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•Examine, understand, assess, and describe the 
concepts of virtualization, virtual machines, and 
virtual machine monitors hypervisors.  

•Understand and explain basic Operating 
Systems' concepts of relevance to virtualization: 
core abstractions, layering, libraries, application 
binary interface, security and privilege 
management, protection rings, running in kernel 
vs. user mode. 

•Understand and explain different virtualization 
types and the concepts of server virtualization, 
virtual machines, and hypervisors. 

•Understand and explain techniques for 
implementing virtual machines: de-privileging, 
primary and shadow structures, memory tracing. 

•Explain the key features of VMM 

•Understand and explain alternative techniques 
for implementing hypervisors

Learning 
Objectives
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Required Readings 

• "Beyond server consolidation." Vogels, W. In Queue (Vol. 6, Issue 
1, pp. 20–26). https://doi.org/10.1145/1348583.1348590 (2008). 

• "The architecture of virtual machines," J. E. Smith and Ravi Nair, 
in Computer, vol. 38, no. 5, pp. 32-38 (May 2005) doi: 10.1109/
MC.2005.173. 

• “Understanding Full Virtualization, Paravirtualization, and 
Hardware Assist,” VMWare White Paper (2008)  

• Chapters 4.10, 10.2, 10.3, “Cloud Computing: Theory and 
Practice,” Dan Marinescu (2017) 

• “Understanding virtualization,” RedHat (2018), https://
www.redhat.com/en/topics/virtualization/what-is-virtualization 

Additional Readings 

• “A comparison of software and hardware techniques for x86 
virtualization,” Adams and Agesen, (2006) ACM SIGPLAN 
Notices, vol. 41, issue 11. https://doi.org/
10.1145/1168918.1168860 

• “Xen and the art of virtualization,” P. Barham et al., Proc. 
Nineteenth ACM Symp. Oper. Syst. Princ. - SOSP ’03, p. 164, 
2003. 

Readings

https://doi.org/10.1145/1348583.1348590
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://doi.org/10.1145/1168918.1168860
https://doi.org/10.1145/1168918.1168860
https://doi.org/10.1145/1168918.1168860
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Virtualization: Definition
•Refers to the act of creating a virtual (rather 
than actual) version of some computing 
resource 

•Virtualization: 

‣ abstracts the underlying resources;  

‣ simplifies their use;  

‣ isolates users from one another; and  

‣ supports replication which increases the elasticity 
of a system



Introduction and Basic Concepts

Virtualization Fundamentals
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How do we tackle the 
incredible complexity of 

computer systems to 
allow for their 

development, debugging 
and evolution?



Interfaces, Abstraction, Layering

Introduction and Basic Concepts
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“The purpose of abstraction is not to be vague, but 
to create a new semantic level in which one can be 

absolutely precise.” 

Edsger Dijkstra
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Interfaces
•Well-defined interfaces: 

‣ facilitate independent subsystem 
development of both hardware and 
software 

‣ permit development of interacting 
computer subsystems in different 
organizations and at different times
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Architecture & Implementation
•Architecture, as applied to computer systems, 
refers to a formal specification of an interface 
in the system, including the logical behavior of 
resources managed via the interface.  

• Implementation describes the actual 
embodiment of an architecture.  

•Abstraction levels correspond to 
implementation layers, whether in hardware or 
software, each associated with its own 
interface or architecture.
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Layering
•A common approach to manage system 
complexity: 

‣ Minimizes interactions among subsystems 
of a complex system 

‣ With layering we are able to design, 
implement, and modify individual 
subsystems independently.
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Abstraction Example
•Operating system abstracts 
hard-disk addressing details 
(sectors, tracks) so that the 
disk appears to application 
software as a set of variable-
sized files.  

•Application programmers 
can then create, write, and 
read files without knowing 
the hard disk's construction 
and physical organization.
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Interface Example: ISA
• Intel and AMD designers develop 
microprocessors that implement the Intel 
IA-32 (×86) instruction set architecture (ISA) 

•Microsoft developers write software that is 
compiled to the same instruction set.  

•Because both groups satisfy the ISA 
specification, the software can be 
expected to execute correctly on any PC 
built with an IA-32 microprocessor.
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Interfaces’ Limitations
• Subsystems and components designed based on 
specifications for one interface will not work with 
those designed for another.  

‣ For example: application programs distributed as 
compiled binaries, are tied to a specific ISA and 
depend on a specific operating system interface.  

• Lack of interoperability can be confining, 
especially in a world of networked computers 
where it is advantageous to move software as 
freely as data.
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Virtualization
•Virtualizing a system or component 
(processor, memory, or I/O device) at a 
given abstraction level: 

‣ maps its interface and visible resources 
onto the interface and resources of an 
underlying, possibly different, real system.  

‣ Makes the real system appear as a 
different virtual system or even as multiple 
virtual systems.
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Virtualization vs Abstraction
•Virtualization transforms a single 
large disk into two smaller 
virtual disks.  

•Virtualizing software uses the file 
abstraction as an intermediate 
step to provide a mapping 
between the virtual and real 
disks.  

•A write to a virtual disk is 
converted to a file write, which 
is converted to a real disk write. 

Real disk

Virtual disks

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Virtualization: remarks
•Provides a way of getting around interoperability 
constraints of different interfaces.  

•Does not necessarily aim to simplify or hide 
implementation details. E.g.: 

‣ In the previous example, the level of detail 
provided at the virtual disk interface—the sector/
track addressing—is no different from that for a 
real disk; no abstraction takes place. 

•Virtual Machines: Virtualization applied to an 
entire machine.



