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• Chapters 2, 7, 8 “The data center as a 
Computer. An Introduction to the Design of 
Warehouse-Scale Machines” Barroso, L. A., 
Holzle, U. & P. Raganathan (2018). 

• “The tail at scale” J. Dean and L. A. Barroso, 
Commun. ACM, vol. 56, no. 2, pp. 74–80, Feb. 
2013. 

• “Lessons from giant-scale services,” E. A. 
Brewer, IEEE Internet Comput., vol. 5, no. 4, pp. 
46–55, Jul. 2001. 

• “Harvest, yield, and scalable tolerant 
systems,” A. Fox and E. A. Brewer, Proc. Work. 
Hot Top. Oper. Syst. - HOTOS, pp. 174–178, 
1999. 

• “CAP twelve years later: How the ‘rules’ have 
changed,” E. Brewer, Computer (Long. Beach. 
Calif)., vol. 45, no. 2, pp. 23–29, Jan. 2012.
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•Understand and explain the concepts of resource 
management, monitoring systems, performance 
debugging, blackbox monitoring, instrumentation, site 
reliability engineering. 
•Understand and explain the software infrastructure 
building blocks of WSC offering cloud services. 

•Understand and explain the characteristics of typical 
workloads running on WSC. 

•Review, understand and explain common techniques for 
improving the performance and availability of WSC.  

•Be familiar and explain concepts like cloud native, load 
balancing, sharding (partitioning), replication, integrity-
checking, eventual consistency, redundant execution, 
tail-tolerance in the context of cloud infrastructures. 

•Understand, explain and apply the concepts of 
Availability, Mean Time Between Failure (MTBF) and Mean 
Time to Repair  
•Understand and explain the CAP theorem and the 
concept of tail-latency. 

•Understand and explain the concept of "Cloud native" 
software.

Learning 
objectives
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WSC System Stack - Terminology
•Platform-level software:  

‣ present in all individual servers to abstract the hardware of a single machine  

‣ provides basic machine abstraction layer 

•Cluster-level infrastructure: operating system for a data center.  

‣ distributed file systems, schedulers and remote procedure call (RPC) libraries 

‣ programming models that simplify the usage of resources at the scale of 
data centers. 

•Application-level software: 

‣ online services and offline computations 

•Monitoring and development software:  

‣ keeps track of system health and availability by monitoring application 
performance, identifying system bottlenecks, and measuring cluster health.
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Features
• Firmware, device drivers, operating system modules, configuration 
parameters. 

• Streamlining of development/testing/optimizations/configuration for 
increased performance, possible thanks to: 

‣ Homogeneity across devices 

‣ Mostly local networking connections within the same building 

• Lower packet losses, better tuning of transport or messaging parameters 
for higher communication efficiency 

•Virtualization popular in WSCs, especially for IaaS offerings.  

‣ VMs: 

• provide concise and portable interface to manage security and 
performance isolation of a customer’s application 

• allow multiple guest OS to co-exist with limited additional complexity
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From VMs to Containers
•VMs’ downside: performance, particularly for I/O-
intensive workloads.  

‣ In many cases today, those overheads are improving 
and benefits of VM outweigh their costs.  

• The simplicity of VM encapsulation makes it easier to 
implement live migration.  

•Containers: an alternate popular abstraction that 
allow for isolation across multiple workloads on a 
single OS instance.  

‣ more lightweight compared to VMs, smaller in size and 
much faster to start
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Cluster-level Infrastructure Software

•Aim: provide OS-like functionality at a WSC-
level scale. 

•Resource Management: managing user tasks 
(mapping, scheduling, etc) 

•Cluster Infrastructure: offer basic 
functionalities necessary for the infrastructure 
to operate and be managed properly 

•Application Frameworks: offer abstractions to 
facilitate application development
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Resource Management
•Controls the mapping of user tasks to hardware resources, enforces 
priorities & quotas, and provides basic task management. 

• Simple approach: manual and static allocation of groups of machines 
to a given user or job 

•More useful: present a higher level of abstraction, automate allocation 
of resources, allow resource sharing at finer granularity.  

‣ Users specify job requirements at a relatively high level and have the 
scheduler translate those requirements into an appropriate allocation of 
resources.  

‣ Consider also: power limitations, energy usage optimization, 
maximization of provisioned DC power budget usage, failure domains 
and fault tolerance, and dealing with emergencies. 

•Kubernetes: a popular open-source program provides such functions 
for container-based workloads.
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Cluster Infrastructure
•Provides a core set of functionalities correctly and with high 
performance and availability:  

‣ reliable distributed storage, RPCs, message passing, and cluster-
level synchronization.  

•Avoid re-implementing tricky code for each application and 
instead create modules or services that can be reused. 

•Reliable storage and locks: Colossus (successor to GFS), Dynamo, 
and Chubby @ Google 

• Software image distribution and configuration management. 

•Performance monitoring, debugging and optimization.  

•Health Management: Automated diagnostics, automated repairs 
workflow, triaging alarms for operators in emergency situations.
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Application Frameworks
•Cluster-level infrastructure software does not fundamentally hide the inherent 
complexity of a large scale system as a target for the average programmer. 

•Challenge: A programmer needs to develop for a cluster w/: 

‣ a deep and complex memory/storage hierarchy, 

‣ heterogeneous components, 

‣ failure-prone components,  

‣ varying adversarial load from other programs in the same system, and 

‣ resource scarcity (such as DRAM and data center-level networking bandwidth). 

