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Learning
objectives

* Understand and explain the concepts of resource
management, monitoring systems, performance
debugging, blackbox monitoring, instrumentation, site
reliability engineering.

« Understand and explain the software infrastructure
building blocks of WSC offering cloud services.

» Understand and explain the characteristics of typical
workloads running on WSC.

* Review, understand and explain common techniques for
improving the performance and availability of WSC.

* Be familiar and explain concepts like cloud native, load
balancing, sharding (parfitioning), replication, integrity-
checking, eventual consistency, redundant execution,
tail-tolerance in the context of cloud infrastructures.

« Understand, explain and apply the concepts of
Availability, Mean Time Between Failure (MTBF) and Mean
Time to Repair

» Understand and explain the CAP theorem and the
concept of tail-latency.

* Understand and explain the concept of "Cloud native"
software.



Cloud Infrastructure Software, Workloads, and Metrics

Cloud Infrastructure Software
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WSC System Stack - Terminology

* Platform-level software:
» present in all individual servers to abstract the hardware of a single machine
» provides basic machine abstraction layer

* Cluster-level infrastructure: operatfing system for a data center.
» distributed file systems, schedulers and remote procedure call (RPC) libraries

» programming models that simplify the usage of resources at the scale of
data centers.

« Application-level software:
» online services and offline computations
* Monitoring and development software:

» keeps track of system health and availability by monitoring application
performance, identifying system bottlenecks, and measuring cluster health.
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Cloud Infrastructure Software

Platform-level Software
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Features

e Firmware, device drivers, operating system modules, configuration
parameters.

« Stfreamlining of development/testing/optimizations/configuration for
Increased performance, possible thanks to:

» Homogeneity across devices
» Mostly local networking connections within the same building

« Lower packet losses, better tuning of fransport or messaging parameters
for higher communication efficiency

« Virtualization popular in WSCs, especially for laaS offerings.
» VMs:

» provide concise and portable interface to manage security and
performance isolation of a customer’s application

» adllow multiple guest OS to co-exist with limited additional complexity

niversity ol Cyvprue



From VMs to Containers

* VMs' downside: performance, particularly for 1I/O-
intensive workloads.

» In many cases today, those overheads are improving
and benefits of VM outweigh their costs.

* The simplicity of VM encapsulation makes it easier to
implement live migration.

« Containers: an alternate popular abstraction that
allow for isolation across multiple workloads on o
single OS instance.

» more lightweight compared to VMs, smaller in size and
much faster to start THTS

docker



Cloud Infrastructure Software

Cluster-level Infrastructure Software
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Cluster-level Infrastructure Software

« AIm: provide OS-like functionality at a WSC-
level scale.

* Resource Management: managing user tasks
(Mmapping, scheduling, etc)

 Cluster Infrastructure: offer basic
functionalities necessary for the infrastructure
to operate and be managed properly

« Application Frameworks: offer abstractions to
facilitfate application development



Resource Management

« Controls the mapping of user tasks to hardware resources, enforces
priorities & quotas, and provides basic task management.

« Simple approach: manual and static allocation of groups of machines
to a given user or job

« More useful: present a higher level of abstraction, automate allocation
of resources, allow resource sharing at finer granularity.

» Users specify job requirements at a relatively high level and have the
scheduler franslate those requirements into an appropriate allocation of
resources.

» Consider also: power limitations, energy usage optimization,
maximization of provisioned DC power budget usage, failure domains
and fault tolerance, and dealing with emergencies.

« Kubernetes: a popular open-source program provides such functions

for container-based workloads. .!
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Cluster Infrastructure

* Provides a core set of functionalities correctly and with high
performance and availability:

» reliable distributed storage, RPCs, message passing, and cluster-
level synchronization.

* Avoid re-implementing tricky code for each application and
Instead create modules or services that can be reused.

* Reliable storage and locks: Colossus (successor to GFS), Dynamo,
and Chubby @ Google

 Software image distribution and configuration management.
* Perfformance monitoring, debugging and optimization.

* Health Management: Automated diagnostics, automated repairs
workflow, triaging alarms for operators in emergency situations.



Application Frameworks

* Cluster-level infrastructure software does not fundamentally hide the inherent
complexity of a large scale system as a target for the average programmer.

* Challenge: A programmer needs to develop for a cluster w/:
» a deep and complex memory/storage hierarchy,
» heferogeneous components,
» failure-prone components,
» varying adversarial load from other programs in the same system, and

» resource scarcity (such as DRAM and data center-level networking bandwidth).

« Some types of higher-level operations or subsets of problems are common
enough in large-scale services

» Pays off to build targeted programming frameworks & simplify development of new
products

» Such frameworks handle data partitioning, distribution, and fault tolerance

» E.g. Flume, MapReduce, Spanner, BigTable, Dynamo, Google Kubernetes Engine
(GKE), CloudSQL, AppEngine

niversily ol Cyprue



Cloud Infrastructure Software

Monitoring Infrastructure
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Monitoring Systems

« Concerned with various forms of system introspection.
« Can simply be a:
» script that polls all front-end servers every few seconds for

» just a few appropriate signals, such as latency and
throughput stafistics for user requests.

« Support a simple language that lets operators create
derived parameters based on baseline signals being
monitored.

« Generate automatic alerts to on-call operators
depending on monitored values and thresholds.



Service-Level Dashboards

« Collect and present key Service Level Indicators
and displays them to operators in a dashboard:

» Google Cloud's operations suite (formerly
Stackdriver)

e Large-scale services often need more
sophisticated and scalable monitoring support

» more signals to characterize the health of the
service; e.g. collect signal derivatives over time

» monitor other business-specific parameters
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Performance Debugging

* Help operators and service designers understand the complex
interactions between many programs, possibly running on hundreds of
servers.

« Seek to determine the root cause of performance anomalies and identify
bottlenecks.

* No need for real-time operation.