Computer Systems Layering

Introduction and Basic Concepts
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IDENTIFY the INTERFACES 
AND layers commonly 
found in a computer 

system 
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Computer System Architecture: 
Layers and Interfaces

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Computer System Architecture: 
Layers and Interfaces

1. Instruction set 
architecture (ISA)

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Computer System Architecture: 
Layers and Interfaces

1. Instruction set 
architecture (ISA) 

2. Application binary 
interface (ABI)

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Computer System Architecture: 
Layers and Interfaces

1. Instruction set 
architecture (ISA) 

2. Application binary 
interface (ABI) 

3. Application 
programming 
interface (API)

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Instruction Set Architecture
•Marks the division between hardware 
and software 

•Consists of interfaces 3 and 4: 

‣ Interface 4 represents the user ISA 
and includes those aspects visible to 
an application program.  

‣ Interface 3, the system ISA, is a 
superset of the user ISA and includes 
those aspects visible only to 
operating system software responsible 
for managing hardware resources.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Application Binary Interface
•Gives a program access to the hardware resources and 
services available in a system through the user ISA 
(interface 4) and the system call interface (interface 2).  

• Is an interface between two binary program modules. 
Usually: 

‣ One is a library or operating system facility,  

‣ The other is a program that is being run by a user.  

•Defines how data structures or computational routines 
are accessed in machine code. 

•Does not include system (privileged) instructions;

• System calls provide a way for an operating system to perform operations on 
behalf of a user program after validating their authenticity and safety.  

• All application programs interact with the hardware resources indirectly by 
invoking the operating system's services via the system call interface. 

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Application Programming Interface
•Gives a program access to the 
hardware resources and services 
available in a system through: 

‣ the user ISA (interface 4) supplemented 
with  

‣ high-level language (HLL) library calls 
(interface 1).  

•Any system calls are usually performed 
through libraries. 
• Using an API enables application software to be ported 

easily, through recompilation, to other systems that support 
the same API.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Layering and Interfaces

Hardware

Operating System

ISA

Libraries

ABI

API

System calls

Applications

System ISA User ISA

A1

A2

A3

Application Programming Interface (API), Application Binary Interface 
(ABI), and Instruction Set Architecture (ISA).  
An application uses library functions (A1), makes system calls (A2), and 
executes machine instructions (A3)



Virtual Machines

Introduction and Basic Concepts
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Virtual Machines
•A Virtual Machine (VM) can be: 
‣ An execution environment that runs an OS 
‣ An isolated environment that appears to be a 

whole computer, but actually only has access 
to a portion of the computer resources 

•VM is encapsulated in a single data file. It can be: 
‣ moved from one computer to another,  
‣ opened in either one, and  
‣ be expected to work the same.
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VMs vs. Simulators & Emulators
•Virtual machine 

‣ Models a machine exactly and efficiently 

‣ Minimal showdown 

‣ Needs to be run on the physical machine it virtualizes (more or less) 

• Simulator 

‣ Provides a functionally accurate software model of a machine 

‣ May run on any hardware 

‣ Is typically slow (order of 1000 slowdown) 

•Emulator 

‣ Provides a behavioral model of hardware (and possibly S/W) 

‣ Not fully accurate 

‣ Reasonably fast (order of 10 slowdown)

Courtesy of Gernot Heiser, UNSW, Australia 



M. D. Dikaiakos

Implementing Virtual Machines
•We need to add a software layer to a real machine to support 
the desired architecture.  

‣ By doing so, a VM can circumvent real machine compatibility 
and hardware resource constraints. 

•VM implementations lie at architected interfaces: 

‣ The fidelity with which a VM implements these interfaces is a 
major consideration. 

• The process or system that runs on a VM is called the guest 

• The underlying platform that supports the VM is called the host.  

• The virtualizing software that implement VMs are termed  
runtime (“runtime software”), Virtual Machine Monitor (VMM) or 
hypervisor (depending on the VM type).



Modern Virtualization Technologies

Virtualization Fundamentals



History and Evolution

Virtualization Technologies
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Virtualization: The History
•Virtualization technology was developed in the late 1960s to 
make more efficient use of hardware. 

•On a single IBM System/360, one could run in parallel, several 
environments that maintained full isolation and gave each of 
its customers the illusion of owning the hardware. 

• IBM System/360 Virtualization: time sharing implemented at a 
coarse-grained level 

•Achievements: 

‣ Consolidation. 

‣ Isolation.  

‣ Efficient resource management.
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Virtualization: The History
• 1960’s, IBM: CP/CMS control program: a virtual machine operating system for the 

IBM System/360 Model 67 

• 2000, IBM: z-series with 64-bit virtual address spaces and backward compatible 
with the System/360 

• 1974: Popek and Golberg from UCLA published “Formal Requirements for 
Virtualizable Third Generation Architectures” where they listed the conditions a 
computer architecture should satisfy to support virtualization efficiently. The 
popular x86 architecture that originated in the 1970s did not support these 
requirements for decades.  

• 1990’s, Stanford & VMware: Researchers developed a new hypervisor and 
founded VMware, the biggest virtualization company of today’s. First virtualization 
solution was is 1999 for x86.  

• IBM was the first to produce and sell virtualization for the mainframe. But, VMware 
popularized virtualization for the masses.  

• Today many virtualization solutions: Xen from Cambridge, KVM, Hyper-V, …



Source: Randal, ACM Computing Surveys, 2/2020



Source: VMWare
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Virtualization Requirements
• Sufficient conditions for a computer architecture to 
support virtualization and allow a hypervisor to 
operate efficiently: 
‣ A program running under the hypervisor should exhibit 

a behavior essentially identical to that demonstrated 
when running on an equivalent machine directly. 

‣ The hypervisor should be in complete control of the 
virtualized resources. 

‣ A statistically significant fraction of machine 
instructions must be executed without the intervention 
of the hypervisor, directly by real hardware.