• Some types of higher-level operations or subsets of problems are common 
enough in large-scale services 

‣ Pays off to build targeted programming frameworks & simplify development of new 
products 

‣ Such frameworks handle data partitioning, distribution, and fault tolerance 

‣ E.g. Flume, MapReduce, Spanner, BigTable, Dynamo, Google Kubernetes Engine 
(GKE), CloudSQL, AppEngine
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Monitoring Systems
•Concerned with various forms of system introspection.  

•Can simply be a: 

‣ script that polls all front-end servers every few seconds for  

‣ just a few appropriate signals, such as latency and 
throughput statistics for user requests. 

• Support a simple language that lets operators create 
derived parameters based on baseline signals being 
monitored.  

•Generate automatic alerts to on-call operators 
depending on monitored values and thresholds. 
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Service-Level Dashboards
•Collect and present key Service Level Indicators  
and displays them to operators in a dashboard:  

‣ Google Cloud's operations suite (formerly 
Stackdriver) 

• Large-scale services often need more 
sophisticated and scalable monitoring support 

‣ more signals to characterize the health of the 
service; e.g. collect signal derivatives over time 

‣ monitor other business-specific parameters
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Performance Debugging
•Help operators and service designers understand the complex 
interactions between many programs, possibly running on hundreds of 
servers. 

• Seek to determine the root cause of performance anomalies and identify 
bottlenecks.  

•No need for real-time operation. 

•Distributed system tracing tools:  

‣ Black-box monitoring systems: observe networking traffic among system 
components and infer causal relationships through statistical inference: 
WAP5, Sherlock  

‣ Application/middleware instrumentation systems: explicitly modify 
applications or middleware libraries for passing tracing information across 
machines and across module boundaries within machines. Log tracing 
information to local disks for subsequent collection by an external 
performance analysis program: Pip, Magpie, X-Trace, Dapper, profiler GWP
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Platform-level Health Monitoring
• Tools that continuously and directly monitor the 
health of the computing platform - to understand 
and analyze hardware and system software failures.  

• Site Reliability Engineering 
‣ most WSC deployments support “site reliability 

engineering,” which is different from traditional system 
administration 

‣ SRE software engineers design monitoring and 
infrastructure software to adjust to load variability and 
common faults automatically so that humans are not 
in the loop and frequent incidents are self-healing. 
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Google Software Stack
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Key Techniques
•Applied to achieve: 

‣ High Performance 

‣ High Availability 

•Commonly applied in the design and 
implementation of both infrastructure and 
application level software systems
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Performance and Availability Toolbox
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Performance and Availability Toolbox
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Cloud Computing in Data Centers
•Cloud computing provides: 

‣ efficiency 

‣ flexibility 

‣ cost savings.  

• The cost efficiency achieved through co-locating multiple VMs on the same 
physical hosts to increase utilization.  

•At a high level, a VM is similar to other online web services, built on top of cluster-
level software to leverage the entire warehouse data center stack.  

•A VM-based workload model simplifies the migration of on-premise computing to 
WSCs. 

•However, on WSC there are additional challenges:  

‣ I/O virtualization overheads 

‣ availability model, and  

‣ resource isolation.
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Cloud challenges: I/O Virtualization
•A VM does not have direct access to hardware resources like 
local hard drives or networking.  

‣ All I/O requests go through an abstraction layer, such as virtio, in the 
guest operating system.  

‣ The hypervisor or virtual machine monitor (VMM) translates the I/O 
requests into the appropriate operations:  

• storage requests are redirected to the network persistent disk or local 
SSD drives 

• networking requests are sent through virtualized network for 
encapsulation.  

• I/O virtualization often incurs some performance overhead, but:  

‣ improvements in virtualization techniques and hardware support for 
virtualization have steadily reduced these overheads 
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Cloud challenges: Availability Model

• Large-scale distributed services achieve high availability by: 

‣ running multiple instances of a program within a data center,  

‣ at the same time maintaining N + 1 redundancy at the data 
center level to minimize the impact of scheduled 
maintenance events. 

•However, for many enterprise applications horizontal scaling is 
often not possible (e.g. due to older relational DBs). 

•Using live migration technology can help ensure high 
availability: 

‣ moving running VMs out of the way of planned maintenance 
events, including system updates and configurations changes. 
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Cloud challenges: Resource Isolation

•Variability in latency of individual components is 
amplified at scale at the service level due to 
interference effects.  

‣ In cloud computing, malicious VMs can exploit 
multi-tenant features to cause severe contention 
on shared resources, conducting Denial of 
Service (DoS) and side-channel attacks.  

‣ This makes it particularly important to balance 
the tradeoff between security guarantees and 
resource sharing. 
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Cloud Native
•Cloud-native architecture and technologies are an approach to 
designing, constructing, and operating workloads that are built in 
the cloud and take full advantage of the cloud computing model. 

•Cloud-native technologies empower organizations to: 

‣ Build loosely coupled systems that are resilient, manageable, and 
observable 

‣ Run scalable applications in dynamic public, private, and hybrid 
clouds 

‣ Combine development with robust automation, which allows high-
impact changes frequently and predictably with minimal toil 

‣ Accelerate business transformation to achieve high velocity and 
growth.
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Cloud Native Software
•Cloud “Native” ethos emphasizes speed and agility properties: 

‣ highly dynamic environment 

‣ API-driven self-service operation 

‣ instantaneous, on-demand resource allocation. 

•Realization of these properties thanks to containers and orchestrators, allow 
developers to build software that emphasizes scalability and automation, and 
minimizes operational complexity and toil.  

