
DSC516: Cloud Computing

Part II: Cloud Building Blocks

Module 4: Virtualization,
Containers and Resource

Management

Lecture 7

Virtualization Fundamentals

M. D. Dikaiakos

•Examine, understand, assess, and describe the
concepts of virtualization, virtual machines, and
virtual machine monitors hypervisors.

•Understand and explain basic Operating
Systems' concepts of relevance to virtualization:
core abstractions, layering, libraries, application
binary interface, security and privilege
management, protection rings, running in kernel
vs. user mode.

•Understand and explain different virtualization
types and the concepts of server virtualization,
virtual machines, and hypervisors.

•Understand and explain techniques for
implementing virtual machines: de-privileging,
primary and shadow structures, memory tracing.

•Explain the key features of VMM

•Understand and explain alternative techniques
for implementing hypervisors

Learning
Objectives

M. D. Dikaiakos

Required Readings

• "Beyond server consolidation." Vogels, W. In Queue (Vol. 6, Issue
1, pp. 20–26). https://doi.org/10.1145/1348583.1348590 (2008).

• "The architecture of virtual machines," J. E. Smith and Ravi Nair,
in Computer, vol. 38, no. 5, pp. 32-38 (May 2005) doi: 10.1109/
MC.2005.173.

• “Understanding Full Virtualization, Paravirtualization, and
Hardware Assist,” VMWare White Paper (2008)

• Chapters 4.10, 10.2, 10.3, “Cloud Computing: Theory and
Practice,” Dan Marinescu (2017)

• “Understanding virtualization,” RedHat (2018), https://
www.redhat.com/en/topics/virtualization/what-is-virtualization

Additional Readings

• “A comparison of software and hardware techniques for x86
virtualization,” Adams and Agesen, (2006) ACM SIGPLAN
Notices, vol. 41, issue 11. https://doi.org/
10.1145/1168918.1168860

• “Xen and the art of virtualization,” P. Barham et al., Proc.
Nineteenth ACM Symp. Oper. Syst. Princ. - SOSP ’03, p. 164,
2003.

Readings

https://doi.org/10.1145/1348583.1348590
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://doi.org/10.1145/1168918.1168860
https://doi.org/10.1145/1168918.1168860
https://doi.org/10.1145/1168918.1168860

M. D. Dikaiakos

Virtualization: Definition
•Refers to the act of creating a virtual (rather
than actual) version of some computing
resource

•Virtualization:

‣ abstracts the underlying resources;

‣ simplifies their use;

‣ isolates users from one another; and

‣ supports replication which increases the elasticity
of a system

Introduction and Basic Concepts

Virtualization Fundamentals

M. D. Dikaiakos

How do we tackle the
incredible complexity of

computer systems to
allow for their

development, debugging
and evolution?

Interfaces, Abstraction, Layering

Introduction and Basic Concepts

M. D. Dikaiakos

“The purpose of abstraction is not to be vague, but
to create a new semantic level in which one can be

absolutely precise.”

Edsger Dijkstra

M. D. Dikaiakos

Interfaces
•Well-defined interfaces:

‣ facilitate independent subsystem
development of both hardware and
software

‣ permit development of interacting
computer subsystems in different
organizations and at different times

M. D. Dikaiakos

Architecture & Implementation
•Architecture, as applied to computer systems,
refers to a formal specification of an interface
in the system, including the logical behavior of
resources managed via the interface.

• Implementation describes the actual
embodiment of an architecture.

•Abstraction levels correspond to
implementation layers, whether in hardware or
software, each associated with its own
interface or architecture.

M. D. Dikaiakos

Layering
•A common approach to manage system
complexity:

‣ Minimizes interactions among subsystems
of a complex system

‣ With layering we are able to design,
implement, and modify individual
subsystems independently.

M. D. Dikaiakos

Abstraction Example
•Operating system abstracts
hard-disk addressing details
(sectors, tracks) so that the
disk appears to application
software as a set of variable-
sized files.

•Application programmers
can then create, write, and
read files without knowing
the hard disk's construction
and physical organization.

M. D. Dikaiakos

Interface Example: ISA
• Intel and AMD designers develop
microprocessors that implement the Intel
IA-32 (×86) instruction set architecture (ISA)

•Microsoft developers write software that is
compiled to the same instruction set.

•Because both groups satisfy the ISA
specification, the software can be
expected to execute correctly on any PC
built with an IA-32 microprocessor.

M. D. Dikaiakos

Interfaces’ Limitations
• Subsystems and components designed based on
specifications for one interface will not work with
those designed for another.

‣ For example: application programs distributed as
compiled binaries, are tied to a specific ISA and
depend on a specific operating system interface.

• Lack of interoperability can be confining,
especially in a world of networked computers
where it is advantageous to move software as
freely as data.

M. D. Dikaiakos

Virtualization
•Virtualizing a system or component
(processor, memory, or I/O device) at a
given abstraction level:

‣ maps its interface and visible resources
onto the interface and resources of an
underlying, possibly different, real system.

‣ Makes the real system appear as a
different virtual system or even as multiple
virtual systems.

M. D. Dikaiakos

Virtualization vs Abstraction
•Virtualization transforms a single
large disk into two smaller
virtual disks.

•Virtualizing software uses the file
abstraction as an intermediate
step to provide a mapping
between the virtual and real
disks.

•A write to a virtual disk is
converted to a file write, which
is converted to a real disk write.

Real disk

Virtual disks

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Virtualization: remarks
•Provides a way of getting around interoperability
constraints of different interfaces.

•Does not necessarily aim to simplify or hide
implementation details. E.g.:

‣ In the previous example, the level of detail
provided at the virtual disk interface—the sector/
track addressing—is no different from that for a
real disk; no abstraction takes place.

•Virtual Machines: Virtualization applied to an
entire machine.