Popek & Goldberg, “Formal requirements for virtualizable third generation architectures”, CACM July1974
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Virtualization Requirements
“A virtual machine (VM) is an efficient, isolated duplicate of 

a real machine” 
•VM should behave identically to the real machine 
‣ Programs cannot distinguish between execution on real or 

virtual hardware 
‣ Except for: 
• Fewer resources available (potentially different between 

executions) 
• Some timing differences (when dealing with devices) 

• Isolated: Several VMs execute without interfering with 
each other 
•Efficient: VM should execute at a speed close to that of 
real hardware
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Virtualization: Why?
•As the scale of systems and the size of user base 
grows, it becomes very challenging to manage 
computing recourses.  

•E.g., in data centers: 

‣ provision for peak demands: overprovisioning 

‣ heterogeneity of hardware and software 

‣ machine failures 

•We need improved ways of managing resources 
at scale
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Virtualization: Why?
• Simplifies the abstract management of physical 
resources, focusing on key computing abstractions: 

1. processors 
2. memory 
3. communications links  

•Examples: 
‣ The state of a virtual machine (VM) running under a 

virtual machine monitor (VMM) can de saved and 
migrated to another server to balance the load 

‣ Virtualization allows users to operate in environments 
they are familiar with, rather than forcing them to 
specific ones
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Virtualization: Why?
• Server sprawl in enterprise environments: 

‣ Vendors want to run their applications in isolation. 

‣ Underline OS heterogeneity for different enterprise applications. 

‣ Complexity of integration projects. 

•Many servers are typically underutilized: 

‣ Large analyst firms estimate that resource utilization of 15-20% is 
common 

‣ Often this could be  in the 5-12% range (Vogels, Amazon, 2008)

Beyond Server Consolidation, W. Vogels, 
Amazon.com, ACM Queue, 2008.
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Virtualization & Cloud Computing
•A basic enabler of Cloud Computing 

•Cloud resource virtualization is important for: 
‣ Performance isolation: we can dynamically assign and account for 

resources across different applications 

‣ System security: allows isolation of services running on the same 
hardware 

‣ Performance and reliability: allows applications to migrate from one 
platform to another 

‣ Development and management of services offered by a provider 

‣ Server consolidation: we can use same physical server for multiple 
applications
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Server consolidation
• Server consolidation can decrease IT cost 
by multiplexing physical resources over a 
number of virtualized environments:  

‣ reduce hardware required 

‣ reduce data-center footprint 

‣ indirectly reduce power consumption



Virtualization approaches

Modern Virtualization Technologies
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Virtualization: High-Level Tasks
Virtualization simulates the interface to a physical object by: 
‣ Multiplexing:  creates multiple virtual objects from one instance of a 

physical object. 
‣ Maps many virtual objects to one physical.  
‣ Eg - a processor is multiplexed among a number of processes or 

threads. 
‣ Aggregation:  creates one virtual object from multiple physical objects.  
‣ Maps one virtual object to many physical objects.  
‣ Example - a number of physical disks are aggregated into a RAID disk. 

‣ Emulation:  constructs a virtual object of a certain type from a different 
type of a physical object.  
‣ Example - a physical disk emulates a Random Access Memory (RAM). 

‣ Multiplexing and emulation.  
‣ Examples - virtual memory with paging multiplexes real memory and 

disk; a virtual address emulates a real address.
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Virtualization Approaches

•Data virtualization 

•Desktop virtualization 

• Server virtualization 

•Operating system virtualization 
(containers) 

•Network functions virtualization
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Data Virtualization
•Data virtualization: 

‣ brings together data from multiple sources 

‣ easily accommodates new data sources 

‣ transforms data according to user needs 

•Data virtualization tools sit in front of 
multiple data sources and allows them to 
be treated as single source.
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Desktop Virtualization
•Allows a central administrator (or automated 
administration tool) to deploy simulated 
desktop environments to hundreds of physical 
machines at once.  

•Unlike traditional desktop environments that 
are physically installed, configured, and 
updated on each machine, desktop 
virtualization allows admins to perform mass 
configurations, updates, and security checks 
on all virtual desktops.
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Server virtualization
• Server virtualization converts one physical server into multiple 
virtual machines. Each virtual server acts like a unique physical 
device, capable of running its own operating system (OS). 

‣ The physical server is called the host.  

‣ The virtual servers are called guests and behave like physical 
machines.  

•Each virtualization system uses a different approach to allocate 
physical server resources to virtual server needs. 

•Approaches: 

‣ Full virtualization 

‣ Para-virtualization  

‣ OS-level virtualization
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Network-function virtualisation
•NFV separates a network's key functions (like directory 
services, file sharing, and IP configuration) so they can 
be distributed among environments.  

•Once software functions are independent of the 
physical machines they once lived on, specific 
functions can be packaged together into a new 
network and assigned to an environment.  

•Virtualizing networks reduces the number of physical 
components—like switches, routers, servers, cables, 
and hubs—that are needed to create multiple, 
independent networks, and it’ s particularly popular in 
the telecommunications industry.



Virtual Machine Taxonomies 

Modern Virtualization Technologies
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what IS a machine ? 

Consider the meaning of “machine” from  

the perspective of the process and the 
operating system
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What is a process?

A running program with its 
allocated resources and 

execution state
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Process Perspective
• The “machine” where a program runs consists of: 

‣ a logical memory address space assigned to the process 

‣ user-level instructions and registers that allow the execution 
of code belonging to the process.  

•Machine’s I/O is visible only through the operating system: 

‣ the only way the process can interact with the I/O system is 
through operating system calls.  

•ABI defines the machine as seen by the process.  

•API specifies the machine characteristics as seen by an 
application HLL program.
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System Perspective
• The Operating System is a full execution environment that 
can support numerous processes simultaneously.  

‣ These processes share a file system and other I/O resources.  

•OS environment persists over time as processes come and go.  

•OS allocates real memory and I/O resources to the processes, 
and allows the processes to interact with their resources.  

• The machine where the OS runs is defined by the underlying 
hardware’s characteristics;  

‣ Therefore, it is the ISA that provides the interface between the 
system and machine.