•Other technologies are frequently adopted at the same time:  

‣ Microservices: decomposition of larger, often monolithic, applications into 
smaller, limited-purpose applications that cooperate via strongly defined APIs, 
but can be managed, versioned, tested, and scaled independently. 

‣ Service meshes: allow application operators to decouple management of the 
application itself from management of the networking that surrounds it. Service 
discovery systems allow applications and microservices to find each other in 
volatile environments, in real time. 
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Workload Diversity
•Breadth of services offered results in diversity in application-level 
requirements. E.g. 

‣ Google Search: non need for high-performance atomic updates; inherently 
forgiving of hardware failures  

‣ AdSense: clicks on ads are small financial transactions, which need many of the 
guarantees expected from a transactional database management system. 

•Many workloads exist with spread-out popularity: 

‣ Top 50 workloads at Google account for only about 60% of the total WSC 
cycles, with a long tail accounting for the rest of the cycles 

• Speed of workload churn: product requirements evolve rapidly.

Designing DCs as special-
purpose hardware not an 

option.



M. D. Dikaiakos



M. D. Dikaiakos

•Web Applications 

•Web Search Engine 

•Video streaming 

•Machine Learning

Cloud 
Application 

Case Studies
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Key assumptions for giant-scale services 

• Service provider has limited control over 
the clients and the IP network 

•Queries drive the service [e.g. HTTP get] 

•Read-only queries greatly outnumber 
updates (queries that affect the persistent 
data store)
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Advantages
•Access anywhere, anytime. A ubiquitous infrastructure facilitates access from home, work, 
airport, and so on. 

•Availability via multiple devices. Infrastructure handles most of the processing => users can 
access services from “thin clients”, which can offer far more functionality for a given cost and 
battery life. 

•Groupware support. Centralizing data from many users allows service providers to offer group-
based applications (calendars, teleconferencing systems, group-management systems). 

• Lower overall cost. Infrastructure services have a fundamental cost advantage over designs 
based on stand-alone devices:  

‣ can be multiplexed across active users;  

‣ end-user devices have very low utilization (less than 4 percent), while infrastructure resources 
often reach 80 percent utilisation (moving anything from the device to the infrastructure 
effectively improves efficiency by a factor of 20);  

‣ centralizing the administrative burden and simplifying end devices also reduce overall cost. 

• Simplified service updates. Most powerful long-term advantage is the ability to upgrade 
existing services or offer new services without the physical distribution required by traditional 
applications and devices.
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Architecture

“Lessons from giant-scale services,” E. A. Brewer, 
IEEE Internet Comput., vol. 5, no. 4, pp. 46–55, Jul. 2001.
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Basic Components of the Model
•Clients (πελάτες), such as Web browsers, standalone email readers, agents initiating queries to the services. 

• The best-effort IP network: provides access to the service. 

• Load manager (εξισορροπητής φορτίου): 

‣ provides a level of indirection between the service’s external name and the servers’ physical names (IP 
addresses) to preserve the external name’s availability in the presence of server faults 

‣ balances load among active servers.  

Traffic might flow through proxies or firewalls before the load manager. 

• Servers (εξυπηρετητές/διακοµιστές/διαθέτες): the system’s workers, combining CPU, memory, and disks into an 
easy-to-replicate unit.  

• The persistent data store (βάση δεδοµένων): a replicated or partitioned “database” that is spread across the 
servers’ disks. It might also include network attached storage such as external DBMSs or systems that use 
RAID storage. 

•Optional backplane: a system-area-network handling inter server traffic: 

‣ redirecting client queries to the correct server  

‣ coherence traffic for the persistent data store. 

•Auxiliary Systems (not shown): Nearly all services have several other service-specific pieces that we can 
largely ignore in the basic model. Examples include user-profile databases, ad servers, site management 
tools, and support for logging and log analysis. Many of these subsystems can be viewed as additional sets 
of nodes with their own persistent data store.
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Key Challenges
Main challenges to deploying giant-scale 
services: 

• Load Management 

•High Availability 

•Evolution and Growth 
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Load balancing (εξισορρόπηση φορτίου)

•Goal: balanced distribution of incoming load to available servers. 

• Load Balancer Functionality:  

•Provide the External Name: can be a domain name or a set of IP 
addresses depending on the approach.  

‣ Challenge: make the external name highly available despite failure of 
some of the nodes and the corresponding loss of their internal names. 

• Load Balance the Traffic: This can be done with or without feedback 
from the nodes.  

‣ Goals: higher overall utilization and better average response time. 

• Isolate Faults From Clients: detect faults and dynamically change the 
routing of traffic to avoid down nodes.  

‣ Key metric: reaction time, as some clients lose service until the detection 
and failover occurs
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Load balancing
•Key issue: does the manager understands the distribution of data across the 
nodes.  

• There are three choices: 

‣ Symmetric: all nodes are equal in functional capability (but perhaps not query 
capacity). Symmetric nodes greatly simplify load management because any 
query can go to any node. 

‣ Asymmetric: In this case, nodes vary in functionality and the load manager must 
correctly map each query to a node that can handle it. The common case is a 
partitioned database, in which the load manager must understand the 
partitioning to route the queries correctly. 

‣ Symmetric with Affinity: This is the symmetric case with an optimization for locality. 
Due to caching effects, it is very useful to try to partition the queries even in the 
symmetric case so that a given node tends to get the same queries repeated.  