Computer Systems Layering

Introduction and Basic Concepts

M. D. Dikaiakos

IDENTIFY the INTERFACES
AND layers commonly
found in a computer

system

M. D. Dikaiakos

Computer System Architecture:
Layers and Interfaces

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Computer System Architecture:
Layers and Interfaces

1. Instruction set
architecture (ISA)

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Computer System Architecture:
Layers and Interfaces

1. Instruction set
architecture (ISA)

2. Application binary
interface (ABI)

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Computer System Architecture:
Layers and Interfaces

1. Instruction set
architecture (ISA)

2. Application binary
interface (ABI)

3. Application
programming
interface (API)

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Instruction Set Architecture
•Marks the division between hardware
and software

•Consists of interfaces 3 and 4:

‣ Interface 4 represents the user ISA
and includes those aspects visible to
an application program.

‣ Interface 3, the system ISA, is a
superset of the user ISA and includes
those aspects visible only to
operating system software responsible
for managing hardware resources.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Application Binary Interface
•Gives a program access to the hardware resources and
services available in a system through the user ISA
(interface 4) and the system call interface (interface 2).

• Is an interface between two binary program modules.
Usually:

‣ One is a library or operating system facility,

‣ The other is a program that is being run by a user.

•Defines how data structures or computational routines
are accessed in machine code.

•Does not include system (privileged) instructions;

• System calls provide a way for an operating system to perform operations on
behalf of a user program after validating their authenticity and safety.

• All application programs interact with the hardware resources indirectly by
invoking the operating system's services via the system call interface.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Application Programming Interface
•Gives a program access to the
hardware resources and services
available in a system through:

‣ the user ISA (interface 4) supplemented
with

‣ high-level language (HLL) library calls
(interface 1).

•Any system calls are usually performed
through libraries.
• Using an API enables application software to be ported

easily, through recompilation, to other systems that support
the same API.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Layering and Interfaces

Hardware

Operating System

ISA

Libraries

ABI

API

System calls

Applications

System ISA User ISA

A1

A2

A3

Application Programming Interface (API), Application Binary Interface
(ABI), and Instruction Set Architecture (ISA).
An application uses library functions (A1), makes system calls (A2), and
executes machine instructions (A3)

Virtual Machines

Introduction and Basic Concepts

M. D. Dikaiakos

Virtual Machines
•A Virtual Machine (VM) can be:
‣ An execution environment that runs an OS
‣ An isolated environment that appears to be a

whole computer, but actually only has access
to a portion of the computer resources

•VM is encapsulated in a single data file. It can be:
‣ moved from one computer to another,
‣ opened in either one, and
‣ be expected to work the same.

M. D. Dikaiakos

VMs vs. Simulators & Emulators
•Virtual machine

‣ Models a machine exactly and efficiently

‣ Minimal showdown

‣ Needs to be run on the physical machine it virtualizes (more or less)

• Simulator

‣ Provides a functionally accurate software model of a machine

‣ May run on any hardware

‣ Is typically slow (order of 1000 slowdown)

•Emulator

‣ Provides a behavioral model of hardware (and possibly S/W)

‣ Not fully accurate

‣ Reasonably fast (order of 10 slowdown)

Courtesy of Gernot Heiser, UNSW, Australia

M. D. Dikaiakos

Implementing Virtual Machines
•We need to add a software layer to a real machine to support
the desired architecture.

‣ By doing so, a VM can circumvent real machine compatibility
and hardware resource constraints.

•VM implementations lie at architected interfaces:

‣ The fidelity with which a VM implements these interfaces is a
major consideration.

• The process or system that runs on a VM is called the guest

• The underlying platform that supports the VM is called the host.

• The virtualizing software that implement VMs are termed
runtime (“runtime software”), Virtual Machine Monitor (VMM) or
hypervisor (depending on the VM type).

Modern Virtualization Technologies

Virtualization Fundamentals

History and Evolution

Virtualization Technologies

M. D. Dikaiakos

Virtualization: The History
•Virtualization technology was developed in the late 1960s to
make more efficient use of hardware.

•On a single IBM System/360, one could run in parallel, several
environments that maintained full isolation and gave each of
its customers the illusion of owning the hardware.

• IBM System/360 Virtualization: time sharing implemented at a
coarse-grained level

•Achievements:

‣ Consolidation.

‣ Isolation.

‣ Efficient resource management.

M. D. Dikaiakos

Virtualization: The History
• 1960’s, IBM: CP/CMS control program: a virtual machine operating system for the

IBM System/360 Model 67

• 2000, IBM: z-series with 64-bit virtual address spaces and backward compatible
with the System/360

• 1974: Popek and Golberg from UCLA published “Formal Requirements for
Virtualizable Third Generation Architectures” where they listed the conditions a
computer architecture should satisfy to support virtualization efficiently. The
popular x86 architecture that originated in the 1970s did not support these
requirements for decades.

• 1990’s, Stanford & VMware: Researchers developed a new hypervisor and
founded VMware, the biggest virtualization company of today’s. First virtualization
solution was is 1999 for x86.

• IBM was the first to produce and sell virtualization for the mainframe. But, VMware
popularized virtualization for the masses.

• Today many virtualization solutions: Xen from Cambridge, KVM, Hyper-V, …

Source: Randal, ACM Computing Surveys, 2/2020

Source: VMWare

M. D. Dikaiakos

Virtualization Requirements
• Sufficient conditions for a computer architecture to
support virtualization and allow a hypervisor to
operate efficiently:
‣ A program running under the hypervisor should exhibit

a behavior essentially identical to that demonstrated
when running on an equivalent machine directly.

‣ The hypervisor should be in complete control of the
virtualized resources.

‣ A statistically significant fraction of machine
instructions must be executed without the intervention
of the hypervisor, directly by real hardware.