M. D. Dikaiakos

Process and System VMs
•A process VM is a virtual platform that executes an individual 
process.  

‣ Exists solely to support the process;  

‣ Created when the process is created and terminates when the 
process terminates.  

•A system VM provides a complete, persistent system 
environment that supports an operating system along with its 
many user processes. Provides: 

‣ The guest operating system  

‣ Access to virtual hardware resources, including networking, I/O, 
along with a processor and memory. 

‣ Perhaps a graphical user interface.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Process VMs
• The Virtualizing software that implements a process VM is often 
termed the runtime (“runtime software”). 

• The runtime is at the ABI or API level, atop the OS/HW combination: 
emulates both user-level instructions and either operating system or 
library calls. 

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Process VM Categories
•Multiprogrammed Systems: most OS can simultaneously support multiple used processes through 
through multiprogramming, which gives each process the illusion of having a complete machine to 
itself. 

•Emulators and Dynamic Binary Translators: support program binaries compiled to an instruction set 
different from the one the host executes: implemented through interpretation or dynamic binary 
translation. 

• Same-ISA Binary Optimizers: perform code optimizations during translation, where instruction sets of 
host and guest are the same, and the purpose of the VM is to optimize execution performance of a 
program binary. 

•High-Level-Language VMS: instead of emulating one conventional architecture on another,  these 
are designed to match the features of given HLL(s) and facilitate cross-platform application 
portability (e.g., JVM) 

‣ In a HLL VM, a compiler front end generates abstract machine code in a virtual ISA that specifies the 
VM's interface.  

‣ This virtual ISA code, along with associated data structure information (metadata), is distributed for 
execution on different platforms.  

‣ Each host platform implements a VM capable of loading and executing the virtual ISA and a set of 
library routines specified by a standardized API. In its simplest form, the VM contains an interpreter. 
More sophisticated, higher-performance VMs compile the abstract machine code into host machine 
code for direct execution on the host platform.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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High-level-language environments 
(a) conventional environment where platform-dependent object code is distributed.  

(b) hll vm environment where a platform-dependent vm executes portable intermediate code.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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System VMs and Hypervisors
•Virtualizing software is typically referred to as the virtual machine monitor (VMM) or hypervisor.  

•A Hypervisor: 
‣ Provides complete environment in which an OS and many processes of possibly multiple users, can 

coexist. 

‣ Has access to and manages all hardware resources, dividing them among multiple guest OSs 

‣ Maintains hidden control of a guest operating system and its application processes.  

‣ When a guest operating system performs a privileged instruction or operation that directly interacts 
with shared hardware resources, the VMM intercepts the operation, checks it for correctness, and 
performs it on behalf of the guest. Guest software is unaware of this behind-the-scenes work.
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System VM Categories
• From the user perspective most system VMs provide essentially the same 
functionality (differences in implementation exist) 

•Classic System VMs: place the VMM on bare hardware and the VMs fit on top. The 
VMM runs in the most highly privileged mode, while all guest systems run with 
reduced privileges so that the VMM can intercept and emulate all guest operating 
system actions that would normally access or manipulate critical hardware 
resources. 

•Hosted VMs: virtualizing software is built on top of an existing host operating system, 
resulting in a hosted VM (e.g. VMware): 

‣ Users can install VMM just like a typical application program. 

‣ Virtualizing software can rely on host OS to provide device drivers and other lower-
level services. 

•Whole-System VMs: address the case where guest and host have different ISA (e.g. 
Windows PCs and Apple PowerPC):  

‣ VM must virtualize and emulate both application and operating system code 

‣ VMM executes as application supported by host OS; uses no system ISA ops.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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System VM Categories
•Multiprocessor Virtualization: Underlying host platform is a large shared-memory 
multiprocessor that needs to be partitioned into multiple smaller multiprocessor 
systems: 

‣ Physical partitioning: physical resources that one virtual system uses are disjoint from 
those used by other virtual systems 

‣ Logical partitioning: underlying hardware resources are time-multiplexed between the 
different partitions, thereby improving system resource utilization. 

‣ Both techniques typically use special software or firmware support based on underlying 
hardware modifications specifically targeted at partitioning. 

•Co-designed VMs: implement new, proprietary (host) ISAs targeted at improving 
performance, power efficiency, or both. 

‣ The host's ISA may be completely new, or an extension of existing ISA. 

‣ The VMM appears to be part of the hardware implementation and resides in a region 
of memory concealed from all conventional software. 

‣ VMM includes binary translator that converts guest instructions into optimized 
sequences of host ISA instructions and caches them in the concealed memory region.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.
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Taxonomy of Process & System VMs

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp. 
32-38, May 2005, doi: 10.1109/MC.2005.173.

Within the general categories of process and system VMs, ISA simulation is 
the major basis of differentiation.
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Same-ISA VM Classes

Classes of VM for systems with the same ISA: 
Traditional, hybrid, and hosted



Virtualization Mechanisms

Modern Virtualization Technologies
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Protection Rings
•Hierarchical protection domains, often called protection rings, are 
mechanisms in CPU architectures and Operating Systems aiming at 
protecting data and functionality from faults and malicious behavior.  

•A protection ring is one of two or more hierarchical levels or layers of 
privilege within the architecture of a computer system: 

‣ Ring hierarchy: from most privileged (most trusted, usually numbered 
zero) to least privileged (least trusted).  

•Hardware-enforced by some CPU architectures that provide different 
CPU modes at the hardware or microcode level.  

•On most operating systems, Ring 0 interacts most directly with the 
physical hardware such as the CPU and memory.  

• Special gates between rings are provided to allow an outer ring to 
access an inner ring's resources in a predefined manner, as opposed 
to allowing arbitrary usage.