• Although the manager understands the partitioning, it is not required for 
correctness and any node can still handle any query.
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Round-robin DNS
•Have DNS distribute different IP addresses for 
a single domain name among clients in a 
rotating fashion (“round-robin DNS”): 

•Roughly balancing the load at the time of 
DNS lookup, but providing little support for 
availability when a node fails: 

‣ Node failures reduce system capacity, but 
not data availability 

•Persistent data store is implemented by 
simple replication of all content to all nodes: 
which works well when the total amount of 
content is small. 

•No need for a backplane, since all servers 
can handle all queries and there is no 
coherence traffic.
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Load Balancer Switch
• Load management implemented in a “layer 4” switch: 

‣ Rewrites TCP connections from external IP addresses to one of the 
internal node names. 

‣ Balances load based on outstanding connections and can respond 
quickly to failed nodes by avoiding them for new connections 

• “Layer-7” (application layer) switches can be used instead, parsing 
HTTP requests and URLs at wire speed, and routing queries to the 
proper nodes. 

• Load balancer is in the path of the traffic and therefore has to be 
fault tolerant. Eg. 

‣ Pair of “level 4” switches that automatically failover to each other.

• Persistent store partitioned across the nodes, possibly without any replication: 

‣ Node failures reduce effective store size and its overall capacity. 

‣ Nodes no longer identical - some queries may need to go to specific nodes. 

‣ Backplane enables queries to get to the right node or nodes: 

• Sometimes the load manager can pick the right node directly, but this requires service-specific and query-specific knowledge 
in the load manager.  

• If service uses caching of data from other nodes, the backplane is used for the cache coherence traffic.
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Workload example: Web search
• Searching for needles in a 

haystack 

• If we assume the web to 
contain 100 billion 
documents, with an average 
document size of 4 KB (after 
compression), the haystack is 
about 400 TB.  

• The database for web search 
is an index built from that 
repository by inverting that set 
of documents to create a 
repository in the logical format

• The search algorithm must traverse 
the posting lists for each query term 
until it finds all documents 
contained in all three posting lists.  

• Then, it ranks the documents found 
using a variety of parameters and 
returns the highest ranked 
documents to the user.
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Web search Algorithm
• Split huge inverted index (sharding) into load-balanced subfiles and distribute them 
across thousands of machines.  

‣ For throughput or fault tolerance, multiple copies of index subfiles can be placed in 
different machines 

•A user query is received by a front-end web server and distributed to the machines 
in the index cluster. 

• Index-serving machines compute local results, pre-rank them, and send their best 
results to the front-end system (or some intermediate server), which selects the best 
results.  

•At this point, only the list of doc_IDs corresponding to the resulting web page hits is 
known.  

• To compute the actual title, URLs, and a query-specific document snippet that 
gives the user some context, the list of doc_IDs is sent to a set of machines 
containing copies of the documents themselves.  

•A repository this size needs to be partitioned (sharded) and placed in a large 
number of servers.
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Web search Performance
• Total user-perceived latency for operations described above needs to be a fraction of 
a second: heavy emphasis on latency reduction.  

•High throughput is also a key performance metric because a popular service may 
need to support many thousands of queries per second.  

• Index is updated frequently, but can be considered a read-only structure.  

•No need for index lookups in different machines to communicate with each other 
except for the final merge step: computation is very efficiently parallelized.  

•No logical interactions across different web search queries: room for further parallelism. 

• If index sharded by doc_ID, workload has relatively small networking requirements in 
terms of average bandwidth: data exchanged between machines is typically the size 
of the queries themselves 

• Some bursty behavior: servers at the front-end act as traffic amplifiers as they distribute 
a single query to a very large number of servers ==>  burst of traffic not only in the 
request path but possibly also on the response path. 

•Diurnal fluctuation of requests: traffic at peak usage hours can be more than twice as 
high as off-peak periods
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•Web Applications 

•Web Search Engine 

•Video streaming 

•Machine Learning

Cloud 
Application 

Case Studies



Video Streaming

Cloud Application Workloads



M. D. Dikaiakos

Workload example: video
• IP video traffic represented 73% of the global internet in 2016, and is 
expected to grow to 83% by 2022 [circa 2017] 

‣ Live video will grow 15-fold between 2016 and 2021 [Cisco].  

‣ Consumer Internet video traffic will grow 4.3-fold from 2017 to 2022, a 
compound annual growth rate of 34%.  

‣ In July 2015, users were uploading 400 hr of video per minute to YouTube, 
and in February 2017 users were watching 1 billion hours of YouTube video 
per day.  

•Video transcoding is a crucial part of any video sharing infrastructure. 

•Video serving cost components:  

‣ Computing costs for video transcoding, 

‣ Storage costs for the video catalog (both originals and transcoded versions) 

‣ Network egress costs for sending transcoded videos to end users.
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Workload example: video

Once video chunks are transcoded to their playback ready 
formats in the data center, they are distributed through the Edge 

network, which caches the most recently watched videos to 
minimize latency and amplify egress bandwidth.
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•Web Applications 

•Web Search Engine 

•Video streaming 

•Machine Learning

Cloud 
Application 

Case Studies
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Workload example: ML
• Impressive growth of ML use 

•Deep Neural Networks (DNNs) applied to a wide range 
of applications including speech, vision, language, 
translation, search ranking, and many more. 

•DNN application phases: training (or learning) and 
inference (or prediction), 

• DNN workloads further classified: 
convolutional, sequence, 
embedding-based, multilayer 
perceptron, and reinforcement 
learning.
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Training workload
•Determines the weights or parameters of a DNN, adjusting 
them repeatedly (multiple epochs) until the DNN produces 
the desired results:  

‣ iterative, Floating point arithmetic 

•Multiple learners process subsets of input training set and 
reconcile the parameters across the learners either through 
parameter servers or reduction across learners:  

‣ parallelism.  