Popek & Goldberg, “Formal requirements for virtualizable third generation architectures”, CACM July1974

M. D. Dikaiakos

Virtualization Requirements
“A virtual machine (VM) is an efficient, isolated duplicate of

a real machine”
•VM should behave identically to the real machine
‣ Programs cannot distinguish between execution on real or

virtual hardware
‣ Except for:
• Fewer resources available (potentially different between

executions)
• Some timing differences (when dealing with devices)

• Isolated: Several VMs execute without interfering with
each other
•Efficient: VM should execute at a speed close to that of
real hardware

M. D. Dikaiakos

Virtualization: Why?
•As the scale of systems and the size of user base
grows, it becomes very challenging to manage
computing recourses.

•E.g., in data centers:

‣ provision for peak demands: overprovisioning

‣ heterogeneity of hardware and software

‣ machine failures

•We need improved ways of managing resources
at scale

M. D. Dikaiakos

Virtualization: Why?
• Simplifies the abstract management of physical
resources, focusing on key computing abstractions:

1. processors
2. memory
3. communications links

•Examples:
‣ The state of a virtual machine (VM) running under a

virtual machine monitor (VMM) can de saved and
migrated to another server to balance the load

‣ Virtualization allows users to operate in environments
they are familiar with, rather than forcing them to
specific ones

M. D. Dikaiakos

Virtualization: Why?
• Server sprawl in enterprise environments:

‣ Vendors want to run their applications in isolation.

‣ Underline OS heterogeneity for different enterprise applications.

‣ Complexity of integration projects.

•Many servers are typically underutilized:

‣ Large analyst firms estimate that resource utilization of 15-20% is
common

‣ Often this could be in the 5-12% range (Vogels, Amazon, 2008)

Beyond Server Consolidation, W. Vogels,
Amazon.com, ACM Queue, 2008.

M. D. Dikaiakos

Virtualization & Cloud Computing
•A basic enabler of Cloud Computing

•Cloud resource virtualization is important for:
‣ Performance isolation: we can dynamically assign and account for

resources across different applications

‣ System security: allows isolation of services running on the same
hardware

‣ Performance and reliability: allows applications to migrate from one
platform to another

‣ Development and management of services offered by a provider

‣ Server consolidation: we can use same physical server for multiple
applications

M. D. Dikaiakos

Server consolidation
• Server consolidation can decrease IT cost
by multiplexing physical resources over a
number of virtualized environments:

‣ reduce hardware required

‣ reduce data-center footprint

‣ indirectly reduce power consumption

Virtualization approaches

Modern Virtualization Technologies

M. D. Dikaiakos

Virtualization: High-Level Tasks
Virtualization simulates the interface to a physical object by:
‣ Multiplexing: creates multiple virtual objects from one instance of a

physical object.
‣ Maps many virtual objects to one physical.
‣ Eg - a processor is multiplexed among a number of processes or

threads.
‣ Aggregation: creates one virtual object from multiple physical objects.
‣ Maps one virtual object to many physical objects.
‣ Example - a number of physical disks are aggregated into a RAID disk.

‣ Emulation: constructs a virtual object of a certain type from a different
type of a physical object.
‣ Example - a physical disk emulates a Random Access Memory (RAM).

‣ Multiplexing and emulation.
‣ Examples - virtual memory with paging multiplexes real memory and

disk; a virtual address emulates a real address.

M. D. Dikaiakos

Virtualization Approaches

•Data virtualization

•Desktop virtualization

• Server virtualization

•Operating system virtualization
(containers)

•Network functions virtualization

M. D. Dikaiakos

Data Virtualization
•Data virtualization:

‣ brings together data from multiple sources

‣ easily accommodates new data sources

‣ transforms data according to user needs

•Data virtualization tools sit in front of
multiple data sources and allows them to
be treated as single source.

M. D. Dikaiakos

Desktop Virtualization
•Allows a central administrator (or automated
administration tool) to deploy simulated
desktop environments to hundreds of physical
machines at once.

•Unlike traditional desktop environments that
are physically installed, configured, and
updated on each machine, desktop
virtualization allows admins to perform mass
configurations, updates, and security checks
on all virtual desktops.

M. D. Dikaiakos

Server virtualization
• Server virtualization converts one physical server into multiple
virtual machines. Each virtual server acts like a unique physical
device, capable of running its own operating system (OS).

‣ The physical server is called the host.

‣ The virtual servers are called guests and behave like physical
machines.

•Each virtualization system uses a different approach to allocate
physical server resources to virtual server needs.

•Approaches:

‣ Full virtualization

‣ Para-virtualization

‣ OS-level virtualization

M. D. Dikaiakos

Network-function virtualisation
•NFV separates a network's key functions (like directory
services, file sharing, and IP configuration) so they can
be distributed among environments.

•Once software functions are independent of the
physical machines they once lived on, specific
functions can be packaged together into a new
network and assigned to an environment.

•Virtualizing networks reduces the number of physical
components—like switches, routers, servers, cables,
and hubs—that are needed to create multiple,
independent networks, and it’ s particularly popular in
the telecommunications industry.

Virtual Machine Taxonomies

Modern Virtualization Technologies

M. D. Dikaiakos

what IS a machine ?

Consider the meaning of “machine” from

the perspective of the process and the
operating system

M. D. Dikaiakos

What is a process?

A running program with its
allocated resources and

execution state

M. D. Dikaiakos

Process Perspective
• The “machine” where a program runs consists of:

‣ a logical memory address space assigned to the process

‣ user-level instructions and registers that allow the execution
of code belonging to the process.

•Machine’s I/O is visible only through the operating system:

‣ the only way the process can interact with the I/O system is
through operating system calls.

•ABI defines the machine as seen by the process.

•API specifies the machine characteristics as seen by an
application HLL program.

M. D. Dikaiakos

System Perspective
• The Operating System is a full execution environment that
can support numerous processes simultaneously.

‣ These processes share a file system and other I/O resources.

•OS environment persists over time as processes come and go.

•OS allocates real memory and I/O resources to the processes,
and allows the processes to interact with their resources.

• The machine where the OS runs is defined by the underlying
hardware’s characteristics;

‣ Therefore, it is the ISA that provides the interface between the
system and machine.