More: https://en.wikipedia.org/wiki/Protection_ring



M. D. Dikaiakos

OS Dual-Mode Operation
•Dual-mode operation allows OS to protect itself and other 
system components 

‣ User mode and kernel mode  

‣ Mode bit provided by hardware 

• Ability to distinguish when system is running user or kernel code 

• Some instructions are privileged: only executable in kernel mode 

• System call changes mode to kernel, return resets it to user
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User-mode vs Kernel-mode
•Kernel-code (in particular, interrupt 
handlers) runs in kernel mode 

‣ the hardware allows all machine instructions 
to be executed and allows unrestricted 
access to memory and I/O ports 

•Everything else runs in user mode 

•OS relies very heavily on this hardware-
enforced protection mechanism
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De-privileging
•A classical VMM executes the guest operating systems 
directly, but at a reduced privilege level. 
•All instructions that read or write privileged state can be 
made to trap when executed in the unprivileged context.  

• Traps can result from: 
‣ The instruction type itself (e.g., an out instruction) 

‣ The VMM protecting structures that the instructions access 
(e.g., the address range of a memory-mapped I/O device) 

• The VMM intercepts traps from the de-privileged guest, 
and emulates the trapping instruction against the virtual 
machine state.

Adams & Agesen, “A Comparison of Software & Hardware Techniques for x86 Virtualization” 
ASPLOS 2006
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Classical VMM Approach
• Traditional approach: “trap and emulate” 

‣ Guest software executes in unprivileged mode; attempts 
to access physical resource.  

‣ Hardware raises exception (trap), invoking hypervisor's 
exception handler.  

‣ Hypervisor emulates the result, based on access to virtual 
resource  

•Most instructions do not trap. This: 

‣ Makes efficient virtualization possible 

‣ Requires that VM ISA is (almost) same as physical 
processor ISA 

Courtesy of Gernot Heiser, UNSW”
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x86 Architecture
• x86 is the most popular processor 
architecture, implemented in processors 
from Intel, Cyrix, AMD, etc. As of 2018, the 
majority of personal computers and laptops 
sold are based on the x86 architecture. 

• x86 OS designed to run directly on bare-
metal hardware: assumes full ‘ownership’ of 
computer hardware.  

• x86 architecture offers four levels of privilege: 
Ring 0, 1, 2 and 3 

‣ User level applications typically run in Ring 3. 

‣ The OS needs direct access to memory and 
hardware: must execute privileged 
instructions in Ring 0. 
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x86 Machine Instruction Types
•Non-privileged instructions can be executed in user mode. 

•Privileged instructions can be executed  in kernel mode. When 
attempted to be  executed in user mode, they cause a trap and so 
are executed in kernel mode.  

• Sensitive instructions can be: 

‣ Control sensitive: they attempt to change the configuration of system 
resources (either the memory allocation or privileged mode). 

‣ Mode sensitive: behavior differs when running in the privileged or in non-
privileged mode. 

• Some sensitive instructions are hard to virtualize: they have different 
semantics when executed outside Ring 0. 

• The difficulty in trapping and translating these sensitive instructions at 
runtime was the challenge that originally made x86 architecture 
virtualization look impossible.
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“Trap-and-emulate” Requirements
•An architecture is virtualizable if all sensitive instructions 
are privileged:  

‣ Can achieve accurate, efficient guest execution by 
simply running guest binary on hypervisor  

•Virtualized execution is indistinguishable from native, 
except: 

‣ Resources are more limited (running on smaller 
machine)  

‣ Timing is different (if there is an observable time source) 

•VMM controls resources 

Courtesy of Gernot Heiser, UNSW
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“Trap-and-emulate” Overheads
•VMM needs to maintain virtualized privileged machine state 

‣ processor status  

‣ addressing context  

‣ device state...  

•VMM needs to emulate privileged instructions  

‣ translate between virtual and real privileged state, e.g. guest 
↔ real page tables  

•Virtualization traps are expensive on modern hardware  (can 
be 100s of cycles - x86)  

• Some OS operations involve frequent traps 

Courtesy of Gernot Heiser, UNSW
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Virtualizing the x86 Architecture
• Need to place a VMM under the OS (which expects to be 

in Ring 0) so as to create and manage the VMs that deliver 
shared resources. 
• However: 
‣ Running the VMM in ring 0, gives it equal privileges to the 

OS: wrong  
‣ Running VMM in rings 1,2,3, gives the OS higher privileges 

than the VMM: wrong

• How can this be be addressed? 
• Move the guest OS to ring 1 and place 

VMM to ring 0?
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Challenges of x86 CPU Virtualization
•Even the later x86 architected 32- and 64-bit CPUs with 
protected modes, were considered to be not classically 
virtualizable due to: 

‣ Visibility of privilege state: the guest OS can observe that it 
runs at a reduced privilege level (leakage of privileged state). 

‣ Mode-sensitive instructions behave differently in de-privileged 
mode (e.g. not causing a trap in a de-privileged mode): 
cannot guarantee correctness 

•Possible Approaches: 

‣ Software Virtualization 

‣ Binary Translation

Adams & Agesen, “A Comparison of Software & Hardware Techniques for x86 Virtualization” 
ASPLOS 2006
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Software virtualization
•Guest executes on an interpreter instead of directly on 
a physical CPU.  

• Interpreter can prevent leakage of privileged state and 
it can correctly implement non-trapping instructions.  

• In essence, the interpreter separates virtual state (the 
VCPU) from physical state (the CPU).  

• Interpretation ensures Fidelity and Safety, but fails to 
meet Popek and Goldberg’s Performance bar:  

‣ the fetch- decode-execute cycle of the interpreter may 
burn hundreds of physical instructions per guest 
instruction.
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Binary Translation
•VMware introduced in 1998 binary translation to allow the VMM to run 

in Ring 0 for isolation and performance, while moving the operating 
system to a user level ring with greater privilege than applications in 
Ring 3 but less privilege than the virtual machine monitor in Ring 0.  
• Binary translation:  
‣ The VMM monitors the execution of guest OS;  
‣ Non-virtualizable instructions executed by a guest OS are replaced with 

(translated to) other instructions. 
‣ The OS runs unchanged, and this ensures that this direct execution 

mode is efficient. 
• Binary translation can combine the semantic precision of 

interpretation with high performance, yielding an execution engine 
that meets all of Popek and Goldberg’s criteria.  
•VMMs built around a suitable binary translator can virtualize the x86 

architecture and it is a VMM according to Popek and Goldberg. 