* Distributed system tracing tools:

» Black-box monitoring systems: observe networking traffic among system
components and infer causal relationships through statistical inference:
WAPS5, Sherlock

» Application/middleware instrumentation systems: explicitly modify
applications or middleware libraries for passing tracing information across
machines and across module boundaries within machines. Log tracing
information to local disks for subsequent collection by an external
performance analysis program: Pip, Magpie, X-Trace, Dapper, profiler GWP
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Platform-level Health Monitoring

* Tools that confinuously and directly monitor the
health of the computing platform - to understand
and analyze hardware and system software failures.

- Site Reliability Engineering

» most WSC deployments support “site reliability
engineering,” which is different from traditional system
administration

» SRE software engineers design monitoring and
infrastructure software to adjust to load variability and
common faults automatically so that humans are not
INn the loop and frequent incidents are self-healing.
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Key Techniques

* Applied to achieve:
» High Performance
» High Availability

« Commonly applied in the design and
implementation of both infrastructure anad
application level software systems



Performance and Availability Toolbox

Table 2.2: Key concepts in performance and availability trade-offs

Technique ‘ Main Advantages ‘ Description

Replication Performance and Data replication can improve both throughput and

availabiliry availahiliry. It is particularly powerful when rhe rep-

licated data is not often modified, since replication

makr:s llI)(]Hfl‘!% more ('I)TTII)](‘!X.




Performance and Availability Toolbox

Table 2.2: Key concepts in performance and availability trade-offs

Technique ‘ Main Advantages Description

Reed-Solomon | Availability and When the primary goal is availability, not through-

codes spact savings put, error correcting codes allow recovery from data
losses with less space overhead than straight replica-
tion.
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Performance and Availability Toolbox

Table 2.2: Key concepts in performance and availability trade-offs
Technique

Main Advantages | Description
ages | Descrip

Sharding Performance and Sharding splits a data sct into smaller fragments
(partitioning) availability (shards) and distributes them across a large num-

ber of machines. Operations on the data set arce
dispatched to same or all of the shards, and the
caller coalesces results. The sharding pelicy can vary
depending on space constraints and performance

considerations. Using very small shards (or micro-

sharding) is particularly beneficial to load balancing

and recoverv.



Lozad-balancing

Performance

In large-scale services, service-level performance

often depends on the slowest responder out of
hundreds or thousands of servers. Reducing re-

sponse-time variance 1s therefore eritical.

In a sharded service, we can load balance by biasing
the sharding policy to equalize the amount of work
per server. That policy may need to be informed

bv the expected mix of requests or by the relative
speeds of different servers. Even homogeneous ma-
chines can offer variable performance characteristics
to a load-balancing client if servers run multiple
applications.

In 2 replicated service, the load-balancing agent

can dynamically adjust the load by selecting which
servers to dispatch a new request to. It may still be
difficult to approach perfect load balancing because
the amount of work required by different types of
requests is not always constant or predictable.
Microsharding (see above) makes dynamic load
balancing easier since smaller units of work can be

changed to mitigate hotspots.
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Health checking
and watchdog

timers

Availebility

In a large-scale system, failures often manifest as slow
or unresponsive behavior from a given server. In this
cnvironment, no operation can rely on a given server
to make forward progress. Morcover, it is critical to
quickly determine that a server is too slow or un
reachable and steer new requests away trom it.

mote procedure calls must set well informed timeout

values to abort long running requests, and infrastruc

turc level software may need to continually check

connection level responsivencss of communicating

scrvers and take appropriate action when needed.




Integrity checks

Availability

In some cases, besides unresponsiveness, faults man-
ifest as data corruption. Although those may be

rare, they do occur, often in ways that underlying
hardware or software checks do not catch (for exam-
ple, there are known issues with the error coverage
of some networking CRC checks). Extra software
checks can mitigate these problems by changing the
underlying encoding or adding more powerful re-

dundant integrity checks.




Application-spe-

cific compression

Performance

Often, storage comprises a large portion of the
equipmment costs in modern data centers. For ser-
vices with very high throughput requirements, it is
critical to fit as much of the working set as possible

in DRAM,; this makes compression technigues very

important because the decompression is orders of

magnitude faster than a disk seek. Although generic
compression algorithms can do quite well, applica-
tion-level compression schemes that are aware of the
data encoding and distribution of values can achieve
significantly superior compression factors or better
decompression speeds.

University of Cyprus
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Eventual consis-

tency

Performance and

availability

Often, keeping multiple replicas up-to-date using
the traditional guarantees offered by a database
management system significantly increases complex-
ity, hurts performance, and reduces availability of
distributed applications [ Vog08]. Fortunately, large
classes of applications have more relaxed require-
ments and can tolerate inconsistent views for limited
periods, provided that the system eventually returns
to a stable consistent state.




Centralized con-
trol

Performance

In theory, a distributed system with a single master

limits the resulting system availability to the avail-
ability of the master. Centrzlized control is neverthe

less much simpler to implement and generally yields

maore responsive control actions. At Goongle, we have,
tended roward centralized control models for much
of our sofrware infrasrructure (like MapReduce and
(GFS). Master availahility is addressed by designing

master failover protacols.

3 . . .
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Redundant

exccution and

tail tolerance

Performance

In very large scale systems, the completion of a
parallel task can be held up by the slower exccution
of a very small percentage of its subtasks. The larger
the system, the more likely this situation can arisc.

ometimes a sma | ACgrcc CrI 1ca ndant ¢xccution o

subtasks can result in large speedup improvements.
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Cloud Infrastructure Software

Cloud Software
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Cloud Computing in Data Centers

« Cloud computing provides:
» efficiency
» flexibility
» COst savings.

* The cost efficiency achieved through co-locating multiple VMs on the same
physical hosts to increase utilization.

* At a high level, a VM is similar to other online web services, built on top of cluster-
level software to leverage the entire warehouse data center stack.

* A VM-based workload model simplifies the migration of on-premise computing to
WSCs.

 However, on WSC there are additional challenges:
» 1/O virtualization overheads
» availability model, and

» resource isolation.