M. D. Dikaiakos

Process and System VMs
•A process VM is a virtual platform that executes an individual
process.

‣ Exists solely to support the process;

‣ Created when the process is created and terminates when the
process terminates.

•A system VM provides a complete, persistent system
environment that supports an operating system along with its
many user processes. Provides:

‣ The guest operating system

‣ Access to virtual hardware resources, including networking, I/O,
along with a processor and memory.

‣ Perhaps a graphical user interface.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Process VMs
• The Virtualizing software that implements a process VM is often
termed the runtime (“runtime software”).

• The runtime is at the ABI or API level, atop the OS/HW combination:
emulates both user-level instructions and either operating system or
library calls.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Process VM Categories
•Multiprogrammed Systems: most OS can simultaneously support multiple used processes through
through multiprogramming, which gives each process the illusion of having a complete machine to
itself.

•Emulators and Dynamic Binary Translators: support program binaries compiled to an instruction set
different from the one the host executes: implemented through interpretation or dynamic binary
translation.

• Same-ISA Binary Optimizers: perform code optimizations during translation, where instruction sets of
host and guest are the same, and the purpose of the VM is to optimize execution performance of a
program binary.

•High-Level-Language VMS: instead of emulating one conventional architecture on another, these
are designed to match the features of given HLL(s) and facilitate cross-platform application
portability (e.g., JVM)

‣ In a HLL VM, a compiler front end generates abstract machine code in a virtual ISA that specifies the
VM's interface.

‣ This virtual ISA code, along with associated data structure information (metadata), is distributed for
execution on different platforms.

‣ Each host platform implements a VM capable of loading and executing the virtual ISA and a set of
library routines specified by a standardized API. In its simplest form, the VM contains an interpreter.
More sophisticated, higher-performance VMs compile the abstract machine code into host machine
code for direct execution on the host platform.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

High-level-language environments
(a) conventional environment where platform-dependent object code is distributed.

(b) hll vm environment where a platform-dependent vm executes portable intermediate code.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

System VMs and Hypervisors
•Virtualizing software is typically referred to as the virtual machine monitor (VMM) or hypervisor.

•A Hypervisor:
‣ Provides complete environment in which an OS and many processes of possibly multiple users, can

coexist.

‣ Has access to and manages all hardware resources, dividing them among multiple guest OSs

‣ Maintains hidden control of a guest operating system and its application processes.

‣ When a guest operating system performs a privileged instruction or operation that directly interacts
with shared hardware resources, the VMM intercepts the operation, checks it for correctness, and
performs it on behalf of the guest. Guest software is unaware of this behind-the-scenes work.

M. D. Dikaiakos

System VM Categories
• From the user perspective most system VMs provide essentially the same
functionality (differences in implementation exist)

•Classic System VMs: place the VMM on bare hardware and the VMs fit on top. The
VMM runs in the most highly privileged mode, while all guest systems run with
reduced privileges so that the VMM can intercept and emulate all guest operating
system actions that would normally access or manipulate critical hardware
resources.

•Hosted VMs: virtualizing software is built on top of an existing host operating system,
resulting in a hosted VM (e.g. VMware):

‣ Users can install VMM just like a typical application program.

‣ Virtualizing software can rely on host OS to provide device drivers and other lower-
level services.

•Whole-System VMs: address the case where guest and host have different ISA (e.g.
Windows PCs and Apple PowerPC):

‣ VM must virtualize and emulate both application and operating system code

‣ VMM executes as application supported by host OS; uses no system ISA ops.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

System VM Categories
•Multiprocessor Virtualization: Underlying host platform is a large shared-memory
multiprocessor that needs to be partitioned into multiple smaller multiprocessor
systems:

‣ Physical partitioning: physical resources that one virtual system uses are disjoint from
those used by other virtual systems

‣ Logical partitioning: underlying hardware resources are time-multiplexed between the
different partitions, thereby improving system resource utilization.

‣ Both techniques typically use special software or firmware support based on underlying
hardware modifications specifically targeted at partitioning.

•Co-designed VMs: implement new, proprietary (host) ISAs targeted at improving
performance, power efficiency, or both.

‣ The host's ISA may be completely new, or an extension of existing ISA.

‣ The VMM appears to be part of the hardware implementation and resides in a region
of memory concealed from all conventional software.

‣ VMM includes binary translator that converts guest instructions into optimized
sequences of host ISA instructions and caches them in the concealed memory region.

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

M. D. Dikaiakos

Taxonomy of Process & System VMs

"The architecture of virtual machines," J. E. Smith and Ravi Nair, in Computer, vol. 38, no. 5, pp.
32-38, May 2005, doi: 10.1109/MC.2005.173.

Within the general categories of process and system VMs, ISA simulation is
the major basis of differentiation.

M. D. Dikaiakos

Same-ISA VM Classes

Classes of VM for systems with the same ISA:
Traditional, hybrid, and hosted

Virtualization Mechanisms

Modern Virtualization Technologies

M. D. Dikaiakos

Protection Rings
•Hierarchical protection domains, often called protection rings, are
mechanisms in CPU architectures and Operating Systems aiming at
protecting data and functionality from faults and malicious behavior.

•A protection ring is one of two or more hierarchical levels or layers of
privilege within the architecture of a computer system:

‣ Ring hierarchy: from most privileged (most trusted, usually numbered
zero) to least privileged (least trusted).

•Hardware-enforced by some CPU architectures that provide different
CPU modes at the hardware or microcode level.

•On most operating systems, Ring 0 interacts most directly with the
physical hardware such as the CPU and memory.

• Special gates between rings are provided to allow an outer ring to
access an inner ring's resources in a predefined manner, as opposed
to allowing arbitrary usage.