Adams & Agesen, “A Comparison of Software & Hardware Techniques for x86 Virtualization” 
ASPLOS 2006
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Binary Translation

“Understanding Full Virtualization, Paravirtualization, and Hardware Assist,” VMWare White Paper (2008) 
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Binary Translation Properties
•Binary: Input is binary x86 code, not source code.  

‣ A guest OS can run unchanged on the VMM as if it was running directly on the 
hardware platform. Each VM runs on an exact copy of the actual hardware. 

•Dynamic: Translation happens at runtime, interleaved with execution of the 
generated code. 

‣ “The hypervisor translates all OS instructions on the fly and caches the results for future 
use, while user level instructions run unmodified at native speed.” 

•On demand: Code is translated only when it is about to execute. 

• System level: Translator makes no assumptions about the guest code. Rules are set 
by the x86 ISA. 

• Subsetting: the translator’s input is the full x86 instruction set, including all privileged 
instructions. The output is a safe subset (mostly user mode instructions) 

‣ Binary translation rewrites parts of the code on the fly to replace sensitive but not 
privileged instructions with safe code to emulate the original instruction 

•Adaptive: translated code is adjusted in response to guest behavior changes to 
improve overall efficiency.

Adams & Agesen, “A Comparison of Software & Hardware Techniques for x86 Virtualization” 
ASPLOS 2006



Server Virtualization

Modern Virtualization Technologies



M. D. Dikaiakos

Server virtualization
• Server virtualization converts one physical server into multiple 
virtual machines. Each virtual server acts like a unique physical 
device, capable of running its own operating system (OS). 

‣ The physical server is called the host.  

‣ The virtual servers are called guests and behave like physical 
machines.  

•Each virtualization system uses a different approach to allocate 
physical server resources to virtual server needs. 

•Approaches: 

‣ Full virtualization 

‣ Para-virtualization  

‣ OS-level virtualization



Full Virtualization

Modern Virtualization Technologies: Server Virtualization
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Full virtualization
•Each virtual machine runs on an exact 
copy of the actual hardware. 

• The guest OS: 

‣ is fully abstracted (completely decoupled) 
from the underlying hardware by the 
virtualization layer (VMM)  

‣ is not aware it is being virtualized and 
requires no modification. 
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Full virtualization VMMs
•Each VMM running on the hypervisor implements the virtual 
machine hardware abstraction and is responsible for running a 
guest OS: 

‣ Each guest server runs on its own OS 

‣ You can even have one guest running on Linux and another on 
Windows. 

•As virtual servers run applications, the hypervisor relays resources 
from the physical machine to the appropriate virtual server: 

‣ Each VMM has to partition and share the CPU, memory and I/O 
devices to successfully virtualize the system
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How can this work?
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The hypervisor translates all operating 
system instructions on the fly and  
caches the results for future use, 
while user level instructions run 
unmodified at native speed.
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What happens behind the 
scenes?
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Binary Translation of non-virtualizable (sensitive) 
instructions, direct execution of nonsensitive 

instructions and provision by each VMM of virtual 
services available on the physical system (BIOS, virtual 

devices, virtual memory management) 

Requires no hardware assist or OS assist to virtualize 
sensitive and primitive instructions.
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Full virtualization
•Relies on the hypervisor, which: 

‣ Interacts directly with the physical server's CPU and disk space.  

‣ Monitors the physical server's resources. 

‣ Serves as a platform for the virtual servers' operating systems. 

‣ Keeps each virtual server completely independent and unaware 
of the other virtual servers running on the physical machine. 

•Hypervisors have their own processing needs, which means 
that the physical server must reserve some processing power 
and resources to run the hypervisor application.  

‣ This can impact overall server performance and slow down 
applications.
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Full virtualization: Pros and Cons
•Advantages: 

‣ No hardware assistance,  

‣ No modifications of the guest OS 

‣ Best isolation and security for virtual machines, 

‣ Simplifies migration and portability as the same 
guest OS instance can run virtualized or on native 
hardware.  

•Disadvantages: 

‣ Speed of execution
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Paravirtualization
•Operating System-assisted Virtualization or Paravirtualization 
proposed to: 

‣ Cope with hardware architectures that cannot be virtualized easily. 

‣ To improve performance of virtualization. 

‣ To present a simpler VMM interface. 

•Demands that: 

‣ The guest OS uses only instructions that can be virtualized, and run 
on the VMM. 

‣ Guest OS code is ported for individual hardware platforms. 

• The term is used to describe the Denali, Xen, L4, TRANGO, 
VMware, Wind River and XtratuM hypervisors. 
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Paravirtualization
•Presents a software interface to the VMs which is similar, yet not 
identical, to the underlying hardware–software interface. 

‣ Intent of the modified interface: reduce portion of the guest's 
execution time on operations which are substantially more difficult to 
run in a virtual environment compared to a non-virtualized 
environment.  

•A conventional OS distribution that is not paravirtualization-aware 
cannot be run on top of a para-virtualizing VMM.  

• If the OS cannot be modified, components may be available that 
enable many of the significant performance advantages of 
paravirtualization:  

• Xen Windows GPLPV project provides paravirtualization-aware device 
drivers, intended to be installed into a Microsoft Windows virtual guest 
running on the Xen hypervisor.
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Para-virtualization implementation
• Manually port guest OS to α modified (higher level) ISA, by:  

• Replacing non-virtualizable instructions with explicit hypervisor calls 
(hypercalls) that communicate directly with the hypervisor. 