Cloud challenges: 1/0 Virtualization

* A VM does not have direct access to hardware resources like
local hard drives or networking.

» All'1I/O requests go through an abstraction layer, such as virfio, in the
guest operating system.

» The hypervisor or virtual machine monitor (VMM) translates the I/O
requests into the appropriate operations:

« storage requests are redirected to the network persistent disk or local
SSD drives

« networking requests are sent through virtualized network for
encapsulation.

*|/O virtualization often incurs some performance overhead, but:

» improvements in virfualization techniques and hardware support for
virtualization have steadily reduced these overheads



Cloud challenges: Availability Model

« Large-scale distributed services achieve high availability by:
» running Mmultiple instances of a program within a data center,

» af the same time maintaining N + 1 redundancy at the data
center level to minimize the impact of scheduled
maintenance events.

* However, for many enterprise applications horizontal scaling is
often not possible (e.g. due to older relational DBs).

 Using live migration technology can help ensure high
availability:

» moving running VMs out of the way of planned maintenance
events, including system updates and configurations changes.



Cloud challenges: Resource Isolation

« Variabllity in latency of individual components is
amplified at scale at the service level due to
interference effects.

» In cloud computing, malicious VMs can exploit
multi-tenant features to cause severe contention
on shared resources, conducting Denial of
Service (DoS) and side-channel attacks.

» This makes it particularly important to balance
the tradeoff between security guarantees and
resource sharing.



Cloud Infrastructure Software, Workloads, and Metrics

Cloud Application Workloads
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Cloud Native

» Cloud-native architecture and technologies are an approach to
designing, consiructing, and operating workloads that are built in
the cloud and take full advantage of the cloud computing model.

* Cloud-native technologies empower organizations to:

» Build loosely coupled systems that are resilient, manageable, and
observable

» Run scalable applications in dynamic public, private, and hybrid
clouds

» Combine development with robust automation, which allows high-
impact changes frequently and predictably with minimal toil

» Accelerate business transformation to achieve high velocity and
growth.



Cloud Native Software

« Cloud “Native” ethos emphasizes speed and agility properties:
» highly dynamic environment
» API-driven self-service operation
» instantaneous, on-demand resource allocation.

« Realization of these properties thanks to containers and orchestrators, allow
developers to build software that emphasizes scalability and automation, and
minimizes operational complexity and toil.

« Other technologies are frequently adopted at the same time:

» Microservices: decomposition of larger, often monolithic, applications into
smaller, limited-purpose applications that cooperate via strongly defined APIs,
but can be managed, versioned, tested, and scaled independently.

» Service meshes: allow application operators to decouple management of the
application itself from management of the networking that surrounds it. Service
discovery systems allow applications and microservices to find each other in
volatile environments, in real fime.



Workload Diversity

* Breadth of services offered results in diversity in application-level
requirements. E.Q.

» Google Search: non need for high-performance atomic updates; inherently
forgiving of hardware failures

» AdSense: clicks on ads are small financial transactions, which need many of the
guarantees expected from a transactional database management system.

* Many workloads exist with spread-out popularity:

» Top 50 workloads at Google account for only about 60% of the total WSC
cycles, with a long tail accounting for the rest of the cycles

* Speed of workload churn: product requirements evolve rapidly.
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Cloud
Application
Case Studies

 Web Applications
 Web Search Engine
* Video streaming

* Machine Learning

M. D. Dikaiakos



Cloud Application Workloads

Glant-Scale Web Services
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Key assumptions for giant-scale services

e Service provider has limited control over
the clients and the IP hetwork

« Queries drive the service [e.g. HTTP get]

« Read-only queries greatly outhumber
updates (queries that affect the persistent
data store)



Advantages

« Access anywhere, anytime. A ubiquitous infrastructure facilitates access from home, work,
airport, and so on.

« Availability via multiple devices. Infrastructure handles most of the processing => users can
access services from “thin clients”, which can offer far more functionality for a given cost and
battery life.

« Groupware support. Centralizing data from many users allows service providers to offer group-
based applications (calendars, teleconferencing systems, group-management systems).

« Lower overall cost. Infrastructure services have a fundamental cost advantage over designs
based on stand-alone devices:

» can be multiplexed across active users;

» end-user devices have very low utilization (less than 4 percent), while infrastructure resources
often reach 80 percent utilisation (moving anything from the device to the infrastructure
effectively improves efficiency by a factor of 20);

» cenftralizing the administrative burden and simplifying end devices also reduce overall cost.

« Simplified service updates. Most powerful long-term advantage is the ability to upgrade
existing services or offer new services without the physical distribution required by traditional
applications and devices.

niversily ol Cyprue



Architecture

Client Client

Figure |.The basic model for giant-scale services. Clients connect via
the Internet and then go through a load manager that hides down

g Lerie of oo NOdes and balances traﬁic. “Lessons from giant-scale services,” E. A. Brewer,
&L University of Cypr IEEE Internet Comput., vol. 5, no. 4, pp. 46-55, Jul. 2001.
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Basic Components of the Model

* Clients (meAareg), such as Web browsers, standalone email readers, agents initiating queries to the services.
* The best-effort IP network: provides access to the service.
* Load manager (c§icoppoTnNTAG PopPTioL):

» provides a level of indirection between the service's external name and the servers’ physical names (IP
addresses) to preserve the external name’s availability in the presence of server faults

» balances load among active servers.
Traffic might flow through proxies or firewalls before the load manager.

s Servers (eCurnpetnTég/SiakolioTeéc/6iabiteg): the system’s workers, combining CPU, memory, and disks into an
easy-to-replicate unit.

* The persistent data store (Baon 6o évev): a replicated or partitioned “database” that is spread across the
servers' disks. It might also include network attached storage such as external DBMSs or systems that use
RAID storage.

* Optional backplane: a system-area-network handling inter server traffic:
» redirecting client queries to the correct server
» coherence traffic for the persistent data store.