• Training can be done asynchronously, or synchronously.  

• Synchronous provides better model quality;  

‣ but, the training performance is limited by the slowest learner. 
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Inference workload
• Inference uses DNN model developed during 
the training phase to make predictions on data:  

‣ user facing  

‣ with strict latency constraints  

‣ floating point (single precision, half precision) or  

‣ quantized (8-bit, 16-bit) computation 

• Lower precision inference enables lower 
latency and improved power efficiency.
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MiB means 220;
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•Discussed the elements of the software stacks 
typically running on top of WSC hardware: 

‣ Platform-level software: OS, VMMs 

‣ Cluster-level software infrastructure: resource 
managers, distributed file systems, schedulers 
and remote procedure call (RPC) libraries; 
programming models  

‣ Application-level software 

‣ Monitoring and development software 

•Presented some common techniques and 
concepts applied to achieve high performance 
and availability in cloud infrastructures: load-
balancing, replication, redundancy, encoding, 
etc. 

•Reviewed the algorithmic patterns and 
characteristics of typical large-scale workloads 
running on cloud infrastructures: Giant-scale 
Internet Services, Web Search, Video streaming, 
ML

Previous  
Class
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Cloud Infrastructure Software, Workloads, and Metrics



Faults and Failures

Availability and Performance
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Why care about 
failures?
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• The sheer scale of WSCs requires 
that internet services software 
tolerates relatively high component 
fault rates. 

‣ Disk drives can exhibit annualized 
failure rates > 4%.  

•Different deployments have 
reported between 1.2 and 16 
average server-level restarts per 
year.  

•With such high component failure 
rates, an application running across 
thousands of machines may need to 
react to failure conditions on an 
hourly basis.

Faults and 
Failures
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•Hourly Cost of Downtime now 
exceeds $300,000 for 91% of SME 
and large enterprises.  

•Overall, 44% of mid-sized and large 
enterprise survey respondents 
reported that a single hour of 
downtime, can potentially cost 
their businesses over one million ($1 
million). 

•Catastrophic outage that interrupts 
a major business transaction or 
occurs during peak business hours 
can exceed millions of dollars per 
minute. 

ITIC Annual Hourly Cost of Downtime survey, 2022 

Faults and 
Failures
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Availability builds Trust
•Users trust that the services they increasingly 
rely on will be always available. 

• This expectation translates into a high-
reliability requirement for building-sized 
computers.  

•Determining the appropriate level of 
reliability is fundamentally a tradeoff 
between the cost of failures (including 
repairs) and the cost of preventing them. 
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Hardware vs. Software
• In WSCs, hardware reliability alone cannot 
deliver sufficient availability. 

•Why? 

•How do we measure server reliability?  

‣ Mean Time Between Failure (MTBF) 

‣ Mean Time to Repair (MTTR)
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MTBF in WSC with ideal servers
•Assume ultra-reliable servers with MTBF = 30 years 
=10000 days (unrealistic)  

•Assume a 10000-server WSC. 

•How many server failures expected on average, per 
day? 

‣ 1 

• If an application running on the WSC depends on the 
availability of the entire cluster, what would be its 
MTBF? 

‣ Less than a day
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Realistic prospects
• Server-MTBF much less than 30 years. 

•Real-life WSC cluster MTBF in the range of a few 
hours between failures. 

• Software infrastructure and application software 
quite complex, not bug-free, lead to failures too. 

•WSC applications must work around failed servers 
in software, either with: 

‣ code in the application itself or  

‣ via functionality provided by middleware. 
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Availability, Unavailability & Failure
•A system’s Availability is the fraction of time during which it 
is available for use;  

•Unavailability is the fraction of time during which the system 
is not available for some reason.  

• Failures are one cause of unavailability, but are often much 
less common than other causes such as planned 
maintenance for hardware or software upgrades. Thus: 

‣ a system with zero failures may still have availability of less 
than 100%, and  

‣ a system with a high failure rate may have better availability 
than one with low failures, if other sources of unavailability 
dominate. 



Availability in Giant-scale Services

Availability and Performance
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High Availability (υψηλή διαθεσιµότητα)
• Major driving requirement behind giant-scale system 

design, in the presence of component failures, 
natural disasters, and also constantly evolving 
features and unpredictable growth. 

• Αvailability Metrics (µετρικές): 

• Uptime 

• Yield 

• Harvest
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Uptime (λειτουργικός χρόνος)

uptime = (MTBF – MTTR)/MTBF 

• Fraction of time a site is handling traffic 

• Typically measured in nines - traditional 
infrastructure systems aim for 4 to 5 nines 
(0.9999 to 0.99999) 

downtime = MTTR/MTBF
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Yield (απόδοση)

yield = queries completed/queries offered 

• Fraction of queries that are completed 

‣ Some queries are dropped because the 
system does not have enough capacity to 
serve them 

• Typically, yield is numerically close to Uptime. 
‣ Why?
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Which one is more useful 
in practice, as a metric: 

Yield or Uptime? 
• Yield maps directly to user experience 

• Yield correctly reflects that not all 
seconds have equal value:  

• being down for a second when 
there are no queries has no impact 
on users or yield, but reduces uptime 

• being down for one second during 
peak and off-peak times has equal 
impact on uptime but vastly 
different yields
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How to Improve Uptime?
uptime = (MTBF – MTTR)/MTBF 

