities.

•Containers can be run with virtual terminals attached to the user’s shell or in
detached mode.

•By default, every Docker container has its own PID namespace, isolating
process information for each container.

•Docker identifies every container by its generated container ID, abbreviated
container ID, or its human-friendly name.

•All containers are in any one of four distinct states: running, paused,
restarting, or exited.

• The docker exec command can be used to run additional processes inside a
running container.

•A user can pass input or provide additional configuration to a process in a
container by specifying environment variables at container-creation time.

•Using the --read-only flag at container-creation time will mount the
container file system as read-only and prevent specialization of the
container.

•A container restart policy, set with the --restart flag at container-creation
time, will help your systems automatically recover in the event of a failure.

•Docker makes cleaning up containers with the docker rm command as
simple as creating them.

M. D. Dikaiakos

•Human Docker users use repository names to communicate
which software they would like Docker to install.

•Docker Hub is the default Docker registry. You can find
software on Docker Hub through either the website or the
docker command-line program.

• The docker command-line program makes it simple to install
software that’s distributed through alternative registries or in
other forms.

• The image repository specification includes a registry host
field.

• The docker load and docker save commands can be used to
load and save images from TAR archives.

•Distributing a Dockerfile with a project simplifies image builds
on user machines.

• Images are usually related to other images in parent/child
relationships. These relationships form layers. When we say
that we have installed an image, we are saying that we have
installed a target image and each image layer in its lineage.

• Structuring images with layers enables layer reuse and saves
bandwidth during distribution and storage space on your
computer.

M. D. Dikaiakos

Storage and Volumes

Docker Overview

M. D. Dikaiakos

Suppose you launch a container with a
web database application

When programs connect to the database and enter
data, where is that data stored? Is it in a file inside the

container?

What happens to that data when you stop the
container or remove it?

How would you move your data if you wanted to
upgrade the database program?

Where would you write log files so that they will
outlive the container?

How would you get access to those logs to
troubleshoot a problem?

How can other programs such as log digest tools
get access to those files?

M. D. Dikaiakos

Union File System
•Without a storage solution, container users
are limited to working with the union file
system that provides image mounts.

•Although the union file system works for
building and sharing images, it’s less than
ideal for working with persistent or shared
data.

M. D. Dikaiakos

• Linux unifies all storage into a single file system
tree:

‣ Storage devices such as disk partitions or USB
disk partitions are attached to specific locations
in that tree.

‣ Those locations are called mount points.

•A mount point defines:

‣ the location in the tree, the access properties to
the data at that point (for example, writability),
and

‣ the source of the data mounted at that point
(e.g., a specific hard disk, USB device, or
memory-backed virtual disk).

•Mount points allow software and users to use the
file tree in a Linux environment without knowing
exactly how that tree is mapped into specific
storage devices. This is particularly useful in
container environments.

Mount
points

M. D. Dikaiakos

Mount Points and Containers
•Every container has something called a MNT namespace
and a unique file tree root.

• The image that a container is created from is mounted at
that container's file tree root- the / point

•Every container has a different set of mount points.

• Since different storage devices can be mounted at
various points in a file tree, we can mount nonimage-
related storage at other points in a container file tree.
That is exactly how:

‣ containers get access to storage on the host filesystem and

‣ share storage between containers.

M. D. Dikaiakos

Container Storage
• There are three most common types of storage
mounted into containers:

‣ Bind mounts

‣ In-memory storage

‣ Docker volumes

• These types of mount points can be created
using the --mount flag on the docker run and
docker create subcommands.

M. D. Dikaiakos

Container Storage

M. D. Dikaiakos

Container Storage

M. D. Dikaiakos

Container Storage

M. D. Dikaiakos

Container Storage

M. D. Dikaiakos

Container Storage

M. D. Dikaiakos

Images vs Volumes
•A volume is a tool for segmenting and sharing data that has a scope or life
cycle that’s independent of a single container.

•Volumes an important part of any containerized system design that shares
or writes files:

‣ Database software vs database data

‣ Web application vs log data

‣ Data processing application vs input and output data

‣ Web server vs static content

•Volumes enable separation of concerns and create modularity for
architectural components:

‣ Images: appropriate for packaging/distributing relatively static files (e.g.
programs)

‣ Volumes: hold dynamic data or specializations.

M. D. Dikaiakos

Bind Mounts
•Bind mounts are mount points used to remount parts of a
filesystem tree onto other locations.

•When you use a bind mount, a file or directory on the host
machine (source) is mounted into a container, to a specific
point in a container file tree (destination). The file or directory
is referenced by its absolute path on the host machine.

•Bind mounts are useful when:

‣ The host provides a file or directory that is needed by a
program running in a Container

‣ The containerized program produces a file or log that is
processed by users or programs running outside containers.

M. D. Dikaiakos

Bind Mount Scenario
•Consider that you're running a NGINX web server that
depends on sensitive configuration on the host and
emits access logs that need to be forwarded by your
log-shipping system.
•Use Docker to launch the web server in a container and
bind-mount the locations where you want the web
server to get the configuration and write the access-
logs.

CONFSRC=~/example.conf
CONF_DST=/etc/nginx/conf.d/default.conf
LOGSRC=~/example.log
LOGDST=/var/1log/nginx/custom.host.access.log
docker run -d --name diaweb\

--mount type=bind, src=${LOG_SRC},dst=${LOG DST) \
--mount type=bind, src=$(CONF_SRC}, dst=${CONF_DST}, readonly=true \

 -p 80:80 \
nginx:latest

M. D. Dikaiakos

Bind Mount Cons and Pros
•Bind mounts tie otherwise portable container descriptions to the filesystem of a
specific host.

‣ If a container description depends on content at a specific location on the host file
system, that description isn't portable to hosts where the content is unavailable or
available in some other location.

•Bind mounts create an opportunity for conflict with other containers.

‣ E.g. start multiple instances of a database that all use the same host location as a
bind mount for data storage.

‣ In that case, each of the instances would compete for the same set of files. Without
other tools such as file locks, that would likely result in corruption of the database.

•Bind mounts are appropriate tools for workstations, machines with specialized
concerns, or in systems combined with more traditional configuration
management tooling.

• It's better to avoid these kinds of specific bindings in generalized platforms or
hardware pools.

M. D. Dikaiakos

In-memory Storage
•Most service software and web applications use private key files,
database passwords, API key files, or other sensitive configuration
files, and need upload buffering space.

• In these cases, it is important that you never include those types of
files in an image or write them to disk.

• Instead, you should use in-memory storage.

•You can add in-memory storage to containers with a special type
of mount:

M. D. Dikaiakos

Docker Volumes
•Docker volumes are named filesystem trees managed by Docker. They can be
implemented with:

‣ disk storage on the host file system, or

‣ as cloud storage.

•When using a volume, a new directory is created within Docker’s storage directory on
the host machine, and Docker manages that directory’s contents.