« Auxiliary Systems (not shown): Nearly all services have several other service-specific pieces that we can
largely ignore in the basic model. Examples include user-profile databases, ad servers, site management
tools, and support for logging and log analysis. Many of these subsystems can be viewed as additional sets
of nodes with their own persistent data store.



Key Challenges

Main challenges to deploying giant-scale
services:

 Load Management "'l""" '
« High Availability =l

. Evolution and Growth sviws T



Key Challenges

 Load Management

\'—<\\m~o

#'8#% il

Persbstent data store
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Load bala nCing (e§Ic0pPOTTNON POPTIOL)

« Goal: balanced distribution of incoming load to available servers.
« Load Balancer Functionality:

e Provide the External Name: can be a domain name or a setf of IP
addresses depending on the approach.

» Challenge: make the external name highly available despite failure of
some of the nodes and the corresponding loss of their internal names.

e Load Balance the Traffic: This can be done with or without feedback
from the nodes.

» Goals: higher overall utilization and better average response time.

e Isolate Faults From Clients: detect faults and dynamically change the
routing of traffic to avoid down nodes.

» Key metric: reaction time, as some clients lose service until the detection
and failover occurs



Load balancing

« Key issue: does the manager understands the distribution of data across the
nodes.

 There are three choices:

» Symmetric: all nodes are equal in functional capability (but perhaps not query

capacity). Symmetric nodes greatly simplify load management because any
query can go to any node.

» Asymmetric: In this case, nodes vary in functionality and the load manager must
correctly map each query to a node that can handle it. The common case is @
partitioned database, in which the load manager must understand the
partitioning to route the queries correctly.

» Symmetric with Affinity: This is the symmetric case with an optimization for locality.
Due to caching effects, it is very useful to try to partition the queries even in the
symmetric case so that a given node tends to get the same queries repeated.

« Although the manager understands the partitioning, it is not required for
correctness and any node can still handle any query.

niversily ol Cyprue



Round-robin DNS

«Have DNS distribute different IP addresses for et Ciem
a single domain name among clients in a ' Y
rotating fashion (“round-robin DNS"):

* Roughly balancing the load at the time of Snge-sha server
DNS lookup, but providing little support for \ o ONS ‘

/
availability when a node fails: ,___jlﬁ E, b
]

» Node failures reduce system capacity, but CIC
not data availability

Simple replizated store

o . . Figure 2. A simple Web farm. Round-robin DNS assigns different
d PerSISte ni' dCﬂ'CI Store IS 1M plemen'l'ed by scrvers to different dicnts to achicve simple load balancing. Persis-
. . . tent data is fully replicated and thus all nodes are identical and can
simple replication of all content to all nodes:  hande ail queries.
which works well when the total amount of

content is small.

* No need for a backplane, since all servers
can handle all queries and there is no
coherence traffic.

niversily of Cyprus



Load Balancer Swiich

* Load management implemented in a “layer 4” switch: T e
Pregram . h - Frugram
» Rewrites TCP connections from external IP addresses to one of the IP ecwork
internal node names. 7
» Balances load based on outstanding connections and can respond l
quickly to failed nodes by avoiding them for new connections mee T
el
« “Layer-7" (application layer) switches can be used instead, parsing . S e

HTTP requests and URLs at wire speed, and routing queries to the E:I":
proper nodes. T ;: ;

-

. -
N ~_ !
- E 3-, 4
5 oD r 2 4

1,-4
I"

r

- ’
%3
A )

* Load balancer is in the path of the traffic and therefore has to be 7 Paritioned data stcre
fault tolerant. EgQ.

» Pair of “level 4” switches that automatically failover to each other.

« Persistent store partitioned across the nodes, possibly without any replication:

4

4

Node failures reduce effective store size and its overall capacity.
Nodes no longer identical - some queries may need to go to specific nodes.

Backplane enables queries to get to the right node or nodes:

. Sometimes the load manager can pick the right node directly, but this requires service-specific and query-specific knowledge
in the load manager.

. If service uses caching of data from other nodes, the backplane is used for the cache coherence fraffic.



Cloud Application Workloads

Web Search
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Workload example: Web search

POSTING LIST FON term D Oafze

« Searching for needles in @ |FOCONTARIF = dodt,posk el |
haystack : :
- - P ——
 If we assume the web to - T e £
contain 100 billion e - -
documents, with an average - -
document size of 4 KB (after - » im |

compression), the haystack is " et o
about 400 TB. € searcn aigorirnm musTt Traverse

the posting lists for each query term
unfil it finds all documents

» The database for web search : : N
contained in all three posting lists.

IS an index built from that
repository by inverting that set  « Then, it ranks the documents found
of documents to create a using a variety of parameters and

repository in the logical format  returns the highest ranked
documents to the user.



Web search Algorithm

« Split huge inverted index (sharding) into load-balanced subfiles and distribute them
across thousands of machines.

» For throughput or fault tolerance, multiple copies of index subfiles can be placed in
different machines

* A user query is received by a front-end web server and distributed to the machines
in the index cluster.

 Index-serving machines compute local results, pre-rank them, and send their best
results to the front-end system (or some intermediate server), which selects the best
results.

« At this point, only the list of doc_IDs corresponding to the resulting web page hits is
known.

« To compute the actual title, URLs, and a query-specific document snippet that
gives the user some context, the list of doc_IDs is sent to a set of machines
containing copies of the documents themselves.

« A repository this size needs to be partitioned (sharded) and placed in a large
number of servers.



Web search Performance

 Total user-perceived latency for operations described above needs to be a fraction of
a second: heavy emphasis on latency reduction.

» High throughput is also a key performance metric because a popular service may
need to support many thousands of queries per second.

* Index is updated frequently, but can be considered a read-only structure.

* No need for index lookups in different machines to communicate with each other
except for the final merge step: computation is very efficiently parallelized.

* No logical interactions across different web search queries: room for further parallelism.

* |If index sharded by doc_ID, workload has relatively small networking requirements in
terms of average bandwidth: data exchanged between machines is typically the size
of the queries themselves

« Some bursty behavior: servers at the front-end act as traffic amplifiers as they distribute
a single query to a very large number of servers ==> burst of traffic not only in the
request path but possibly also on the response path.