•Reduce frequency of errors 
‣ increase MTBF 

•Reduce time fixing errors 
‣ decrease MTTR 

•Which approach is preferable? 
‣ Giant-scale systems should focus on improving MTTR and simply 

apply best effort to MTBF 

‣ Why?
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Harvest (συγκοµιδή)

• In systems based on queries, we can also 
measure query completeness: 
‣ How much of the database is reflected in 

the answer 

‣ Or how many features supported by a 
service are operational 

harvest = data available/complete data
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DQ (data per query) Principle
DQ = total amount of data that has to be 

moved per second on average 

Data per query x queries per second ~ constant 
‣ DQ bounded by the underlying physical 

limitation of the hardware 

• The DQ value is measurable and tuneable 

•At the high utilization level typical of giant-
scale systems, the DQ value approaches this 
limit
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Utility of DQ
•Principle rather than a literal truth:  

‣ the system’s overall capacity tends to have a particular physical bottleneck 
(στενωπός), such as total I/O bandwidth or total seeks per second  

•Absolute value of DQ not that important: relative value under various 
changes provides a useful guide: 

‣ Best possible result under multiple faults is a linear reduction in DQ. 

‣ DQ often scales linearly with the number of nodes: 

• Early tests on single nodes tend to have predictive power for overall cluster 
performance. 

‣ All proposed hardware/software changes can be evaluated by their DQ 
impact. 

‣ We can translate future traffic and feature predictions into future DQ 
requirements and thus into hardware and software targets.
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Measuring and Tuning DQ
•How do we measure the DQ of an infrastructure? 

‣ Define target workload (φορτίο) 

‣ Use a load generator to measure a given 
combination of hardware, software and db size 
against this workload 

‣ Given the metric and the load generator, it is 
easy to measure relative impact of faults 

•How do we improve DQ? 

‣ DQ scales linearly with the number of nodes 

‣ We can translate future traffic predictions into 
future DQ requirements and this into hardware 
and software target - convert traffic predictions 
into capacity planning decisions http://www.seleniumhq.org/
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Improving Availability

DATASET

?
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Partitioning  (κατάτµηση-διαµελισµός)

•Persistent data partitioned  

•Partitions distributed to 
available servers

DATASET
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Partitioning
•Outcome: aggregate capacity 
increase (queries that can be 
executed per second)

DATASET
SEGMENT 1

DATASET

SEGMENT 2 SEGMENT 3
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Partitioning - by functionality

DATASET
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Partitioning  (κατάτµηση-διαµελισµός)

DATASET
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Partitioning  (κατάτµηση-διαµελισµός)

DATASET

DATASET
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Partitioning and Faults
•What is the effect of 
failure on: 

‣ Yield? (απόδοση) 

‣ Harvest? (συγκοµιδή)
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Partitioning and Faults
• Some queries do not have answers since 
some data is missing after the failure, so: 

‣ Harvest drops. 

‣ Yield (queries completed/queries offered) 
remains the same
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Replication (αντιγραφή-αναπαραγωγή)

DATASET
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Replication (αντιγραφή-αναπαραγωγή)

DATASET
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Replication (αντιγραφή-αναπαραγωγή)

DATASET

DATASET Replica 1 Replica 3Replica 2
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Replication (αντιγραφή-αναπαραγωγή)

• Provides multiple consistent copies of data in processes running in 
different computers. 

• Seeks to improve: 
• performance  
• availability  
• fault tolerance 

• The traditional view of replication silently assumes that there is 
enough excess capacity to prevent faults from affecting yield. 



M. D. Dikaiakos

Replication and faults

112

•What is the effect of failure on: 

‣ Yield? (απόδοση) 

‣ Harvest? (συγκοµιδή) 

• Load redirection problem: under faults, the remaining replicas 
have to handle the queries formerly handled by the failed 
nodes. 

•Under high utilization, this is unrealistic. 
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Replication vs Partitioning
•Replication is a traditional technique for increasing availability 

•Consider a two-node cluster that faces a fault in one node: 
‣ The replicated version maintains 100 percent harvest but drops to 50 percent yield 

‣ Τhe partitioned version drops to 50 percent harvest but remains at 100 percent yield 

‣ Βoth versions have the same initial DQ value and lose 50 percent of it under one 
fault: 

• Replicas maintain D (data per query) and reduce Q (queries per sec - yield) 

• Partitions keep Q constant and reduce D (and thus harvest)
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Replication vs Partitioning
•We can influence whether faults impact 
yield, harvest, or both: 

•Replicated systems tend to map faults to 
reduced capacity (and to reduced yield 
at high utilization) 

•Partitioned systems tend to map faults to 
reduced harvest, as parts of the database 
temporarily disappear, but the capacity in 
queries per second remains the same



M. D. Dikaiakos

Key insights
•Replication on disk is cheap (disks are cheap, 
replication is easy) 

•Accessing replicated data requires “DQ points”:  

‣ for true replication you need not only another copy 
of the data but also twice the DQ value. 

•Partitioning has no real savings over replication: 

‣ You need less disk space than in replication (no 
storage of copies) 

‣ the real bottleneck is not storage space but the DQ 
constant
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Key insights
• The DQ constant is independent of whether the database is 
replicated or partitioned. WHY? 

‣ Exception: replication requires more DQ points than 
partitioning for heavy write traffic, which was rare in giant-
scale systems (not anymore - see Facebook). WHY? 

•Easier to grow systems via replication than by repartitioning 
onto more nodes 

•Can vary the replication according to the data’s importance 
and control which data is lost in the presence of a fault. 