•Using volumes decouples storage from specialized locations on the file system that you
might specify with bind mounts: their life-cycle is independent of a single container’s.

•All operations on Docker volumes can be accomplished using the docker volume
subcommand set: docker volume create and docker volume inspect.

•Volumes are an effective way to organize your data:

‣ Using them decouples volumes from other potential concerns of the system.

‣ When you're finished with a volume and you ask Docker to clean things up for you,
Docker can confidently remove any directories or files that are no longer being used by a
container.

M. D. Dikaiakos

Using volumes
with a NoSQL

Database

Apache Cassandra is a popular,
open source NoSQL distributed
database offering linear scalability
and fault-tolerance on commodity
hardware or cloud infrastructure.

• Task: run a container with a
Cassandra DB, using an external
volume to store its data:

•Create a docker volume

•Run a container with Cassandra,
linking it to the created volume

•Run another container and
connect through it to the DB,
submitting instructions

M. D. Dikaiakos

Using volumes
with a NoSQL

Database

Launch a container running Cassandra, with the cass-
shared volume mounted at /var/lib/cassandra/data

Create volume on the disk space of the local machine
and in a part managed by the Docker engine:

Connect to Cassandra from another container & submit
instructions

M. D. Dikaiakos

Sharing Files between Containers
• Sharing access to the same set of files between multiple containers is
where the value of volumes becomes most obvious.

•Bind mounts are the most obvious way to share disk space between
containers.

•Unlike shares based on bind mounts, named volumes enable containers to
share files without any knowledge of the underlying host file system.

‣ Unless the volume needs to use specific settings or plugins, it does not have
to exist before the first container mounts it.

‣ Docker will automatically create volumes named in run or create
commands by using the defaults.

•Attention: A named volume that exists on the host will be reused and
shared by any other containers with the same volume dependency.

•Name conflicts can be avoided by using anonymous volumes and
mountpoint definition inheritance between containers.

M. D. Dikaiakos

•Volumes allow containers to share files with the host or other
containers:

•Volumes are parts of the host file system that Docker mounts into
containers at specified locations. There are two types of volumes:

‣ Docker-managed volumes that are located in the Docker part of
the host file system

‣ Bind mount volumes that are located anywhere on the host file
system.

•Volumes have life-cycles that are independent of any specific
container, but a user can only reference Docker-managed
volumes with a container handle.

•Orphan volume problem can make disk space difficult to recover.

‣ Use the docker rm -v option.

•A number of patterns can be followed to provide for volume
organization, storage efficiency on the host, static content
distribution, maximing reuse of storage etc

‣ Volume container pattern

‣ Data-packed volume container pattern: useful for distributing
static content for other containers

‣ The polymorphic container pattern: a way to compose minimal
functional components and maximize reuse

M. D. Dikaiakos

•Mount points allow many f/s from many devices to be
attached to a single file tree.

•Every container has its own file tree.

•Containers can use bind mounts to attach parts of the
host f/s into a container.

• In-memory filesystems can be attached to a container file
tree so that sensitive or temporary data is not written to
disk.

•Docker provides anonymous or named storage references
called volumes.

•Volumes can be created, listed, and deleted using the
appropriate docker volume subcommand.

•Volumes are parts of the host filesystem that Docker
mounts into containers at specified locations.

•Volumes have life cycles of their own and might need to
be periodically cleaned up.

•Docker can provide volumes backed by network storage
or other more sophisticated tools if the appropriate
volume plugin is installed.

Single-host networking

Docker Overview

M. D. Dikaiakos

Docker Container Networking
• There are two specific networks of interest when examining the
networking capabilities of Docker containers running on a server:

‣ The first network is the one that the server is connected to.

‣ The second is a virtual network that Docker creates to connect all of the
running containers to the network that the computer is connected to.

• The second network is called a bridge. The bridge is an interface that
connects multiple networks so that they can function as a single
network.

‣ Bridges work by selectively forwarding traffic between the connected
networks based on another type of network address.

M. D. Dikaiakos

Docker Networks
•Docker abstracts the underlying host-attached
network from containers.

•A container attached to a Docker network will get
a unique IP address that is routable from other
containers attached to the same Docker network.

•Docker treats networks as first-class entities: they
have their own lifecycle and are not bound to
any other objects.

• They can be defined and managed with the
docker network subcommands.

M. D. Dikaiakos

Which networks are
available by default with

every docker
installation?

M. D. Dikaiakos

Docker Default Networks
•By default, Docker includes three networks, each provided by a different driver.

•Bridge is the default network, provided by a bridge driver.

‣ This offers inter-container connectivity for all containers running on the same
machine.

‣ Included to maintain compatibility with legacy Docker and cannot take advantage
of modern Docker features including service discovery or load balancing - so if you
need a bridge network, you have to provide your own.

• The host network is provided by a host driver, which instructs Docker not to create
any special networking namespace or resources for attached containers.

‣ The containers on the host network interact with the host's network stack like
uncontained processes.

• The none network uses the null driver.

‣ Containers attached to the none network will not have any network connectivity
outside themselves.

M. D. Dikaiakos

Docker Network Scope
• The scope of a network can take three values:

‣ Local: the network is constrained to the machine
where the network exists

‣ Global: should be created on every node in a
cluster but not route between them

‣ Swarm: seamlessly spans all of the hosts participating
in a Docker swarm (multi-host or cluster-wide)

•All of the default networks have the local scope,
and will not be able to directly route traffic between
containers running on different machines.

M. D. Dikaiakos

Bridge Network
•Containers have their own
private loopback interface and a
separate virtual Ethernet interface
linked to another virtual interface
in the host's namespace.
‣ These two linked interfaces form

a link between the host's
network and the container.

•Each container is assigned a
unique private IP address that's
not directly reachable from the
external network.

•Connections are routed through
another Docker network that
routes traffic between containers
and may connect to the host's
network to form a bridge.

M. D. Dikaiakos

User-defined Bridge Networks
•Docker allows you to create your own specific
and customizable virtual network topology, using
the Docker bridge network driver, which relies on:
Linux namespaces, virtual Ethernet devices, and
the Linux firewall.

• The resulting virtual network (the bridge):

‣ Is local to the machine where Docker is installed.

‣ Creates routes between participating containers
and the wider network where the host is
attached.

M. D. Dikaiakos

Exploring
Docker

Networking

• Let’s see how to use containers
with user networks and inspect the
resulting network configuration.

• Scenario:

•Create 2 bridge networks, user-
network and user-network2.

•Create 2 containers, network-
explorer and lighthouse, and
connect them to the bridge
networks.

•Examine how these steps are
implemented and how the
networks are configured.

•Before starting any containers, check which networks are available

•Create a bridge network, user-network, and check what
happens:

•Creates a new local bridge network named user-network.

•Assigns the network with label metadata, to help identifying
it later.

•Marks the network as attachable to allow attaching and
detaching containers to it at any time.