• Providing specially defined 'hooks' to allow the guest(s) and host to 
request and acknowledge tasks, which would otherwise be executed 
in the virtual domain (where execution performance is worse) 

• The “higher-level” ISA results in: 

• Reduction of number of traps 

• Removal of non-virtualizable instructions 

• Removal of “messy” ISA features 

• Simplicity: easier to modify the guest OS to enable paravirtualization 
than to implement binary translation 
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Para-virtualization: Pros & Cons
•Advantages: 

‣ Generally outperforms pure virtualisation & binary re-writing 

‣ A successful paravirtualized platform may allow the VMM to be simpler (by relocating execution of 
critical tasks from the virtual domain to the host domain), and/or reduce the overall performance 
degradation of machine execution inside the virtual guest: lower virtualization overhead; para-
virtualization hypervisor doesn't need as much processing power to manage the guest operating 
systems 

‣ Each guest OS is already aware of the demands the other operating systems are placing on the 
physical server.  

‣ The entire system works together as a cohesive unit. 

‣ Faster execution - performance is generally very close to running bare-metal, non-virtualized 
operating systems. 

•Drawbacks: 

‣ Poor portability and compatibility (cannot support unmodified OS) 

‣ Significant engineering effort 

‣ Needs to be repeated for each guest-ISA-hypervisor combination 

‣ Para-virtualised guests must be kept in sync with native evolution 

‣ Requires source



Hardware-assisted virtualization
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Hardware Assisted Virtualization
•A new CPU execution mode feature that allows the VMM to run in 
a new root mode below ring 0.  

•Privileged and sensitive calls are set to automatically trap to the 
hypervisor, removing the need for either binary translation or 
paravirtualization“  

•Advantage: even faster execution 

•Examples: Intel VT-x, Xen 3.x
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Summary of x86 Virtualization 
Techniques

2007
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OS-level virtualization
•An OS-level virtualization approach doesn't use a hypervisor 
at all.  

• Instead, the virtualization capability is part of the host OS, 
which performs all the functions of a fully virtualized 
hypervisor.  

• The biggest limitation of this approach is that all the guest 
servers must run the same OS.  

•Each virtual server remains independent from all the others, 
but you can't mix and match operating systems among 
them.  

•Because all the guest operating systems must be the same, 
this is called a homogeneous environment.
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OS-level virtualization
•Happens at the OS kernel: the kernel allows the existence of 
multiple isolated user space instances.  

• Such instances, called containers (LXC, Solaris containers, 
Docker), Zones (Solaris containers), virtual private servers 
(OpenVZ), partitions, virtual environments (VEs), virtual kernels 
(DragonFly BSD), or jails (FreeBSD jail or chroot jail). 

•Containers may look like real computers from the point of view 
of programs running in them, but:  

‣ A computer program running on an ordinary OS can see all 
resources (connected devices, files and folders, network shares, 
CPU power, quantifiable hardware capabilities) of that computer.  

‣ However, programs running inside of a container can only see the 
container's contents and devices assigned to the container. 
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Memory Virtualization
• Sharing the physical system memory and dynamically allocating it to virtual machines.  

•Virtual machine memory virtualization is very similar to the virtual memory support 
provided by modern OSs: 

‣ Applications see a contiguous address space that is not necessarily tied to the underlying 
physical memory in the system.  

‣ The OS keeps mappings of virtual page numbers to physical page numbers stored in page 
tables.  

•All modern x86 CPUs include a memory management unit (MMU) and a translation 
lookaside buffer (TLB) to optimize virtual memory performance. 

• To run multiple VMs on a single system, another level of memory virtualization is required: 

‣ Virtualize the MMU to support the guest OS.  

‣ Guest OS continues to control the mapping of virtual addresses to the guest memory 
physical addresses, but the guest OS cannot have direct access to the actual machine 
memory.  

‣ The VMM is responsible for mapping guest physical memory to the actual machine 
memory, and it uses shadow page tables to accelerate the mappings.
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Memory Virtualization

shadow page tables
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Device & I/O Virtualization
•Manages the routing of I/O requests between virtual 
devices and the shared physical hardware. 

• Software based I/O virtualization and management, 
enables a rich set of features and simplified management. 

‣ Virtual NICs and switches create virtual networks between 
virtual machines without the network traffic consuming 
bandwidth on the physical network.

‣ The hypervisor virtualizes the physical hardware and presents 
each virtual machine with a standardized set of virtual 
devices as seen in the Figure.  

‣ These virtual devices effectively emulate well-known 
hardware and translate the virtual machine requests to the 
system hardware
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• Fidelity. Software on the 
VMM executes identically to 
its execution on hardware, 
except for timing effects.  

•Performance. An 
overwhelming majority of 
guest instructions are 
executed by the hardware 
without the intervention of 
the VMM.  

• Safety. The VMM manages 
all hardware resources.

Popek & Goldberg, “Formal requirements for virtualizable third 
generation architectures”, CACM July1974

Hypervisors: Key 
Requirements
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•Binaries created by a compiler for a 
specific ISA and a specific operating 
systems are not portable 

• It is possible, though, to compile a HLL 
program for a virtual machine (VM) 
environment where portable code is 
produced and distributed and then 
converted by binary translators to the 
ISA of the host system 

•A dynamic binary translation converts 
blocks of guest instructions from the 
portable code to the host instruction 
set and leads to a significant 
performance improvement, as such 
blocks are cached and reused

Code portability 
and Binary 
Translation
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•Virtual Machine Monitor (VMM) 
or Hypervisor: software layer that 
implements virtualization 

‣ Separates the physical resources 
from the virtual environments 
running upon them 

‣ Translates calls to the interfaces 
of the guest environment to the 
interfaces of the host 
environment. 

‣ Divides physical resources and 
manages their mapping and 
simultaneous use by virtual 
environments.