•Can exploit randomisation to make lost harvest a random 
subset of the data.
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Avoiding saturation
•Avoiding saturation at a reasonable cost simply by good 
design is unrealistic: 

‣ Peak-to-average ratio for giant-scale systems seems to be in 
the range of 1.6:1 to 6:1 (circa 2001!), which can make it 
expensive to build out capacity well above the normal 
peak. 

‣ Single-event bursts can generate far above-average traffic. 

‣ Some faults (power failures, natural disasters, cyberattacks) 
are not independent - overall DQ drops substantially in 
these cases and remaining nodes become saturated. 

•What can we do?
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Graceful degradation
•Graceful degradation under excess load is critical for delivering high 
availability 

• The DQ principle suggests: 

‣ limit Q (capacity) to maintain D - the focus will be on maintaining harvest, using 
for example, Admission Control (AC) -  έλεγχος πρόσβασης 

‣ reduce D and increase Q by dynamic database reduction 

‣ combination of both techniques 

•Graceful degradation is the explicit process for managing the effect of 
saturation on availability - explicitly decide how saturation should affect 
uptime, harvest and quality of services. Some approaches: 

‣ cost-based AC (estimate the cost of each query, measured in DQ, and deny 
expensive queries) 

‣ priority or value-based AC (e.g. stock trade requests vs rest) 

‣ reduced data freshness - reduces work per query ==> increased yield, 
decreased harvest
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Online Evolution and Growth
• Traditional tenet of highly available systems: 
minimal change.  

•But, this conflicts with: 

‣ growth rates of Internet services 

‣ “Internet time”, namely the practice of frequent 
product releases 

•Must plan for: continuous growth and frequent 
functionality updates 

•Must cope with software that is never perfect



CAP Theorem

Availability and Performance
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CAP Theorem
Any networked shared-data system can have at most two of three 

desirable properties: 

• Consistency (C) equivalent to having a single up-to-date copy 
of the data:  

• Every read receives the most recent write or an error. 

• High availability (A) of that data 

• Every request receives a (non-error) response, without the 
guarantee that it contains the most recent write. 

• Tolerance to network partitions (P) 

• The system continues to operate despite an arbitrary number of 
messages being dropped (or delayed) by the network between 
nodes. 
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Availability

€100
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Availability

Give me €50
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Consistency

€100

Give me €50

€50
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Consistency

Account 
Balance?

€50

€50
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Consistency
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Partitioning & Availability

€50
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Partitioning & Availability

€50

Account 
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Partitioning => Inconsistency

€50

Give me €20



M. D. Dikaiakos

Partitioning & Availability

€50
Inconsistent 

State
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Partitioning & Consistency

€50

Give me €20 Sorry..
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Partitioning & Consistency

€50

Account 
Balance? Sorry..
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Partitioning & Consistency

€50

Account 
Balance? €50
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CAP Concepts
• Strong Consistency means single-copy ACID 
consistency 

‣ A strongly-consistent system provides the ability to 
perform updates 

•High Availability is assumed to be provided through 
redundancy, e.g. data replication;  

‣ Data is considered highly available if a given 
consumer of the data can always reach some replica 

•Partition-resilience means that the system as whole 
can survive a partition between data replicas.
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•Atomicity: the entire 
transaction succeeds or fails 

•Consistency: the entire 
collection is never left in an 
invalid or conflicting state 

• Isolation: concurrent 
transactions cannot interfere 
with each other 

•Durability: once a transaction 
completes, system failures 
cannot invalidate the result

ACID 
properties
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CAP Theorem Purpose
•Makes explicit the trade-offs in designing distributed 
infrastructure applications.  

•Guides the design of Internet-scale systems services 
that: 

‣ Tolerate partial failures by emphasizing simple 
composition mechanisms that promote fault 
containment. 

• Incorporate engineering mechanisms that translate 
partial failures into smoothly-degrading functionality 
rather than a lack of availability of the service as a 
whole.
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Strong CAP Principle
Strong Consistency, High Availability, Partition-resilience: Pick at most 2.  

• CA without P: Databases that provide distributed transactional 
semantics can only do so in the absence of a network partition 
separating server peers.  

• CP without A: In the event of a partition, further transactions to an 
ACID database may be blocked until the partition heals, to avoid the 
risk of introducing merge conflicts (and thus inconsistency).  

• AP without C: Web caching provides client-server partition resilience 
by replicating documents, but a client-server partition prevents 
verification of the freshness of an expired replica.  

• In general, any distributed database problem can be solved with:  

• Expiration-based caching to get AP, or  

• Replicas and majority voting to get PC (the minority is unavailable). 
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Weak CAP Principle
• In practice, many applications are best 
described in terms of reduced consistency or 
availability.  

• So, more often we see systems to follow the 
Weak CAP Principle:  

The stronger the guarantees made about any 
two of strong consistency, high availability, or 

resilience to partitions, the weaker the 
guarantees that can be made about the third. 
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Metrics
•How do we argue about the CAP 
properties of a system? 

•We need metrics that represent and 
measure a system from the CAP 
perspective.
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Yield and Harvest
•At least two metrics for correct behavior:  

•Yield (απόδοση παραγωγής) = queries completed/queries submitted  

‣ the probability of completing a request 

‣ the common metric and is typically measured in “nines”: “four-nines 
availability” means a completion probability of 0.9999 

‣ in practice, good High-Avail. systems aim for four or five nines 

•Harvest (βαθµός συγκοµιδής) = data available/complete data  

‣ measures the fraction of the data reflected in the response, i.e. the 
completeness of the answer to the query. 