 Diurnal fluctuation of requests: traffic at peak usage hours can be more than twice as
high as off-peak periods
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Cloud
Application
Case Studies

* Video streaming

* Machine Learning
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Cloud Application Workloads

Video Streaming
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Workload example: video

* |IP video traffic represented 73% of the global internet in 2016, and is
expected to grow to 83% by 2022 [circa 2017]

» Live video will grow 15-fold between 2016 and 2021 [Cisco].

» Consumer Internet video traffic will grow 4.3-fold from 2017 to 2022, a
compound annual growth rate of 34%.

» In July 2015, users were uploading 400 hr of video per minute to YouTube,
and in February 2017 users were watching 1 billion hours of YouTube video

per day.
 Video transcoding is a crucial part of any video sharing infrastructure.
 Video serving cost components:
» Computing costs for video transcoding,
» Storage costs for the video catalog (both originals and transcoded versions)

» Network egress costs for sending franscoded videos to end users.



Workload example: video

1080P
ORIGINAL |- TRANSCODE | |UNIVERSAL| 5. TRANSCODE — | ... | |PLAYHI» -
T VoD, | FORMAT |\ vOD » |
[ |
|
|
MEASURED |  — — — — — _ _ _ J
POPULAR
1080P
» TRANSCODE—»{ ... | |PLAY >
VOD N
144P
Figure 2.5: The YouTube video processing pipeline. Videos are transcoded multiple times depending
on their popularity. VOD = video on demand.

Once video chunks are transcoded to their playback ready
formats in the data center, they are distributed through the Edge
—  network, which caches the most recently watched videos to
minimize latency and amplify egress bandwidth.



Cloud
Application
Case Studies

* Machine Learning
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Cloud Application Workloads

Machine Learning
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Workload example: ML

* Impressive growth of ML use

* Deep Neural Networks (DNNs) applied to a wide range
of applications including speech, vision, language,
translation, search ranking, and many more.

* DNN application phases: training (or learning) and
inference (or prediction),

7500

« DNN workloads further classified: ;e
convolutional, sequence,
embedding-based, multilayer 2.

perceptron, and reinforcement 3. )
learning. 0o

; ; ; ;
- e e W e &t A e S N D, e S
YIS FEFTE T EFE TS IS S oSS S
& 4 3 g 5 5 g
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Training workload

* Determines the weights or parameters of a DNN, adjusting
them repeatedly (multiple epochs) until the DNN produces
the desired results:

» iterative, Floating point arithmetic

« Multiple learners process subsets of input training set and
reconcile the parameters across the learners either through
parameter servers or reduction across learners:

» parallelism.
* Training can be done asynchronously, or synchronously.
« Synchronous provides better model quality;

» but, the training performance is limited by the slowest learner.



Inference workload

s Inference uses DNN model developed during
the training phase to make predictions on data:

» user facing

» with strict latency consiraints

» floating point (single precision, half precision) or
» quantized (8-bitf, 16-bit) computation

* Lower precision inference enables lower
latency and improved power efficiency.



Tzble 2.1: Six production applications plus ResNet benchmark. The fourth column is the total num

ber of operations (not execution rate) that training takes to converge.

Type of ‘ Parameters Inference
Neural (MiB) ExaOps to Ops Ops
Network Conv per Example | per Example
MLPO 225 1 trillion 353 353 Mops 118 Mops
MLP1 40 650 billion 86 133 Mops 44 Mops
LSTMO 498 1.4 billion 42 29 Gops 9.8 Gops
LSTM1 800 656 million 82 126 Gops 42 Gops
CNNOD 87 1.64 billion 70 44 Gops 15 Gops
CNN1 104 204 million 7 34 Gops 11 Gops
ResNet 98 114 million <3 23 Gops 8 Gops

MiB means 220;

S8 University ol Cyprus
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. » Discussed the elements of the software stacks
PreV|O US typically running on top of WSC hardware:

» Platform-level software: OS, VMMs

Class

» Cluster-level software infrastructure: resource
managers, distributed file systems, schedulers
and remote procedure call (RPC) libraries;
programming models

» Application-level software
» Monitoring and development software

s Presented some common technigues and
concepts applied to achieve high performance
and availability in cloud infrastructures: load-
balancing, replication, redundancy, encoding,
etc.

« Reviewed the algorithmic patterns and
characteristics of typical large-scale workloads
running on cloud infrastructures: Giant-scale
Internet Services, Web Search, Video streaming,
ML

M. D. Dikaiakos



Cloud Infrastructure Software, Workloads, and Metrics

Availability and Performance
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Availability and Performance

Faults and Failures
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WHY CARE ABOUT
FAILURES?




Fa It d * The sheer scale of WSCs requires
Ulis dn that internet services software

Failures tolerates relatively high component
fault rates.

» Disk drives can exhibit annualized
failure rates > 4%.

 Different deployments have
reported between 1.2 and 16
average server-level restarts per
yedar.

* With such high component failure
rates, an application running Across
thousands of machines may need to
react to failure conditions on an
hourly basis.

M. D. Dikaiakos



* Hourly Cost of Downtime now
Faults and exceeds $300,000 for 91% of SME

Failures and large enterprises.

« Overall, 44% of mid-sized and large
enterprise survey respondents
reported that a single hour of
downtime, can potentially cost
their businesses over one million ($1
million).

« Catastrophic outage that inferrupts
a major business fransaction or
occurs during peak business hours
can exceed millions of dollars per
minute.

ITIC Annual Hourly Cost of Downtime survey, 2022

M. D. Dikaiakos



Availability builds Trust

« Users trust that the services they increasingly
rely on will be always available.

 This expectation translates into a high-
reliability requirement for building-sized
computers.

* Determining the appropriate level of
reliabillity is fundamentally a tradeoff
between the cost of failures (including
repairs) and the cost of preventing them.



Hardware vs. Software

* In WSCs, hardware reliability alone cannot
deliver sufficient availabillity.