More: https://en.wikipedia.org/wiki/Protection_ring

M. D. Dikaiakos

OS Dual-Mode Operation
•Dual-mode operation allows OS to protect itself and other
system components

‣ User mode and kernel mode

‣ Mode bit provided by hardware

• Ability to distinguish when system is running user or kernel code

• Some instructions are privileged: only executable in kernel mode

• System call changes mode to kernel, return resets it to user

M. D. Dikaiakos

User-mode vs Kernel-mode
•Kernel-code (in particular, interrupt
handlers) runs in kernel mode

‣ the hardware allows all machine instructions
to be executed and allows unrestricted
access to memory and I/O ports

•Everything else runs in user mode

•OS relies very heavily on this hardware-
enforced protection mechanism

M. D. Dikaiakos

De-privileging
•A classical VMM executes the guest operating systems
directly, but at a reduced privilege level.
•All instructions that read or write privileged state can be
made to trap when executed in the unprivileged context.

• Traps can result from:
‣ The instruction type itself (e.g., an out instruction)

‣ The VMM protecting structures that the instructions access
(e.g., the address range of a memory-mapped I/O device)

• The VMM intercepts traps from the de-privileged guest,
and emulates the trapping instruction against the virtual
machine state.

Adams & Agesen, “A Comparison of Software & Hardware Techniques for x86 Virtualization”
ASPLOS 2006

M. D. Dikaiakos

Classical VMM Approach
• Traditional approach: “trap and emulate”

‣ Guest software executes in unprivileged mode; attempts
to access physical resource.

‣ Hardware raises exception (trap), invoking hypervisor's
exception handler.

‣ Hypervisor emulates the result, based on access to virtual
resource

•Most instructions do not trap. This:

‣ Makes efficient virtualization possible

‣ Requires that VM ISA is (almost) same as physical
processor ISA

Courtesy of Gernot Heiser, UNSW”

M. D. Dikaiakos

x86 Architecture
• x86 is the most popular processor
architecture, implemented in processors
from Intel, Cyrix, AMD, etc. As of 2018, the
majority of personal computers and laptops
sold are based on the x86 architecture.

• x86 OS designed to run directly on bare-
metal hardware: assumes full ‘ownership’ of
computer hardware.

• x86 architecture offers four levels of privilege:
Ring 0, 1, 2 and 3

‣ User level applications typically run in Ring 3.

‣ The OS needs direct access to memory and
hardware: must execute privileged
instructions in Ring 0.

M. D. Dikaiakos

x86 Machine Instruction Types
•Non-privileged instructions can be executed in user mode.

•Privileged instructions can be executed in kernel mode. When
attempted to be executed in user mode, they cause a trap and so
are executed in kernel mode.

• Sensitive instructions can be:

‣ Control sensitive: they attempt to change the configuration of system
resources (either the memory allocation or privileged mode).

‣ Mode sensitive: behavior differs when running in the privileged or in non-
privileged mode.

• Some sensitive instructions are hard to virtualize: they have different
semantics when executed outside Ring 0.

• The difficulty in trapping and translating these sensitive instructions at
runtime was the challenge that originally made x86 architecture
virtualization look impossible.

M. D. Dikaiakos

“Trap-and-emulate” Requirements
•An architecture is virtualizable if all sensitive instructions
are privileged:

‣ Can achieve accurate, efficient guest execution by
simply running guest binary on hypervisor

•Virtualized execution is indistinguishable from native,
except:

‣ Resources are more limited (running on smaller
machine)

‣ Timing is different (if there is an observable time source)

•VMM controls resources

Courtesy of Gernot Heiser, UNSW

M. D. Dikaiakos

“Trap-and-emulate” Overheads
•VMM needs to maintain virtualized privileged machine state

‣ processor status

‣ addressing context

‣ device state...

•VMM needs to emulate privileged instructions

‣ translate between virtual and real privileged state, e.g. guest
↔ real page tables

•Virtualization traps are expensive on modern hardware (can
be 100s of cycles - x86)

• Some OS operations involve frequent traps

Courtesy of Gernot Heiser, UNSW

x86 Virtualization

Modern Virtualization Technologies

M. D. Dikaiakos

Virtualizing the x86 Architecture
• Need to place a VMM under the OS (which expects to be

in Ring 0) so as to create and manage the VMs that deliver
shared resources.
• However:
‣ Running the VMM in ring 0, gives it equal privileges to the

OS: wrong
‣ Running VMM in rings 1,2,3, gives the OS higher privileges

than the VMM: wrong

• How can this be be addressed?
• Move the guest OS to ring 1 and place

VMM to ring 0?

M. D. Dikaiakos

Challenges of x86 CPU Virtualization
•Even the later x86 architected 32- and 64-bit CPUs with
protected modes, were considered to be not classically
virtualizable due to:

‣ Visibility of privilege state: the guest OS can observe that it
runs at a reduced privilege level (leakage of privileged state).

‣ Mode-sensitive instructions behave differently in de-privileged
mode (e.g. not causing a trap in a de-privileged mode):
cannot guarantee correctness

•Possible Approaches:

‣ Software Virtualization

‣ Binary Translation

Adams & Agesen, “A Comparison of Software & Hardware Techniques for x86 Virtualization”
ASPLOS 2006

M. D. Dikaiakos

Software virtualization
•Guest executes on an interpreter instead of directly on
a physical CPU.

• Interpreter can prevent leakage of privileged state and
it can correctly implement non-trapping instructions.

• In essence, the interpreter separates virtual state (the
VCPU) from physical state (the CPU).

• Interpretation ensures Fidelity and Safety, but fails to
meet Popek and Goldberg’s Performance bar:

‣ the fetch- decode-execute cycle of the interpreter may
burn hundreds of physical instructions per guest
instruction.

M. D. Dikaiakos

Binary Translation
•VMware introduced in 1998 binary translation to allow the VMM to run

in Ring 0 for isolation and performance, while moving the operating
system to a user level ring with greater privilege than applications in
Ring 3 but less privilege than the virtual machine monitor in Ring 0.
• Binary translation:
‣ The VMM monitors the execution of guest OS;
‣ Non-virtualizable instructions executed by a guest OS are replaced with

(translated to) other instructions.
‣ The OS runs unchanged, and this ensures that this direct execution

mode is efficient.
• Binary translation can combine the semantic precision of

interpretation with high performance, yielding an execution engine
that meets all of Popek and Goldberg’s criteria.
•VMMs built around a suitable binary translator can virtualize the x86

architecture and it is a VMM according to Popek and Goldberg.