• In systems based on queries, we can measure query completeness— 
how much of the database is reflected in the answer 

‣ this can be extended to features supported by a service



M. D. Dikaiakos

Tradeoff (queries)
• In the presence of faults there is typically a tradeoff between providing: 

‣ no answer (reducing yield)  

‣ an imperfect answer (maintaining yield, but reducing harvest).  

• Some applications do not tolerate harvest degradation because any 
deviation from the single well-defined correct behavior renders the 
result useless.  

‣ E.g., a sensor application that must provide a binary sensor reading 
(presence/absence) does not tolerate degradation of the output 

• Some applications tolerate graceful degradation of harvest 

‣ E.g., online aggregation allows a user to explicitly trade running time for 
precision and confidence in performing arithmetic aggregation queries 
over a large dataset: useful when approximate answers are ok; helps 
avoiding work that looks unlikely to be worthwhile based on preliminary 
results. 
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Tradeoff (updates)
• Same tradeoff applies to “single-location” 
updates  

• Those changes that are localized to a single 
node (or technically a single partition): 

‣ Updates that affect reachable nodes occur 
correctly but have limited visibility => 
reduced harvest 

‣ Updates that require unreachable nodes fail 
=> reduced yield
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Dealing with CAP’s effects
Strategy 1: Trading Harvest for Yield— Probabilistic Availability  

•Nearly all systems are probabilistic wrt faults: 

•Availability requires probabilistic approaches 

•Address probabilistic systems directly, so that we can understand and limit 
the impact of faults. Need to explore and decide: 

‣ the expected nature of faults 

‣ what needs to be available 

•Example - search engine index decomposition: 

‣ By randomly placing index shards on nodes, we can ensure that 1 fault in 100-
node cluster results in 1% random loss of results & linear harvest degradation 
for more faults => Average-case and worst- case fault behavior the same.  

‣ By replicating a high-priority subset of data, we reduce the probability of 
losing that data. This gives us more precise control of harvest, both increasing 
it and reducing the practical impact of missing data 
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Dealing with CAP’s effects
Strategy 2: Application Decomposition and Orthogonal 
Mechanisms 

• Some large applications can be decomposed into 
subsystems: 

1. That are independently intolerant to harvest 
degradation (i.e. they fail by reducing yield). 

2. Whose independent failure allows the overall 
application to continue functioning with reduced 
utility.  

• The application as a whole is then tolerant of harvest 
degradation. 
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Example

e-Commerce site

User-profile-driven content generation from a static corpus: 
read-only subsystem

User-profile-driven 
content 

generation
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Example

e-Commerce site

Billing: fully transactional subsystem (read / write / state heavy) 
If it fails, the whole system probably needs to stop

User-profile-driven 
content 

generation

Billing
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Example

e-Commerce site

Shopping cart: manages state that must be persistent over the 
course of a session but not thereafter

User-profile-driven 
content 

generation

BillingShopping
cart
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Example

e-Commerce site

User personalization profile sub-system: manages truly persistent 
but read-mostly/write-rarely state.

User-profile-driven 
content 

generation

BillingShopping
cart

User
Profile
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Example

e-Commerce site

User-profile-driven 
content 

generation

Shopping
cart

Billing

User
Profile
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Orthogonal Decomposition
• Traditionally, the boundary between subsystems with differing 
state management requirements and data semantics has 
been characterized via narrow interface layers 

• In some cases it is possible to do even better, if we can 
identify orthogonal mechanisms: 

‣ An orthogonal mechanism is independent of other 
mechanisms, and has essentially no runtime interface to the 
other mechanisms(except possibly a configuration interface). 

‣ Orthogonal approaches are particularly useful in adding 
operational features such as security or robustness to legacy 
applications, without requiring special changes to the core 
application code.



Tail Latency Concerns

Availability and Performance
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Tail-tolerance
• Techniques for high performance and 
availability are great, but… not enough! 

•As systems scale, eliminating all possible 
sources of performance variability in individual 
system components to deliver service-wide 
responsiveness with acceptable tail latency 
levels is impractical. 

• Tail latency refers to the latency of the slowest 
requests, that is, the tail of the latency 
distribution. 
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Tail-tolerance
•Consider a hypothetical system where 
each server typically responds in 10ms but 
with a 99th percentile latency of 1sec. 

‣ If a user request is handled on just one such 
server, 1 user request in 100 will be slow  

• If a user request must collect responses from 100 
such servers in parallel, then 63% of user requests 
will take more than 1 s (marked as an “x” in the 
figure). 
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Can you prove the  

63% claim?

Take Home 
Practice
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•Describe the main functionalities of 
Resource Management software in cloud 
computing infrastructures. Provide some 
examples of the inputs that a RMS needs 
and the objectives it is trying to reach. 

•Describe some core functionalities offered 
by Cluster Infrastructure Management 
softwares. 

•Be familiar and explain concepts like load 
balancing, sharding (partitioning), 
replication, integrity-checking, eventual 
consistency, redundant execution, tail-
tolerance in the context of cloud 
infrastructures. 

•Explain what cloud native development 
means and what are the key requirements 
that it tries to meet.

Sample 
Questions
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• Failures in you data centre happen 
once a week. It takes 7 minutes to 
recover. What is your uptime and how 
can you realistically increase your 
uptime by an extra 9? 

•Explain which concepts the letters of 
the acronym CAP correspond to and 
what the CAP theorem says. 

•Describe a key difference in the 
profile of a cloud workload 
corresponding to Google’s Web 
search and AdSense services. Explain 
why this difference can be very 
important for the design, 
implementation, and configuration of 
the underlying cloud infrastructure.

Sample 
Questions