• Sets the network scope property to the default value for its
driver.

•Creates a custom subnet 10.0.42.0/24, and an
assignable address range for this network's upper half of the
last octet (10.0.42.128/25).

• This means that as you add containers to this network,
they will receive IP addresses in the range from
10.0.42.128 to 10.0.42.255.

Configuration

• Launch a container, attach it to the created user-network, and run sh on
the container.

• From the shell, check the network interfaces available on the container.

• Two network devices are available, with IPv4 addresses:

•lo (loopback)

•eth0 (virtual ethernet device): has an IP address between 10.0.42.128
to 10.0.42.255

• That IP address is the one that any other container on this bridge network
would use to communicate with services you run in this container.

• The loopback interface can be used only for communication within the
same container.

Configuration

l0

eth0

•Create another network named user-network2

• Connect your container to the new network:

• Attach your terminal to the container and check its
network interfaces: the network-explorer container is
attached to both user-defined bridge networks.

Configuration

l0

eth0

eth1

• Install inside container network-explorer the nmap tool to scan network address ranges in its
network and find which services are running.

•nmap finds that only two devices are attached to each of the bridge networks:

• The gateway drivers created by the bridge network driver

• The running container

•Create a second container named
lighthouse and attach it to user-network2.

l0

eth0

eth1 l0

eth0

•Use again the nmap tool to from container network-explorer to scan network address
ranges in its network and find which services are running.

• The results show that the lighthouse container is up and running, and accessible from the
network-explorer container via its attachment to user-network2.

• So network attachment works as expected. DNS-based service discovery system works.

•By scanning the network, you discover the new node by its IP address, and nmap is able
to resolve that IP address to a name.

•Your code can discover individual containers on the network based on their name.

M. D. Dikaiakos

Beyond bridge networks
•Bridge networks work on only a single machine: They are not cluster-aware;
The container IP addresses are not routable from outside that machine.

‣ Useful for single-server deployments, e.g. for a LAMP stack running a CMS or for
local development work.

• For Docker networking in multi-server environments, options are:

‣ Underlay networks - (w. Docker on Linux and w. control of the host network),
using drivers like macvlan or ipvlan:

• Create first-class network addresses for each container

• Addresses are discoverable & routable from the same network where the host is
attached - each container looks like an independent node of the network.

‣ Overlay networks: similar in construction to bridge networks but the logical
bridge component is multi-host aware and can route inter container
connections between every node in a swarm (swarm mode must be enabled).

• Containers on overlay network not routable outside the cluster.

M. D. Dikaiakos

Special Container Networks: Host
•When you specify the --network host option on a docker run command, you
are telling Docker to:

‣ create a new container without any special network adapters or network
namespace.

‣ Whatever software is running inside the resulting container will have the same degree
of access to the host network as it would running outside the container.

‣ All of the kernel tools for tuning the network stack are available for modification (as
long as the modifying process has access to do so).

•Containers running on the host network are able to:

‣ access host services running on localhost

‣ see and bind to any of the host network interfaces.

•Running on the host network

‣ Is useful for system services or other infrastructure components.

‣ Is not appropriate in multi-tenant environments and should be disallowed for third-
party containers.

M. D. Dikaiakos

Special Container Networks: None
• To create a container that cannot be attached to a network when building
systems of least privilege, you should use the none network whenever possible.

•Creating a container on the none network:

‣ Instructs Docker not to provision any connected virtual Ethernet adapters for the
new container.

‣ Gives the container its own network namespace and so it will be isolated: without
adapters connected across the namespace boundary, it will not be able to use the
network to communicate outside the container.

•Containers configured this way will still have their own loopback interface, and so
multiprocess containers can still use connections to localhost for interprocess
communication:

‣ Any program running in the container can connect to or wait for connections on
the localhost interface.

‣ Nothing outside the container can connect to that interface.

‣ No program running inside that container can reach anything outside the container.

M. D. Dikaiakos

Handling Inbound Traffic
•Bridge networks use network address translation (NAT):

‣ All outbound container traffic with destinations outside the bridge
network look like they are coming from the host itself.

‣ The service software you have running in containers is isolated from
the rest of the world, where most of your clients and customers are
located.

• For inbound traffic to reach a container from external network
interfaces, you have to specifically tell Docker how to forward
traffic to the container, specifying:

‣ A TCP or UDP port on the host interface and

‣ A target container and container port

similar to forwarding traffic through a NAT barrier on your home
network.

M. D. Dikaiakos

Handling Inbound Traffic
•Port publication configuration is provided at container creation time
and cannot be changed later.

• The docker run and docker create commands provide a -p or —
publish list option, with arguments specifying:

‣ Host interface

‣ Port on the host to forward

‣ Target port

‣ Port protocol

•Map port 8080 of the host interface to port 8080 of the container
listener1:

M. D. Dikaiakos

Handling Inbound Traffic
•Map some (randomly chosen by the host operating system) port
of the host interface to port 8080 of the container listener2:

•Ports are scarce resources - choosing a random port avoids
potential conflicts.
•Note: programs running inside a container have no way of
knowing that they are:
‣ running inside a container
‣ bound to a container network,
‣ which port is being forwarded from the host

M. D. Dikaiakos

Handling Inbound Traffic
• Docker allows you to define multiple port

mappings:

•With docker port subcommand you can specify
the specific port of your container for which you are
looking for its mapping on a port of its host machine:

M. D. Dikaiakos

Firewalls in Docker
•Docker networking follows the namespace model, wherein containers in the
same container network know each other’s names and through that
knowledge they can communicate.

‣ Resource access-control problems are transformed into addressability problems.

‣ Containers on the same container network will have mutual (bidirectional)
unrestricted network access.

•However, different applications carry different vulnerabilities and might be
running in containers with different security postures.

•Consequently:

‣ A firewall will not protect you against a compromised application running in a
container of your network.

‣ Nothing short of application-level authentication and authorization can protect
containers from each other on the same network.

‣ Always deploy containers with appropriate application-level access-control
mechanisms.

M. D. Dikaiakos

Containers and DNS
• Typically, containers on the bridge network and other computers on your network have private IP
addresses that aren't publicly routable:

‣ unless you’re running your own DNS server, you can't refer to them by a name.

•Options for customizing the DNS configuration for a new container, use docker run with:

• The --hostname flag to set the hostname of the new container: adds this entry to the DNS override
system inside the container.

‣ The entry maps the provided hostname to the container's bridge.

‣ Setting the hostname of a container is useful when programs running inside a container need to look up
their own IP address or must self-identify. However, other containers don't know this hostname: its uses are
limited.

‣ If you use an external DNS server, you can share those hostnames.

• The --dns flag to specify one or more DNS servers to use.

• The --dns-search flag allows you to specify a DNS search domain, which is like a default hostname
suffix.

‣ With a DNS search domain set, any hostnames that don't have a known top-level domain (for
example, .com or .net) will be searched for with the specified suffix appended.