Adams & Agesen, “A Comparison of Software & Hardware Techniques for x86 Virtualization”
ASPLOS 2006

M. D. Dikaiakos

Binary Translation

“Understanding Full Virtualization, Paravirtualization, and Hardware Assist,” VMWare White Paper (2008)

M. D. Dikaiakos

Binary Translation Properties
•Binary: Input is binary x86 code, not source code.

‣ A guest OS can run unchanged on the VMM as if it was running directly on the
hardware platform. Each VM runs on an exact copy of the actual hardware.

•Dynamic: Translation happens at runtime, interleaved with execution of the
generated code.

‣ “The hypervisor translates all OS instructions on the fly and caches the results for future
use, while user level instructions run unmodified at native speed.”

•On demand: Code is translated only when it is about to execute.

• System level: Translator makes no assumptions about the guest code. Rules are set
by the x86 ISA.

• Subsetting: the translator’s input is the full x86 instruction set, including all privileged
instructions. The output is a safe subset (mostly user mode instructions)

‣ Binary translation rewrites parts of the code on the fly to replace sensitive but not
privileged instructions with safe code to emulate the original instruction

•Adaptive: translated code is adjusted in response to guest behavior changes to
improve overall efficiency.

Adams & Agesen, “A Comparison of Software & Hardware Techniques for x86 Virtualization”
ASPLOS 2006

Server Virtualization

Modern Virtualization Technologies

M. D. Dikaiakos

Server virtualization
• Server virtualization converts one physical server into multiple
virtual machines. Each virtual server acts like a unique physical
device, capable of running its own operating system (OS).

‣ The physical server is called the host.

‣ The virtual servers are called guests and behave like physical
machines.

•Each virtualization system uses a different approach to allocate
physical server resources to virtual server needs.

•Approaches:

‣ Full virtualization

‣ Para-virtualization

‣ OS-level virtualization

Full Virtualization

Modern Virtualization Technologies: Server Virtualization

M. D. Dikaiakos

Full virtualization
•Each virtual machine runs on an exact
copy of the actual hardware.

• The guest OS:

‣ is fully abstracted (completely decoupled)
from the underlying hardware by the
virtualization layer (VMM)

‣ is not aware it is being virtualized and
requires no modification.

M. D. Dikaiakos

Full virtualization VMMs
•Each VMM running on the hypervisor implements the virtual
machine hardware abstraction and is responsible for running a
guest OS:

‣ Each guest server runs on its own OS

‣ You can even have one guest running on Linux and another on
Windows.

•As virtual servers run applications, the hypervisor relays resources
from the physical machine to the appropriate virtual server:

‣ Each VMM has to partition and share the CPU, memory and I/O
devices to successfully virtualize the system

M. D. Dikaiakos

How can this work?

M. D. Dikaiakos

The hypervisor translates all operating
system instructions on the fly and
caches the results for future use,
while user level instructions run
unmodified at native speed.

M. D. Dikaiakos

What happens behind the
scenes?

M. D. Dikaiakos

Binary Translation of non-virtualizable (sensitive)
instructions, direct execution of nonsensitive

instructions and provision by each VMM of virtual
services available on the physical system (BIOS, virtual

devices, virtual memory management)

Requires no hardware assist or OS assist to virtualize
sensitive and primitive instructions.

M. D. Dikaiakos

Full virtualization
•Relies on the hypervisor, which:

‣ Interacts directly with the physical server's CPU and disk space.

‣ Monitors the physical server's resources.

‣ Serves as a platform for the virtual servers' operating systems.

‣ Keeps each virtual server completely independent and unaware
of the other virtual servers running on the physical machine.

•Hypervisors have their own processing needs, which means
that the physical server must reserve some processing power
and resources to run the hypervisor application.

‣ This can impact overall server performance and slow down
applications.

M. D. Dikaiakos

Full virtualization: Pros and Cons
•Advantages:

‣ No hardware assistance,

‣ No modifications of the guest OS

‣ Best isolation and security for virtual machines,

‣ Simplifies migration and portability as the same
guest OS instance can run virtualized or on native
hardware.

•Disadvantages:

‣ Speed of execution

Paravirtualization

Modern Virtualization Technologies: Server Virtualization

M. D. Dikaiakos

Paravirtualization
•Operating System-assisted Virtualization or Paravirtualization
proposed to:

‣ Cope with hardware architectures that cannot be virtualized easily.

‣ To improve performance of virtualization.

‣ To present a simpler VMM interface.

•Demands that:

‣ The guest OS uses only instructions that can be virtualized, and run
on the VMM.

‣ Guest OS code is ported for individual hardware platforms.

• The term is used to describe the Denali, Xen, L4, TRANGO,
VMware, Wind River and XtratuM hypervisors.

M. D. Dikaiakos

Paravirtualization
•Presents a software interface to the VMs which is similar, yet not
identical, to the underlying hardware–software interface.

‣ Intent of the modified interface: reduce portion of the guest's
execution time on operations which are substantially more difficult to
run in a virtual environment compared to a non-virtualized
environment.

•A conventional OS distribution that is not paravirtualization-aware
cannot be run on top of a para-virtualizing VMM.

• If the OS cannot be modified, components may be available that
enable many of the significant performance advantages of
paravirtualization:

• Xen Windows GPLPV project provides paravirtualization-aware device
drivers, intended to be installed into a Microsoft Windows virtual guest
running on the Xen hypervisor.

M. D. Dikaiakos

Para-virtualization implementation
• Manually port guest OS to α modified (higher level) ISA, by:

• Replacing non-virtualizable instructions with explicit hypervisor calls
(hypercalls) that communicate directly with the hypervisor.