 Why?
« How do we measure server reliabllitye

» Mean Time Between Failure (MTBF)

» Mean Time to Repair (MTTR)



MTBF in WSC with ideal servers

« Assume ultra-reliable servers with MTBF = 30 years
=10000 days (unrealistic)

e Assume a 10000-server WSC.

 How many server failures expected on average, per
daye

» 1

o If an application running on the WSC depends on the
availability of the entire cluster, what would be its
MTBF¢

» Less than a day



Realistic prospecis

e Server-MTBF much less than 30 years.

« Real-lite WSC cluster MTBF in the range of a few
hours between failures.

« Software infrastructure and application software
quite complex, not bug-free, lead to failures too.

« WSC applications must work around failed servers
In software, either with:

» code in the application itself or

» via functionality provided by middleware.



Availability, Unavailability & Failure

* A system’s Availability is the fraction of time during which it
Is available for use;

« Unavailability is the fraction of time during which the system
IS Not available for some reason.

* Failures are one cause of unavailability, but are offen much
less common than other causes such as planned
maintenance for hardware or software upgrades. Thus:

» A system with zero failures may still have availability of less
than 100%, and

» A system with a high failure rate may have better availability
than one with low failures, if other sources of unavailability
dominate.



Availability and Performance

Availablility in Giant-scale Services
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ngh Availa bl|l1'y (vwnAn SiaBsoiloTnTa)

« Major driving requirement behind giant-scale system
design, in the presence of component failures,
natural disasters, and also constantly evolving
features and unpredictable growth.

« Availability Metrics (LeTpIkEQ):
« Uptime
e Yield

e Harvest



U pfime (AeITOLPYIKOC XPOVOG)

uptime = (MTBF — MTTR)/MTBF
 Fraction of time a site is handling traffic

 Typically measured in nines - tfraditional
iInfrastructure systems aim for 4 1o 5 nines
(0.9999 10 0.99999)

downtime = MTTR/MTBF



Yield (amodoon)

yield = queries completed/queries offered

* Fraction of queries that are completed

» Some queries are dropped because the
system does not have enough capacity to
serve them

« Typically, yield is numerically close to Uptime.
» Whye



WHICH ONE IS MORE USEFUL
IN PRACTICE, AS A METRIC:
YIELD OR UPTIME?

e Yield maps directly to user experience

e Yield correctly reflects that not all
seconds have equal valve:

e being down for a second when
there are no queries has no impact
on users or yield, but reduces uptime

* being down for one second during
peak and off-peak fimes has equal
Impact on uptime but vastly
different yields

M. D. Dikaiakos



How to Improve Uptime?

uptime = (MTBF — MTTR)/MTBF

 Reduce frequency of errors

» increase MTBF

« Reduce time fixing errors

» decrease MTIR

 Which approach is preferable?

» Giant-scale systems should focus on improving MTTIR and simply
apply best effort to MTBF

» Why?e



Harvest (ovykorisn)

[N systems based on queries, we can also
measure query completeness:

» How much of the database is reflected in
the answer

» Or how many features supported by o
service are operational

harvest = data available/complete data



DQ (data per query) Principle

DQ = total amount of data that has to be
moved per second on overoge -

Data per query x queries per second constcmt N

» DQ bounded by the underlying physu:al
limitation of the hardware
e The DQ value is measurable and tuneable

* At the high utilization level typical of giant-
scale systems, the DQ value approaches this
limit

University ol Cyprus M. D. Dikaiakos



Utility of DQ

* Principle rather than a literal truth:

» the system’s overall capacity tends to have a particular physical bottleneck
(oTeEVOTTOG), such as total I/O bandwidth or total seeks per second

« Absolute value of DQ not that important: relative value under various
changes provides a useful guide:

» Best possible result under multiple faults is a linear reduction in DQ.

v

DQ often scales linearly with the number of nodes:

» Early tests on single nodes tend to have predictive power for overall cluster
performance.

v

All proposed hardware/software changes can be evaluated by their DQ
impact.

v

We can franslate future traffic and feature predictions into future DQ
requirements and thus into hardware and software targets.



Measuring and Tuning DQ

How do we measure the DQ of an infrastructure?
» Define target workload (popTio)

» Use a load generator to measure a given
combination of hardware, software and db size
against this workload

Persistent data store

Figure 1.The basic model for giant-scale services. Clients connect viaA 2 G i\/e n Th e m e Tri C O n d Th e |O O d g e n e rO TO r, iT iS

the Internet and then go through a load manager that hides down

nodes and balances trofic easy to measure relative impact of faults

 How do we improve DQ?¢
» DQ scales linearly with the number of nodes

» We can translate future traffic predictions intfo
future DQ requirements and this into hardware
and software target - convert traffic predictions

hitp://www.seleniumhq.org/ info capacity planning decisions

niversily ol Cyprue



Improving Availability

Client Client
Client Client
~
Single-site server
Optional
backplane
SR
Persistent data store

Figure 1.The basic model for giant-scale services. Clients connect via
the Internet and then go through a load manager that hides down
nodes and balances traffic.

T B00 808

University ol Cyprus
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Pq I‘ﬁﬁo nin g (katrarnon-8ialeAic0G)

e Persistent data

e Partitions distributed o
available servers gbr

t

DATASET VM | I

e,
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Partitioning

« Qutcome: aggregate capacity
increase (queries that can be
executed per second)

DATASET

DATASET
SEGMENT 1
-

ii[ University ol Cyprus SEGMENT 2 SEGMENT 3



Partitioning - by functionality

University of Cypra: M. D. Dikaiakos
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Partitioning and Faults

« What is the effect of
fallure on:

» Yield? (ammodoon)

» Harvest? (cuyko16h)
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Partitioning and Faults

« SOome queries do not have answers since
some data is missing after the failure, so:

» Harvest drops.