• The --add-host flag allows overriding the DNS system, providing a custom mapping for an IP address
and hostname pair.

The IP address
is the bridge IP
address for the
container

Use Google’s
DNS server

Search for the IP address
of hub.docker.com from
inside the container

Do the same search from
MacOS

Assing the name “test” to
IP address 10.10.10.255

M. D. Dikaiakos

Externalizing Network Management
• Some organizations, infrastructures, or products require direct
management of container network configuration, service discovery,
and other network-related resources.

• In those cases, you or the container orchestrator you are using will
create containers by using the Docker none network.

• Then use some other container-aware tooling to create and manage
the container network interfaces, manage NodePort publishing,
register containers with service-discovery systems, and integrate with
upstream load-balancing systems.

•When you externalize network management, Docker is still responsible
for creating the network namespace for the container, but it will not
create or manage any of the network interfaces.

•You will not be able to use any of the Docker tooling to inspect the
network configuration or port mapping.

M. D. Dikaiakos

•Docker networks are first-class entities that can be created,
listed, and removed just like containers, volumes, and images.

•Bridge networks are a special kind of network that allows
direct inter-container network communication with builtin
container name resolution.

•Docker provides two other special networks by default: host
and none.

•Networks created with the none driver will isolate attached
containers from the network.

•A container on a host network will have full access to the
network facilities and interfaces on the host.

• Forward network traffic to a host port into a target container
and port with NodePort publishing.

•Docker bridge networks do not provide any network firewall
or access-control functionality.

• The network name-resolution stack can be customized for
each container. Custom DNS servers, search domains, and
static hosts can be defined.

•Network management can be externalized with third-party
tooling and by using the Docker none network.

Controlling Resources

Docker Overview

Resource Limits (CPU, Memory)

Controlling Resources

M. D. Dikaiakos

Overview
• If the resource consumption of processes on a computer
exceeds the available physical resources, the processes
will experience performance issues and may stop
running:

‣ Container systems that provide strong isolation include
providing resource allowances / setting limits on resource
use on individual containers.

•By default, Docker containers may use unlimited CPU,
memory, and device I/0 resources.

•However, Docker allows the management of resources
provided to its containers, upon their creation or launch.

M. D. Dikaiakos

Resource Limits: Memory
•Memory limits restrict the amount of main memory that can
be used by processes inside a container.

•Memory limits ensure that one container can't allocate all
of the system's memory, starving other programs for the
memory they need.

•Memory limits are not reservations: They don't guarantee
that the specified amount of memory will be available:
They’re only a protection from overconsumption.

•Memory limit enforcement by the Linux kernel is very
efficient: its runtime overhead is minimal.

• To see memory consumption of a container: docker stats

docker container run -d --name ch6 mariadb \
 --memory 256m \
 --cpu-shares1024 \
 --cap-drop net_raw \
 --e MYSQL_ROOT_PASSWORD=test \
 mariadb:5.5

Set a memory
constraint of 256 MB

docker container run -d -P --name ch6 wordpress \
 --memory 512m
 --cpu-shares 512 \
 --cap-drop net_raw \  
 --link ch6mariadb:mysql\
 -e WORDPRES_DB_PASSWORD=test \
wordpress:5.0.0-php7.2-apache

Set relative CPU
shares

Use 3/5 of the available
CPUs

docker container run -d -P --name ch6_wordpress \
 --memory 512m \
 --cpus 0.75 \  
 --cap-drop net_raw \  
 --link ch6_mariadb:mysqi \
 -e WORDPRESS_DB_PASSWORD=test \
wordpress:5.0.0-php7.2-apache

M. D. Dikaiakos

Resource Limits: CPU
• Starvation of a process’ processing time results in performance
degradation:
‣ A process waiting for time on the CPU is still working correctly, but

‣ A slow process may be worse than a failing one, if it is running a latency-
sensitive program.

•Docker can limit a container's CPU resources by limiting:
‣ The sum of the computing cycles of all processors available to the container,

relatively to other containers (relative weight of the container).

‣ The total number of CPU cores used by a container (cpus option).

• Linux uses the relative weight to determine the percentage of CPU time
the container should use relatively to other running containers.
‣ CPU shares enforced only when there is contention for time on the CPU.

• The cpus option allocates a quota of CPU resources the container may use by
configuring the Linux Completely Fair Scheduler (CES).

‣ CPU quota allocated, enforced, refreshed every 100ms by default

M. D. Dikaiakos

Resource Access Control: Devices
•Controlling access to devices refers to
providing (or not) a container with access to
a host's device (cameras, microphones, etc).

•More like a resource-authorization control
than a limit.

docker -it --rm \

 --device /dev/video0:/dev/video0 \

 ubuntu:latest ls -al /dev

Mount video0

Sharing Memory

Controlling Resources

M. D. Dikaiakos

Shared Memory
• Linux provides a tools for sharing memory between
processes running on the same computer.

• Sharing memory between processes enable inter-process
communication (IPC) performed at memory speed.

•Docker creates a unique IPC namespace for each
container by default.

‣ The Linux IPC namespace partitions, share memory primitives
such as named shared memory blocks, semaphores, and
message queues.

‣ In Docker, the IPC namespace prevents processes in one
container from accessing the memory on the host or in other
containers.

• Two containers are launched to implement a
producer/consumer pair using shared memory
to communicate.

•However, he consumer does not receive data
from the producer:

docker run -d -u nobody --name ch6_ipc_producer dockerinaction/ch6_ipc -producer

docker run -d -u nobody --name ch6_ipc_consumer dockerinaction/ch6_ipc -consumer

docker logs ch6_ipc_consumer

• To enable shared memory, the consumer needs
to join the IPC namespace of the producer, at
run time:

docker -d --name ch6_ipc_consumer --ipc container:ch6_ipc_producer \

 dockerinaction/ch6_ipc -consumer

M. D. Dikaiakos

Open Memory Containers
• If a container needs to operate in the same memory
namespace as the rest of the host, it can be
launched as open memory container.

• To enable this feature specify host on the --ipc flag.

•Open memory containers are a risk, but it’s better to
use them than to run those processes outside a
container.

docker -d --name ch6_ipc_producer --ipc host \

 dockerinaction/ch6_ipc –producer

docker -d --name ch6_ipc_consumer --ipc host \

 dockerinaction/ch6_ipc -consumer

Users and User Namespaces

Controlling Resources

M. D. Dikaiakos

Default Docker User: root
•Docker starts containers as the user that is specified
by the image metadata by default, which is often
the root user.

• The root user has almost full privileged access to the
state of the container.

•Any processes running as that user inherit those
permissions.

M. D. Dikaiakos

Avoiding Root
•You can entirely avoid the default user problem if you
change the run-as user when you create the container.

‣ However, the username must exist on the image.

‣ Note that different Linux distributions ship with different
users pre-defined.