• Providing specially defined 'hooks' to allow the guest(s) and host to
request and acknowledge tasks, which would otherwise be executed
in the virtual domain (where execution performance is worse)

• The “higher-level” ISA results in:

• Reduction of number of traps

• Removal of non-virtualizable instructions

• Removal of “messy” ISA features

• Simplicity: easier to modify the guest OS to enable paravirtualization
than to implement binary translation

M. D. Dikaiakos

Para-virtualization: Pros & Cons
•Advantages:

‣ Generally outperforms pure virtualisation & binary re-writing

‣ A successful paravirtualized platform may allow the VMM to be simpler (by relocating execution of
critical tasks from the virtual domain to the host domain), and/or reduce the overall performance
degradation of machine execution inside the virtual guest: lower virtualization overhead; para-
virtualization hypervisor doesn't need as much processing power to manage the guest operating
systems

‣ Each guest OS is already aware of the demands the other operating systems are placing on the
physical server.

‣ The entire system works together as a cohesive unit.

‣ Faster execution - performance is generally very close to running bare-metal, non-virtualized
operating systems.

•Drawbacks:

‣ Poor portability and compatibility (cannot support unmodified OS)

‣ Significant engineering effort

‣ Needs to be repeated for each guest-ISA-hypervisor combination

‣ Para-virtualised guests must be kept in sync with native evolution

‣ Requires source

Hardware-assisted virtualization

Modern Virtualization Technologies: Server Virtualization

M. D. Dikaiakos

Hardware Assisted Virtualization
•A new CPU execution mode feature that allows the VMM to run in
a new root mode below ring 0.

•Privileged and sensitive calls are set to automatically trap to the
hypervisor, removing the need for either binary translation or
paravirtualization“

•Advantage: even faster execution

•Examples: Intel VT-x, Xen 3.x

M. D. Dikaiakos

Summary of x86 Virtualization
Techniques

2007

Operating System-level virtualization

Modern Virtualization Technologies: Server Virtualization

M. D. Dikaiakos

OS-level virtualization
•An OS-level virtualization approach doesn't use a hypervisor
at all.

• Instead, the virtualization capability is part of the host OS,
which performs all the functions of a fully virtualized
hypervisor.

• The biggest limitation of this approach is that all the guest
servers must run the same OS.

•Each virtual server remains independent from all the others,
but you can't mix and match operating systems among
them.

•Because all the guest operating systems must be the same,
this is called a homogeneous environment.

M. D. Dikaiakos

OS-level virtualization
•Happens at the OS kernel: the kernel allows the existence of
multiple isolated user space instances.

• Such instances, called containers (LXC, Solaris containers,
Docker), Zones (Solaris containers), virtual private servers
(OpenVZ), partitions, virtual environments (VEs), virtual kernels
(DragonFly BSD), or jails (FreeBSD jail or chroot jail).

•Containers may look like real computers from the point of view
of programs running in them, but:

‣ A computer program running on an ordinary OS can see all
resources (connected devices, files and folders, network shares,
CPU power, quantifiable hardware capabilities) of that computer.

‣ However, programs running inside of a container can only see the
container's contents and devices assigned to the container.

Other Virtualization Types

Modern Virtualization Technologies

M. D. Dikaiakos

Memory Virtualization
• Sharing the physical system memory and dynamically allocating it to virtual machines.

•Virtual machine memory virtualization is very similar to the virtual memory support
provided by modern OSs:

‣ Applications see a contiguous address space that is not necessarily tied to the underlying
physical memory in the system.

‣ The OS keeps mappings of virtual page numbers to physical page numbers stored in page
tables.

•All modern x86 CPUs include a memory management unit (MMU) and a translation
lookaside buffer (TLB) to optimize virtual memory performance.

• To run multiple VMs on a single system, another level of memory virtualization is required:

‣ Virtualize the MMU to support the guest OS.

‣ Guest OS continues to control the mapping of virtual addresses to the guest memory
physical addresses, but the guest OS cannot have direct access to the actual machine
memory.

‣ The VMM is responsible for mapping guest physical memory to the actual machine
memory, and it uses shadow page tables to accelerate the mappings.

M. D. Dikaiakos

Memory Virtualization

shadow page tables

M. D. Dikaiakos

Device & I/O Virtualization
•Manages the routing of I/O requests between virtual
devices and the shared physical hardware.

• Software based I/O virtualization and management,
enables a rich set of features and simplified management.

‣ Virtual NICs and switches create virtual networks between
virtual machines without the network traffic consuming
bandwidth on the physical network.

‣ The hypervisor virtualizes the physical hardware and presents
each virtual machine with a standardized set of virtual
devices as seen in the Figure.

‣ These virtual devices effectively emulate well-known
hardware and translate the virtual machine requests to the
system hardware

Hypervisors Recap

Modern Virtualization Technologies

M. D. Dikaiakos

• Fidelity. Software on the
VMM executes identically to
its execution on hardware,
except for timing effects.

•Performance. An
overwhelming majority of
guest instructions are
executed by the hardware
without the intervention of
the VMM.

• Safety. The VMM manages
all hardware resources.

Popek & Goldberg, “Formal requirements for virtualizable third
generation architectures”, CACM July1974

Hypervisors: Key
Requirements

M. D. Dikaiakos

•Binaries created by a compiler for a
specific ISA and a specific operating
systems are not portable

• It is possible, though, to compile a HLL
program for a virtual machine (VM)
environment where portable code is
produced and distributed and then
converted by binary translators to the
ISA of the host system

•A dynamic binary translation converts
blocks of guest instructions from the
portable code to the host instruction
set and leads to a significant
performance improvement, as such
blocks are cached and reused

Code portability
and Binary
Translation

M. D. Dikaiakos

•Virtual Machine Monitor (VMM)
or Hypervisor: software layer that
implements virtualization

‣ Separates the physical resources
from the virtual environments
running upon them

‣ Translates calls to the interfaces
of the guest environment to the
interfaces of the host
environment.