» Yield (queries completed/queries offered)
remains the same

M. D. Dikaiakos



RepliCCI'l'iOn (avriypagpn-avamapaywyn)
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RepliCCI'l'iOn (avriypagpn-avamapaywyn)
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RepliCCIﬁOH (avriypagpn-avamapaywyn)

e e (e

DATASET Replica 1 — Replica 2 Replica 3

M. D. Dikaiakos



RepliCCIﬁOn (avriypagpn-avamapaywyn)

* Provides mulfiple consistent copies of data in processes running in
different computers.

* Seeks to improve:
« performance
« availability
« faulf tolerance

« The traditional view of replication silently assumes that there is
enough excess capacity to prevent faults from affecting yield.

i s
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Replication and faulis

* What is the effect of failure on:
» Yield2 (ammoboon)
» Harveste (cuykollién)

« Load redirection problem: under faults, the remaining replicas
have to handle the queries formerly handled by the failed
nodes.

« Under high utilization, this is unrealistic.

112



Replication vs Partitioning

* Replication is a fraditional technique for increasing availability

« Consider a fwo-node cluster that faces a fault in one node:
» The replicated version maintains 100 percent harvest but drops to 50 percent yield
» The partitioned version drops to 50 percent harvest but remains at 100 percent yield

» Both versions have the same initial DQ value and lose 50 percent of it under one
fault:

» Replicas maintain D (data per query) and reduce Q (queries per sec - yield)

» Partitions keep Q constant and reduce D (and thus harvest)




Replication vs Partitioning

 We can influence whether faults mpact
vield, harvest, or both:

* Replicated systems tend to map faults to
reduced capacity (and to reduced yield
at high utilization)

 Partitioned systems tend to map faults to
reduced harvest, as parts of the database
temporarily disappear, but the capacity in
queries per second remains the same



Key insights

« Replication on disk is cheap (disks are cheap,
replication is easy)

« Accessing replicated data requires “DQ points™:

» for true replication you need not only another copy
of the data but also twice the DQ value.

 Partitioning has no real savings over replication:

» You need less disk space than in replication (no
storage of copies)

» the real bottleneck is not storage space but the DQ
constant



Key insights

* The DQ constant is independent of whether the database is
replicated or partitioned. WHY?

» Exception: replication requires more DQ points than
partitioning for heavy write traffic, which was rare in giant-
scale systems (not anymore - see Facebook). WHY?¢

« Easier to grow systems via replication than by repartitioning
onto more nodes

« Can vary the replication according to the data’s importance
and control which data is lost in the presence of a fault.

« Can exploit randomisation to make lost harvest a random
subset of the data.



Avoiding saturation

* Avoiding saturation at a reasonable cost simply by good
design is unrealistic:

» Peak-to-average ratio for giant-scale systems seems 1o be in
the range of 1.6:1 to é:1 (circa 2001!), which can make it
expensive to build out capacity well above the normal
peak.

» Single-event bursts can generate far above-average traffic.

» Some faults (power failures, natural disasters, cyberattacks)
are not independent - overall DQ drops substantially in
these cases and remaining nodes become saturated.

« What can we do?¢



Graceful degradation

« Graceful degradation under excess load is critical for delivering high
availability

*The DQ principle suggests:

» [imit Q (capacity) to maintain D - the focus will be on maintaining harvest, using
for example, Admission Conftrol (AC) - €Aeyxog ToooRaonG

» reduce D and increase Q by dynamic database reduction
» combination of both techniques

« Graceful degradation is the explicit process for managing the effect of
saturation on availability - explicitly decide how saturation should affect
uptime, harvest and quality of services. Some approaches:

» cost-based AC (estimate the cost of each query, measured in DQ, and deny
expensive queries)

» priority or value-based AC (e.g. stock trade requests vs rest)

» reduced data freshness - reduces work per query ==> increased vield,
decreased harvest

niversity ol Cyvprue



Online Evolution and Growtih

- Traditional tenet of highly available systems:
minimal change.

 But, this conflicts with:
» growth rates of Internet services

» “Infernet time”, namely the practice of frequent
product releases

* Must plan for: continuous growth and frequent
functionality updates

* Must cope with software that is never perfect



Availability and Performance

CAP Theorem
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CAP Theorem

Any networked shared-data system can have at most two of three
desirable properties:

e Consistency (C) equivalent to having a single up-to-date copy
of the data:

e Every read receives the most recent write or an error.
e High availability (A) of that data

e Every request receives a (non-error) response, without the
guarantee that it contains the most recent write.

e Tolerance to network partitions (P)

e The system continues to operate despite an arbitrary number of

messages being dropped (or delayed) by the network between
nodes.



Availability

T
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Partitioning => Inconsistency
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CAP Concepts

» Strong Consistency means single-copy ACID
consistency

» A strongly-consistent system provides the ability to
perform updates

* High Availability is assumed to be provided through
redundancy, e.g. data replication;

» Data is considered highly available if a given
consumer of the data can always reach some replica

* Partition-resilience means that the system as whole
can survive a partition between data replicas.



ACID
properties

« Afomicity: the entire
transaction succeeds or fails

« Consistency: the entire
collection is never left in an
invalid or conflicting state

e |SOlatiON: concurrent
transactions cannot interfere
with each other

« Durabllity: once a fransaction
completes, system failures
cannot invalidate the result

M. D. Dikaiakos



CAP Theorem Purpose

* Makes explicit the trade-offs in designing distributed
INnfrastructure applications.

« Guides the design of Internet-scale systems services
that:

» Tolerate partial failures by emphasizing simple
composition mechanisms that promote fault
containment.

 Incorporate engineering mechanisms that translate
partial failures info smoothly-degrading functionality
rather than a lack of availability of the service as a
whole.



Strong CAP Principle

Strong Consistency, High Availability, Partition-resilience: Pick at most 2.

o CA without P: Databases that provide distributed transactional
semantics can only do so in the absence of a network partition
separating server peers.

e CP without A: In the event of a partition, further transactions to an
ACID database may be blocked until the partition heals, to avoid the
risk of intfroducing merge conflicts (and thus inconsistency).