Virtual Machine 
Monitors - 

Hypervisors
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•Control resources: 
‣ Partition hardware 
‣ Schedule guests 
‣ Mediate access to shared resources 
‣ Allow several operating systems to 

run concurrently on a single 
hardware platform 

•Allow: 
‣ Live migration - the movement  of a 

virtual server from one platform to 
another 

‣ System modification while 
maintaining backward compatibility 
with the original system 

‣ Enforce isolation among the 
systems, thus security

Courtesy of Gernot Heiser, UNSW, Australia

Hypervisors: 
What do they 

do?



M. D. Dikaiakos

•A VMM: 

‣ Traps the privileged instructions executed 
by a guest OS and enforces the 
correctness and safety of the operation 

‣ Traps the interrupts and dispatches them 
to the individual guest operating systems 

‣ Controls the virtual memory management 

‣ Maintains a shadow page table for each 
guest OS and replicates any modification 
made by the guest OS in its own shadow 
page table. This shadow page table points 
to the actual page frame and it is used by 
the Memory Management Unit (MMU) for 
dynamic address translation. 

‣ Monitors the system performance and 
takes corrective actions to avoid 
performance degradation.  For example, 
the VMM may swap out a VM to avoid 
thrashing.

VMM Virtualizes 
the CPU & 
Memory
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•Hypervisors execute in privileged mode 

•Guest software executes in 
unprivileged mode 

•Privileged instructions in guest cause a 
trap into hypervisor 

‣ Hypervisor interprets/emulates them 

•VMM can have extra instructions for 
hypercalls (hypervisor calls) 

•When a program running on a virtual 
environment issues an instruction that 
requires additional resources from the 
physical environment, the hypervisor 
relays the request to the physical 
system and caches the changes— at 
close to native speed.

VMM 
Implications
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Hypervisor Types

• Type 1 (bare metal, native): run directly on the hardware (as a lightweight OS) and support 
multiple virtual machines and OS. 

‣ Most popular in production environments due to the low overhead. 

‣ Citrix/Xen Server, Denali, VMware ESXi and Microsoft Hyper-V 

• Type 2 (hosted) VM - runs the virtualization layer as an application on top of a host operating 
system (e.g., user-mode Linux)  

‣ Microsoft Virtual PC, Oracle Virtual Box, VMware Workstation, Oracle Solaris Zones, VMware 
Fusion, Oracle VM Server for x86. 

‣ Ideal option for personal use due to low cost and ease of installation .

Ty
pe

 1 Type 2
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Examples of Hypervisors
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Type-1 VMM Characteristics
•Efficient, good performance: 

‣ Benefits from hardware support for virtualization (VT-x, VT-A), which helps the 
hypervisor perform the intensive tasks required to manage the virtual resources of 
the computer.  

‣ Without hardware support, the hypervisor would have to handle the intensive 
tasks required for virtualization on its own resulting to: 

• Overall performance drop  

• Restricted the number of guest VMs that could be hosted on a computer 

•Very secure because:  

‣ Are much simpler and better specified than traditional operating systems.  
Example - Xen has approximately 60,000 lines of code; Denali has only about 
half: 30,000 

‣ Have considerably reduced security vulnerabilities as they expose a much 
smaller number of privileged functions. For example, Xen VMM has 28 hypercalls 
while Linux has 100s of system calls
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Type-2 VMM Characteristics
• Typically installed on an existing Operating 
System and support a wide range of hardware. 

•Rely on the host OS to undertake operations like 
managing calls to the CPU, managing network 
resources, managing memory and storage.  

•Make use of hardware acceleration 
technologies, when available.  

• Fall back on software emulation if the support 
isn’t available on the physical host system.
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Type-2 vs Type-1 VMM
•You can host the VMM beside 
native apps 

‣ Sandbox untrusted apps 

‣ Convenient for running alternative 
OS on desktop 

‣ Leverage host drivers 

• Less efficient 

‣ Double node switches 

‣ Double context switches 

‣ Host not optimised for exception 
forwarding

Courtesy of Gernot Heiser, UNSW, Australia 

Type-1 Type-2
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Kernel-based Virtual Machine-KVM
• Type-2 hypervisor and open source virtualization technology built 
into Linux®. 

•KVM lets you turn Linux into a type-1 (bare-metal) hypervisor that 
allows a host machine to run multiple, isolated virtual machines 
(guests). 

•All hypervisors need some operating system-level components—
such as a memory manager, process scheduler, input/output (I/O) 
stack, device drivers, security manager, a network stack, and more
—to run VMs.  

‣ KVM has all these components because it’s part of the Linux kernel.  

‣ Every VM on KVM is implemented as a regular Linux process, 
scheduled by the standard Linux scheduler, with dedicated virtual 
hardware like a network card, graphics adapter, CPU(s), memory, 
and disks.
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VM Management Frameworks
•Different types of virtualization technologies 
have management frameworks that enable 
VMs and applications to be deployed and 
managed at data center scale:  

‣ Commercial offerings like vCenter 

‣ Open source frameworks like OpenStack, 
CloudStack.  

‣ Kubernetes and Docker Swarm are recent 
container management frameworks. 
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Virtualization 
Types

Courtesy of Gernot Heiser, UNSW, Australia
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•Review of basic Operating Systems' 
concepts of relevance to virtualization: 
core abstractions, layering, libraries, 
application binary interface, security 
and privilege management, protection 
rings, running in kernel vs. user mode.  

• Introduction to Virtualization and 
discussion of different virtualization 
types. 

•Discussed the concepts of server 
virtualization, virtual machines, and 
virtual machine monitors/hypervisors.  

•Explained differences between Type-1 
(bare metal) and Type-2 (hosted) 
VMMs. 

•Discussed security issues and concerns 
with server virtualization. 

•Discussed the problem of mapping VMs 
to physical machines.

Summary