‣ You can get a list of available users in an image with the
following command:

M. D. Dikaiakos

Setting Run-as User
•Once you've identified the user you want to use, you
can create a new container with a specific run-as user:

‣ Docker provides the --user or --u flag on container
run and docker container create for setting the
user.

• The --user flag can accept any user or group pair:
name or UID.

‣ When you specify a user by name, that name is
resolved to the user ID (UID) specified in the container's
passwd file.

M. D. Dikaiakos

Setting Run-as User
•Problem: How can you run software in a container as a
user that does not exist in its underlying Linux distribution.

• Solution: Using the --user flag to set the run-as a user
(UID) and group (GID) that do not exist in the container.

‣ When that happens, the IDs won't resolve to a user or
group name, but all file permissions will work as if the user
and group did exist.

‣ Depending on how the software packaged in the
container is configured, changing the run-as user may
cause problems.

Sets UID and GID

M. D. Dikaiakos

Linux User Namespaces
• Linux's user (USR) namespaces can map users in one
namespace to users in another

•By default, Docker containers do not use the USR namespace,
so containers and their hosts share the same user ID space:

‣ A container running with a user ID (number, not name) that is
the same as a user on the host machine has the same host file
permissions as that user.

‣ However, the filesystem available inside a container has been
mounted so that changes made inside that container will stay
inside that container’s filesystem.

‣ But this does impact volumes in which files are shared between
containers or with the host.

M. D. Dikaiakos

Users and Volumes
• File permissions set by the host for
directories mounted as volumes on a
container, are respected inside the
container.

•Unless you want a file to be accessible to
a container, don't mount it into that
container with a volume.

M. D. Dikaiakos

USR Namespaces & Containers
•When a user namespace is enabled for a container, the container's UIDS are re-
mapped to a range of unprivileged UIDS on the host.

‣ Operators activate user namespace remapping by defining subuid and subgid maps
for the host in Linux and configuring the Docker daemon's userns-remap option.

• The mappings determine how user IDs on the host correspond to user IDs in a
container namespace.

•E.g.:

‣ UID remapping could be configured to map container UIDS to the host starting with host
UID 5000 and a range of 1000 UIDS.

‣ The result is that UID 0 in containers would be mapped to host UID 5000, container UID 1
to host UID 5001, and so on for 1000 UIDS.

‣ Since UID 5000 is an unprivileged user from Linux' perspective and doesn't have
permissions to modify the host system files, the risk of running with uid=0 in the container is
greatly reduced.

‣ Even if a containerized process gets ahold of a file or other resource from the host, the
containerized process will be running as a remapped UID without privileges to do
anything with that resource unless an operator specifically gave it permissions to do so.

M. D. Dikaiakos

Reducing Container Capabilities
•Capabilities: a set of flags associated with a
process or file, which determine whether a
process was permitted to perform certain
actions.

•Docker drops all capabilities for new containers,
except an explicit list of capabilities that are
necessary and safe to run most applications.

•Purpose: further isolates the running process
from the administrative functions of the
operating system.

M. D. Dikaiakos

Dropped Capabilities
•A sample of the 37 dropped capabilities follows:

•SYS_MODULE Insert/remove kernel modules

•SYS_RA WIO Modify kernel memory

•SYS_NICE Modify priority of processes

•SYS_RESOURCE Override resource limits

•SYS_TIME Modify the system clock

•AUDIT_CONTROL Configure audit subsystem

•MAC ADMIN Configure MAC configuration

•SYSLOG Modify kernel print behavior

•NET_ADMIN Configure the network

•SYS_ADMIN Catchall for administrative functions

M. D. Dikaiakos

Removing Extra Capabilities
• The default capabilities of a containerized

process can be viewed as follows:

• To drop an extra capability, you can use the --
cap-drop flag with container create or run:

M. D. Dikaiakos

Adding Capabilities
• To add extra capabilities, you can use the --cap-add flag with
container create or run:

• These flags can be used to build containers that will let a process
perform exactly and only what is required for proper operation.

•E.g. you might be able to run a network management daemon as
the nobody user and give it the NET_ADMIN capability instead of
running it as root directly on the host or as a privileged container.

M. D. Dikaiakos

Docker API
• The docker command-line program interacts with the Docker daemon almost
entirely via the Docker API.

•Any program that can read and write to the Docker API can do anything
docker can do, subject to Docker's Authorization plugin system.

‣ The Docker daemon API is accessible via a UNIX domain socket located on the
host at /var/run/docker.sock.

‣ The domain socket is protected with filesystem permissions ensuring that only the
root user and members of the docker group may send commands or retrieve
data from the Docker daemon.

‣ Some programs are built to interact directly with the Docker daemon API and
know how to send commands to inspect or run containers.

•Be careful about which users or programs on your systems can control your
Docker daemon:

‣ If a user or program controls your Docker daemon, it effectively controls the root
account on your host and can run any program or delete any file.

M. D. Dikaiakos

•Docker uses cgroups, which let a user set memory limits, CPU
weight, limits, and core restrictions as well as restrict access to
specific devices.

•Docker containers each have their own IPC namespace that can be
shared with other containers or the host in order to facilitate
communication over shared memory.

•Docker supports isolating the USR namespace. By default, user and
group IDs inside a container are equivalent to the same IDs on the
host machine. When the user namespace is enabled, user and
group IDs in the container are remapped to IDs that do not exist on
the host.

•You can and should use the -u option on docker container run
and docker container create to run containers as non-root
users.

•Avoid running containers in privileged mode whenever possible.

• Linux capabilities provide operating system feature authorization.
Docker drops certain capabilities in order to provide reasonably
isolating defaults.

• The capabilities granted to any container can be set with the --
cap-add and --cap-drop flags.

•Docker provides tooling for integrating easily with enhanced isolation
technologies such as seccomp, SELinux, and AppArmor. These are
powerful tools that security-conscious Docker adopters should
investigate.

Packaging Software in Images

Packaging Software for Distribution

M. D. Dikaiakos

Creating Docker Images
•Alternatives:

‣ Modify an existing image inside a
container

‣ Define and execute a build script called a
Dockerfile.

M. D. Dikaiakos

Building Images from Containers
1. Create a container from an existing image.

• Choose the image based on what you want to be
included with the new finished image and the tools
you will need to make the changes.

2. Modify the file system of created container.

• Changes will be written to a new layer on the union
file system for the container.

3. Commit those changes.

• Once the changes are committed, you’ll be able to
create new containers from the resulting image.

M. D. Dikaiakos

Building Images from Containers

docker commit [OPTIONS] CONTAINER-NAME [REPOSITORY-NAME[:TAG]]

M. D. Dikaiakos

File System Changes
•Use the diff subcommand to review changes
made inside a container’s file system, before
committing it into a new image:

docker container diff image-dev

• Returns large list of directories and files with
prefixes A (added), C (changed) or D (deleted)

•When committing the container into a new
image, these changes will comprise a new
UFS layer added to the new image.