‣ Divides physical resources and
manages their mapping and
simultaneous use by virtual
environments.

Virtual Machine
Monitors -

Hypervisors

M. D. Dikaiakos

•Control resources:
‣ Partition hardware
‣ Schedule guests
‣ Mediate access to shared resources
‣ Allow several operating systems to

run concurrently on a single
hardware platform

•Allow:
‣ Live migration - the movement of a

virtual server from one platform to
another

‣ System modification while
maintaining backward compatibility
with the original system

‣ Enforce isolation among the
systems, thus security

Courtesy of Gernot Heiser, UNSW, Australia

Hypervisors:
What do they

do?

M. D. Dikaiakos

•A VMM:

‣ Traps the privileged instructions executed
by a guest OS and enforces the
correctness and safety of the operation

‣ Traps the interrupts and dispatches them
to the individual guest operating systems

‣ Controls the virtual memory management

‣ Maintains a shadow page table for each
guest OS and replicates any modification
made by the guest OS in its own shadow
page table. This shadow page table points
to the actual page frame and it is used by
the Memory Management Unit (MMU) for
dynamic address translation.

‣ Monitors the system performance and
takes corrective actions to avoid
performance degradation. For example,
the VMM may swap out a VM to avoid
thrashing.

VMM Virtualizes
the CPU &
Memory

M. D. Dikaiakos

•Hypervisors execute in privileged mode

•Guest software executes in
unprivileged mode

•Privileged instructions in guest cause a
trap into hypervisor

‣ Hypervisor interprets/emulates them

•VMM can have extra instructions for
hypercalls (hypervisor calls)

•When a program running on a virtual
environment issues an instruction that
requires additional resources from the
physical environment, the hypervisor
relays the request to the physical
system and caches the changes— at
close to native speed.

VMM
Implications

M. D. Dikaiakos

Hypervisor Types

• Type 1 (bare metal, native): run directly on the hardware (as a lightweight OS) and support
multiple virtual machines and OS.

‣ Most popular in production environments due to the low overhead.

‣ Citrix/Xen Server, Denali, VMware ESXi and Microsoft Hyper-V

• Type 2 (hosted) VM - runs the virtualization layer as an application on top of a host operating
system (e.g., user-mode Linux)

‣ Microsoft Virtual PC, Oracle Virtual Box, VMware Workstation, Oracle Solaris Zones, VMware
Fusion, Oracle VM Server for x86.

‣ Ideal option for personal use due to low cost and ease of installation .

Ty
pe

 1 Type 2

M. D. Dikaiakos

Examples of Hypervisors

M. D. Dikaiakos

Type-1 VMM Characteristics
•Efficient, good performance:

‣ Benefits from hardware support for virtualization (VT-x, VT-A), which helps the
hypervisor perform the intensive tasks required to manage the virtual resources of
the computer.

‣ Without hardware support, the hypervisor would have to handle the intensive
tasks required for virtualization on its own resulting to:

• Overall performance drop

• Restricted the number of guest VMs that could be hosted on a computer

•Very secure because:

‣ Are much simpler and better specified than traditional operating systems.
Example - Xen has approximately 60,000 lines of code; Denali has only about
half: 30,000

‣ Have considerably reduced security vulnerabilities as they expose a much
smaller number of privileged functions. For example, Xen VMM has 28 hypercalls
while Linux has 100s of system calls

M. D. Dikaiakos

Type-2 VMM Characteristics
• Typically installed on an existing Operating
System and support a wide range of hardware.

•Rely on the host OS to undertake operations like
managing calls to the CPU, managing network
resources, managing memory and storage.

•Make use of hardware acceleration
technologies, when available.

• Fall back on software emulation if the support
isn’t available on the physical host system.

M. D. Dikaiakos

Type-2 vs Type-1 VMM
•You can host the VMM beside
native apps

‣ Sandbox untrusted apps

‣ Convenient for running alternative
OS on desktop

‣ Leverage host drivers

• Less efficient

‣ Double node switches

‣ Double context switches

‣ Host not optimised for exception
forwarding

Courtesy of Gernot Heiser, UNSW, Australia

Type-1 Type-2

M. D. Dikaiakos

Kernel-based Virtual Machine-KVM
• Type-2 hypervisor and open source virtualization technology built
into Linux®.

•KVM lets you turn Linux into a type-1 (bare-metal) hypervisor that
allows a host machine to run multiple, isolated virtual machines
(guests).

•All hypervisors need some operating system-level components—
such as a memory manager, process scheduler, input/output (I/O)
stack, device drivers, security manager, a network stack, and more
—to run VMs.

‣ KVM has all these components because it’s part of the Linux kernel.

‣ Every VM on KVM is implemented as a regular Linux process,
scheduled by the standard Linux scheduler, with dedicated virtual
hardware like a network card, graphics adapter, CPU(s), memory,
and disks.

M. D. Dikaiakos

VM Management Frameworks
•Different types of virtualization technologies
have management frameworks that enable
VMs and applications to be deployed and
managed at data center scale:

‣ Commercial offerings like vCenter

‣ Open source frameworks like OpenStack,
CloudStack.

‣ Kubernetes and Docker Swarm are recent
container management frameworks.

M. D. Dikaiakos

Virtualization
Types

Courtesy of Gernot Heiser, UNSW, Australia

M. D. Dikaiakos

•Review of basic Operating Systems'
concepts of relevance to virtualization:
core abstractions, layering, libraries,
application binary interface, security
and privilege management, protection
rings, running in kernel vs. user mode.

• Introduction to Virtualization and
discussion of different virtualization
types.

•Discussed the concepts of server
virtualization, virtual machines, and
virtual machine monitors/hypervisors.

•Explained differences between Type-1
(bare metal) and Type-2 (hosted)
VMMs.

•Discussed security issues and concerns
with server virtualization.

•Discussed the problem of mapping VMs
to physical machines.

Summary