M. D. Dikaiakos

Attribute Changes
•Besides the new layer added to an image with docker
commit, a new image carries forward from the container
used to commit the new image:

‣ All environment variables

‣ The working directory

‣ The set of exposed ports

‣ All volume definitions

‣ The container entrypoint

‣ Command and arguments

• If these values were not specifically set for the container, the
values will be inherited from the original image.

•Create a new container, UFS mount the
image, copy a new file to a new UFS layer:

•Commit change to a new image:

•Remove changed container:

• Launch and examine new container:

•Create an image that contains Linux
Ubuntu and has installed inside Git:

Create an image that contains Linux Ubuntu and has installed inside Git

1. Launch a container named image-dev, which runs the
ubuntu:latest image; inside the container run the bash shell

2. From inside the bash shell, install git:

3. Commit the container w git in a new image named ubuntu-git:

4. Launch the image ubuntu-git and test that git runs:

5. Launch new container cmd-git and replace its default command to
be executed at launch time with a call to git --version.

6. Commit the updated container into a new image with the same
name ubuntu-git:

docker run -it --name image-dev ubuntu:latest /bin/bash

root@b82409d3679a:/# apt-get update; apt-get -y install git

docker container commit -m "added git" image-dev ubuntu-git

% docker run --rm ubuntu-git git version
git version 2.34.1

docker run --name cmd-git --entrypoint git ubuntu-git --version

docker commit -m "Set CMD git" -a "@dockerinaction" cmd-git ubuntu-git

M. D. Dikaiakos

• To create an image from a container, use the
docker commit command:

‣ This commits a new layer to the image of the
container.

• The new image inherits as default starting
command, the one used by the original
container:

‣ This will be executed when launching a container
from the new image.

•Best practices:

‣ use -a flag that signs the image with an author
string

‣ use -m flag, which sets a commit message

‣ To set a different entrypoint for the new image,
create a new container with the --entrypoint
flag properly set, and then create a new image
from that container.

•Create environment variable
specialization for container created with
busybox image:

•Commit new image - no files changed
from busybox, just variables:

• Launch container with the new image and
check if it has the variables defined:

mdd@princeton ~ % docker run --name rich-image-example \
 -e ENV_EXAMPLE1=Rich -e ENV_EXAMPLE2=Example \
 busybox:latest

mdd@princeton ~ % docker commit rich-image-example rie
sha256:7ceb042ef889b7612552e71314fa672da4d470599ca647224793111dd48b4e89

•Next, consider a container that introduces an
entrypoint and command specialization as a
new layer on top of the previous example:

% docker run --name rich-image-example-2 \
 --entrypoint "/bin/sh" rie -c "echo \$ENV_EXAMPLE1 \$ENV_EXAMPLE2"
Rich Example
% docker commit rich-image-example-2 rie
sha256:c872a1a4f0d6719c5d670919cad41a6a3f32f51d8cd539d38c0b6648c7911079
% docker run --rm rie
Rich Example

• The two commits build two additional layers on top of
BusyBox.

• In neither case are files changed, but the behavior
changes because the context metadata has been
altered.

• These changes include:

‣ Two new environment variables in the first new layer,
inherited by the second new layer too.

‣ The entrypoint and default command to display the
environment variables’ values.

• The last command uses the final image without specifying
any alternative behavior, but it’s clear that the previous
defined behavior has been inherited.

Exploring Union Filesystems

Packaging Software in Images

M. D. Dikaiakos

Revisiting the Union File System
• The union file system is made up of layers.
• Each time a change is made to a UFS, that change is recorded

on a new layer on top of all of the others.
• The “union” of all of those layers, or top-down view, is what the

container (and user) sees when accessing the file system.

• When you read a file from UFS, that file will be
read from the top-most layer where it exists.
‣ If a file was not created or changed on the top

layer, the read will fall through the layers until it
reaches a layer where that file does exist.

• All this layer functionality is hidden by the
UFS. No special actions need to
be taken by the software running in a container
to take advantage of these features.

M. D. Dikaiakos

A simple file write example on a union
file system from two perspectives

M. D. Dikaiakos

File Changes and Deletions
• Like additions, both file changes and deletions work by
modifying the top layer of the UFS.

•When a file is deleted, a delete record is written to the top
layer:

‣ This record overshadows any versions of that file on lower
layers.

•When a file is changed, that change is written to the top
layer, which again shadows any versions of that file on lower
layers.

•Changes to filesystem attributes (file ownership, permissions)
are also recorded in the same way, as changes to files.

M. D. Dikaiakos

Copy-on-write
•Most union file systems use the copy-on-write
mechanism to implement changes.

•When a file in a read-only layer is modified:

‣ The whole file is copied from the read-only layer into
the writable layer

‣ The change is made on the file

•When you commit the layer, a new ID is generated
for it, and copies of all the file changes are saved.

• This approach results in a negative impact on runtime
performance and image size.

M. D. Dikaiakos

Various file addition, change, and deletion combinations over a three-layered image

File-change mechanics are the most important thing to understand about union file
systems.

M. D. Dikaiakos

Immutable Layers
•All layers below the writable layer created for a
container are immutable - they can never be
modified.

•Consequently:

‣ It is possible to share access to images instead of
creating independent copies for every container.

‣ Individual layers are highly reusable.

‣ Anytime you make changes to an image, you need
to add a new layer, and old layers are never
removed.

M. D. Dikaiakos

Image Layer Metadata
• The metadata for an image layer include:

‣ The generated ID of the new layer

‣ The identifier of the layer below it (parent)

‣ The execution context of the container that the layer was
created from.

• To review all the layers of an image, you can use the: docker
image history command. It will give you:

‣ Abbreviated layer ID

‣ Age of the layer

‣ Initial command of the creating container

‣ Total file size of that layer

Revisiting Images

Packaging Software in Images

M. D. Dikaiakos

What is an Image?
•An image is a stack of layers constructed by
traversing a layer dependency graph from some
starting layer - the top of the stack.

• The layer dependency graph comprises:

‣ Layers as nodes

‣ Links connecting each layer to its parent layer, as
represented in its metadata, which contained the
parent-layer’s ID.

• The layer’s ID is also the ID of the image that is
derived from it.

M. D. Dikaiakos

M. D. Dikaiakos

Images & Repositories
• Layer and image IDs are large hexadecimal numbers.

•Docker provides repositories to help users organize their images with
mnemonic names and tags.

•A repository is a location/name pair that points to a set of specific
layer identifiers.

•E.g.: quay.io/dockerinaction/ch3_hello_registry

• This repository is:

‣ located in the registry hosted at quay.io.

‣ named for the user (dockerinaction) and a unique short name
(ch3_hello_registry).

•Pulling this repository would pull all the images defined for each tag
in the repository.

M. D. Dikaiakos

Repositories
•Each repository contains:

‣ At least one tag that points to a specific layer
identifier and thus the image definition.

‣ A“latest” tag by default, if definition of specific tag
is omitted at creation time.

•Repositories and tags are created with the docker
tag, docker commit, or docker build commands.

• Launch a container, add a file mychange in it,
check images installed on your computer and verify
the change done in the container:

% docker run --name mod_ubuntu ubuntu:latest touch /mychange
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
6e3729cf69e0: Pull complete
Digest: sha256:27cb6e6ccef575a4698b66f5de06c7ecd61589132d5a91d098f7f3f9285415a9
Status: Downloaded newer image for ubuntu:latest
% docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest 6b7dfa7e8fdb 10 days ago 77.8MB
% docker diff mod_ubuntu
A /mychange

•Commit the altered container, creating an un-
named image:

% docker commit mod_ubuntu
sha256:36cb491a770772292b7f486abafc39bcbf34a9b0a8427b6397c9bd4453fdc49c
% docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 36cb491a7707 4 seconds ago 77.8MB
ubuntu latest 6b7dfa7e8fdb 10 days ago 77.8MB

•Commit again the altered container, but under a given
name and tag:

docker commit mod_ubuntu myuser/myfirstrepo:mytag
sha256:5265e062504be610bad61a18b699a162dc7c92b8d8a201c8c370148736449d1f

•You now have another repository with a new image ID:
% docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
myuser/myfirstrepo mytag 5265e062504b 3 seconds ago 77.8MB
<none> <none> 36cb491a7707 34 seconds ago 77.8MB
ubuntu latest 6b7dfa7e8fdb 10 days ago 77.8MB

•Use docker tag to create a repository from myuser/
myfirstrepo:mytag with the name myuser/
mod_ubuntu. Since a tag is not specified, it takes by
default the tag latest:

docker tag myuser/myfirstrepo:mytag myuser/mod_ubuntu
(base) mdd@princeton ~ % docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
myuser/mod_ubuntu latest 5265e062504b About a minute ago 77.8MB
myuser/myfirstrepo mytag 5265e062504b About a minute ago 77.8MB
<none> <none> 36cb491a7707 2 minutes ago 77.8MB
ubuntu latest 6b7dfa7e8fdb 10 days ago 77.8MB

Container Management Frameworks

Title Text

M. D. Dikaiakos

Application-oriented Infrastructure
Container technology enables the development of management APIs
around containers instead of machines.

•App developers and operations teams relieved from having to worry
about specific details of machines & OS.

• Infrastructure teams have the flexibility to roll out new hardware and
upgrade OS with minimal impact on running apps & their developers.

• Ties telemetry collected by the management system to applications rather
than machines:

‣ No need to demultiplex signals from multiple apps running inside a physical
or virtual machine.

‣ Dramatically improves application monitoring and introspection.

•Management system can communicate information into the container:

‣ Resource limits, container metadata for propagation to logging &
monitoring, termination warnings

M. D. Dikaiakos

Applications as Containers
• In reality, an application does not “consume” only one
container.

•Applications use nested-containers that are co-
scheduled on the same machine:

‣ Outer-most container is called a resource allocation: alloc
in Borg, pod in Kubernetes

‣ Major part of the application sits in one of the child
containers

‣ Other child containers run supporting functions

•Advantages: robustness, composability, fine-grained
resource isolation

M. D. Dikaiakos

Container Management Services
•Basic services provide resource orchestration and allocation, application
configuration and control, monitoring, load balancing.

•Additional services arising:

‣ Naming and service discovery (the Borg Name Service, or BNS).

‣ Master election.

‣ Application-aware load balancing.

‣ Horizontal (number of instances) and vertical (size of an instance) autoscaling.

‣ Rollout tools that manage the careful deployment of new binaries and
configuration data.

‣ Workflow tools (e.g., to allow running multijob analysis pipelines with
interdependencies between the stages).

‣ Monitoring tools to gather information about containers, aggregate it, present
it on dashboards, and use it to trigger alerts

M. D. Dikaiakos

Overview
•Docker compose

•Docker swarm is a container orchestration tool,
meaning that it allows the user to manage multiple
containers deployed across multiple host machines.
One of the key benefits associated with the
operation of a docker swarm is the high level of
availability offered for applications.

•Borg

•Omega

•Kubernetes

M. D. Dikaiakos

Docker Compose
•A tool for defining and running multi-container Docker applications.

•Using Compose is a three-step process:

‣ Define your app’s environment with a Dockerfile so it can be reproduced
anywhere.

‣ Define the services that make up your app in a YAML file docker-
compose.yml so they can be run together in an isolated environment.

‣ Run docker-compose up and Compose starts and runs your entire app.

•Docker Compose features that make it effective are:

‣ Support for multiple isolated environments on a single host

‣ Preserve all volumes used by your services when containers are created

‣ Only recreate containers that have changed

‣ Support for variables in the Compose file, and moving a composition
between environments

M. D. Dikaiakos

Docker Compose and YAML
• Docker Composes uses YAML

("YAML Ain't Markup Language") to
describe is a human-readable
data-serialization language.

• Commonly used for configuration
files and in applications where
data is being stored or transmitted.

M. D. Dikaiakos

Docker Swarm
•A container orchestration tool that allows the user to manage multiple
containers deployed across multiple host machines.

‣ Included in Docker Engine & command-line tool.

•Provides a platform for deploying and operating a containerised
application across a set of Docker hosts.

•Automates the process of deploying:

‣ A new Docker service to the cluster

‣ Changes to an existing service

• Supervises deployed applications to detect and repair possible problems.

• Schedules tasks according to the application’s resource requirements
and machine capabilities.

•Routes user requests to service containers.

M. D. Dikaiakos

Docker Swarm Structure
Machines joining a Swarm cluster can be Managers or Workers.

•Managers:

‣ Listen for instructions to create, change, remove definitions for Docker services,
configuration and secrets.

‣ Instruct worker nodes to create containers and volumes that implement Docker
service instances.

‣ At least one manager per cluster - production clusters have 3-5.

•Workers: clusters can scale reliably to hundreds of worker nodes.

•Client requests may be sent to any node of the cluster on the port published
for that service.

‣ Swarm’s network mesh routes the request from whichever node received the
request to a healthy service container that can handle it.

• Swarm deploys and manages a load-balancer and network traffic
components to receive and transport network traffic for each published port.

M. D. Dikaiakos

Tasks

Docker Swarm Resource Types

Services

Ports (Load
Balancer)

Configs

Secrets Volumes

Networks

M. D. Dikaiakos

Docker Swarm Resource Types
• Services—A Docker service defines the application processes that run on the Swarm
cluster’s nodes. Swarm managers interpret the service definition and create tasks
that are executed on the cluster’s manager and worker nodes.

• Tasks—Tasks define a containerized process that Swarm will schedule and run once
until completion.

‣ Restart policies

‣ Dependencies

•Networks—Applications can use Docker overlay networks for traffic between
services.

‣ Docker networks have low overhead, so you can create network topologies that suit
your desired security model.

•Volumes—Volumes provide persistent storage to service tasks.

‣ Volumes are bound to a single node.

•Configs and secrets— provide environment—specific configurations to services
deployed on the cluster.

M. D. Dikaiakos

Borg
•Borg: unified container-management system, built at Google to manage
both:

‣ long-running services

‣ batch jobs.

•Expanded with mechanisms for:

‣ configuring and updating jobs;

‣ predicting resource requirements;

‣ dynamically pushing configuration files to running jobs;

‣ service discovery and load balancing;

‣ auto-scaling;

‣ machine- lifecycle management;

‣ quota management etc

M. D. Dikaiakos

Omega
•Built from the ground up to have a more
consistent, principled architecture than Borg.

• Stored the state of the cluster in a centralized
Paxos-based transaction-oriented store that was
accessed by the different parts of the cluster
control plane (such as schedulers).

•Decoupling, allowed the Borgmaster’s
functionality to be broken into separate
components that acted as peers.

•Omega’s innovations folded into Borg.

M. D. Dikaiakos

Paxos
• Family of protocols for solving consensus
in a network of unreliable or fallible
processors.

•Consensus is the process of agreeing on
one result among a group of participants.

• This problem becomes difficult when the
participants or their communications may
experience failures.

M. D. Dikaiakos

Kubernetes
•Open source container management system: emerged from
experiences with Borg and Omega.

•Allows you to easily deploy and manage containerized
applications on top of it.

•Relies on the features of Linux containers to:

‣ Run heterogeneous applications without having to know their
internal details.

‣ Deploy automatically these applications on each host.

•At its core a shared persistent store, with components watching
for changes to relevant objects.

• State in Kubernetes is accessed exclusively through a domain-
specific REST API.

M. D. Dikaiakos

Kubernetes abstraction
•Kubernetes enables you to run your software
applications on thousands of computer nodes as if
all those nodes were a single, enormous computer.

• It abstracts away the underlying infrastructure and
simplifies development, deployment, and
management for both development and the
operations teams.

•Deploying applications through Kubernetes is
always the same, whether your cluster contains
only a couple of nodes or thousands of them.

M. D. Dikaiakos

Kubernetes basic view
• The system is composed of a master node
and any number of worker nodes.

•When the developer submits a list of apps
to the master, Kubernetes deploys them to
the cluster of worker nodes.

•What node a component lands on doesn’t
(and shouldn’t) matter—neither to the
developer nor to the system administrator.

M. D. Dikaiakos

Kubernetes functionality
•Kubernetes can be thought of as an operating system for the cluster.

‣ It relieves application developers from having to implement certain
infrastructure-related services into their apps; instead they rely on
Kubernetes to provide these services.

‣ Application developers can therefore focus on implementing the actual
features of the applications and not waste time figuring out how to
integrate them with the infrastructure.

•Kubernetes services:

‣ service discovery

‣ scaling

‣ load-balancing

‣ self-healing, and even

‣ leader election.

M. D. Dikaiakos

Architecture of a Kubernetes cluster

• The Kubernetes master node hosts the
Kubernetes Control Plane that controls
and manages the whole Kubernetes
system.

• The Kubernetes worker nodes run the
actual applications you deploy.

M. D. Dikaiakos

Kubernetes Control Plane
•Controls the cluster and makes it function.

• It consists of multiple components that can run on a single master
node or be split across multiple nodes and replicated to ensure
high availability:

• The Kubernetes API Server, which you and the other Control Plane
components communicate with.

• The Scheduler, which schedules your apps (assigns a worker node
to each deployable component of your application)

• The Controller Manager, which performs cluster-level functions,
such as replicating components, keeping track of worker nodes,
handling node failures, and so on

•etcd, a reliable distributed data store that persistently stores the
cluster configuration.

M. D. Dikaiakos

Kubernetes Worker Nodes
• The machines that run your containerized applications.

• The task of running, monitoring, and providing services
to your applications is done by the following
components:

‣ Docker, rkt, or another container runtime, which runs
your containers

‣ The Kubelet, which talks to the API server and manages
containers on its node

‣ The Kubernetes Service Proxy (kube-proxy), which load-
balances network traffic between application
components

M. D. Dikaiakos

Running Applications on
Kubernetes

1. Package you application up into one or more container images.

2. Push those images to an image registry

3. Post a description of your app to the Kubernetes API server.

• The description includes information such as:

• The container image or images that contain your application
components.

• How those components are related to each other

• Which components need to be run co-located and which don’t.

• For each component, you can also specify how many copies (or replicas)
you want to run.

• Which of those components provide a service to either internal or external
clients and should be exposed through a single IP address and made
discoverable to the other components.

M. D. Dikaiakos

From Description to Running Containers

•When the API server processes an app description, the Scheduler schedules the
specified groups of containers onto the available Worker Nodes.

‣ The Scheduler takes into account the computational resources required by each
group and the unallocated resources on each node at that moment.

• The Kubelets on those nodes then instruct the Container Runtime (Docker, for
example) to pull the required container images and run the containers.

•Once the application is running, Kubernetes continuously makes sure that the
deployed state of the application always matches the description you provided.

‣ For example, if you specify that you always want five instances of a web server
running, Kubernetes will always keep exactly five instances running.

‣ If one of those instances stops working properly, like when its process crashes or
when it stops responding, Kubernetes will restart it automatically.

‣ Similarly, if a whole worker node dies or becomes inaccessible, Kubernetes will
select new nodes for all the containers that were running on the node and run them
on the newly selected nodes.

M. D. Dikaiakos

Scaling and Moving Around
•While the application is running, you can decide you want to
increase or decrease the number of copies of running
containers:

‣ Kubernetes will spin up additional ones or stop the excess ones,
respectively.

•Alternatively, Kubernetes can decide itself the optimal number
of copies:

‣ It can automatically keep adjusting the number, based on real-
time metrics, such as CPU load, memory consumption, queries
per second, or any other metric your app exposes.

‣ It can move containers around the cluster, when a node they
were running on has failed or when they are evicted from a
node to make room for other containers.

M. D. Dikaiakos

Service interface
• If the container is providing a service to external clients or other containers
running in the cluster, how can they use the container properly if it’s
constantly moving around the cluster?

•And how can clients connect to containers providing a service when
those containers are replicated and spread across the whole cluster?

• To allow clients to easily find containers that provide a specific service, you
can tell Kubernetes which containers provide the same service and
Kubernetes will expose all of them at a single static IP address and expose
that address to all applications running in the cluster.

‣ This is done through environment variables, but clients can also look up the
service IP through good old DNS.

‣ The kube-proxy will make sure connections to the service are load balanced
across all the containers that provide the service.

‣ The IP address of the service stays constant, so clients can always connect
to its containers, even when they’re moved around the cluster.