* AP without C: Web caching provides client-server partition resilience
by replicating documents, but a client-server partition prevents
verification of the freshness of an expired replica.

* In general, any distributed database problem can be solved with:
e Expiration-based caching to get AP, or

* Replicas and majority voting to get PC (the minority is unavailable).



Weak CAP Principle

 In practice, many applications are best
described In terms of reduced consistency or
availability.

* SO, more offen we see systems to follow the
Weak CAP Principle:

The stronger the guarantees made about any
two of strong consistency, high availabillity, or
resilience fo partitions, the weaker the
guarantees that can be made about the third.

riversity ol Cyprus



Melrics

« How do we argue about the CAP
properties of a systeme

 We need metrics that represent and
measure a system from the CAP
perspective.



Yield and Harvest

* At least two metrics for correct behavior:
* Yield (amoboon mapaywyng) = queries completed/queries submitted
» the probability of completing a request

» the common metric and is typically measured in “nines’”: “four-nines
availability” means a completion probability of 0.9999

» in practice, good High-Avail. systems aim for four or five nines
* Harvest (PaBl10¢c cuvykolbng) = data available/complete data

» measures the fraction of the data reflected in the response, i.e. the
completeness of the answer to the query.

[N systems based on queries, we can measure query completeness—
how much of the database is reflected in the answer

» this can be extended to features supported by a service



Tradeoff (queries)

*In the presence of faults there is typically a tradeoff between providing:

» no answer (reducing yield)
» an imperfect answer (maintaining yield, but reducing harvest).

« Some applications do not tolerate harvest degradation because any
deviation from the single well-defined correct behavior renders the

result useless.

» E.Q., a sensor application that must provide a binary sensor reading
(presence/absence) does not tolerate degradation of the output

« Some applications tolerate graceful degradation of harvest

» E.g., online aggregation allows a user to explicitly frade running time for
precision and confidence in performing arithmetic aggregation queries
over a large dataset: useful when approximate answers are ok; helps
avoiding work that looks unlikely to be worthwhile based on preliminary

results.



Tradeoff (updates)

e Same fradeoff applies to “single-location”
updates

* Those changes that are localized to a single
node (or technically a single partition):

» Updates that affect reachable nodes occur
correctly but have limited visibility =>
reduced harvest

» Updates that require unreachable nodes fail
=>reduced yield



Dealing with CAP’s effects

Strategy 1: Trading Harvest for Yield— Probabilistic Availability
* Nearly all systems are probabilistic wrt faults:
» Availability requires probabilistic approaches

» Address probabilistic systems directly, so that we can understand and limit
the impact of faults. Need to explore and decide:

» the expected nature of faults
» what needs to be available
* Example - search engine index decomposition:

» By randomly placing index shards on nodes, we can ensure that 1 fault in 100-
node cluster results in 1% random loss of results & linear harvest degradation
for more faults => Average-case and worst- case fault behavior the same.

» By replicating a high-priority subset of data, we reduce the probability of
losing that data. This gives us more precise control of harvest, both increasing
it and reducing the practical impact of missing data



Dealing with CAP’s effects

Strategy 2: Application Decomposition and Orthogonal
Mechanisms

« Some large applications can be decomposed into
subsystems:

1. That are independently intolerant to harvest
degradation (i.e. they fail by reducing yield).

2. Whose independent failure allows the overall

application to continue functioning with reduced
utility.

* The application as a whole is then tolerant of harvest
degradation.



Example

User-profile-driven content generation from a static corpus:
read-only subsystem

User-profile-driven
content

generation .




Example

Billing: fully fransactional subsystem (read / write / state heavy)
If it fails, the whole system probably needs to stop

User-profile-driven
content

generation .




Example

Shopping cart: manages state that must be persistent over the
course of a session but not thereafter

User-profile-driven
content

generation .




Example

User personalization profile sub-system: manages truly persistent
but read-mostly/write-rarely state.

User-profile-driven D
content User

generation . Profile




User-profile-driven
content
generation
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Orthogonal Decomposition

 Traditionally, the boundary between subsystems with differing
state management requirements and data semantics has
been characterized via narrow interface layers

*In some cases it is possible to do even better, if we can
identify orthogonal mechanismes:

» An orthogonal mechanism is independent of other
mechanisms, and has essentially no runtime interface to the
other mechanisms(except possibly a configuration interface).

» Orthogonal approaches are particularly useful in adding
operational features such as security or robustness to legacy
applications, without requiring special changes to the core
application code.



Availability and Performance

Tall Latency Concerns
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Tail-tolerance

e Technigues for high performance and
availability are great, but... not enough!

* As systems scale, eliminating all possible
sources of performance variability in individuadl
system components to deliver service-wide
responsiveness with acceptable tail latency
levels is impractical.

 Tail latency refers to the latency of the slowest
requests, that is, the tail of the latency
distribution.



Tail-tolerance

« Consider a hypothetical system where
each server typically responds in 10ms but
with a 99th percentile latency of 1sec.

» If a user request is handled on just one such
server, 1 user request in 100 will be slow

o [f a user request must collect responses from 100
such servers in parallel, then 63% of user requests
will fake more than 1 s (marked as an “x" in the
figure).
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Take Home
Practice

Can you prove the

63% claim?@e
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Sample
Questions

* Describe the main functionalities of
Resource Management software in cloud
computing infrastructures. Provide some
examples of the inputs that a RMS needs
and the objectives it is trying 1o reach.

e Describe some core functionalities offered
by Cluster Infrastructure Management
softwares.

* Be familiar and explain concepts like load
balancing, sharding (partitioning),
replication, integrity-checking, eventual
consistency, redundant execution, tail-
tolerance in the context of cloud
infrastructures.

 Explain what cloud native development
means and what are the key requirements
that it fries to meet.
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* Failures in you data centre happen
SClmP|e once a week. It takes 7 minutes to
Ques’rions recover. What is your uptime and how
can you redlistically increase your
uptime by an extra 9¢

« Explain which concepts the letters of
the acronym CAP correspond to and
what the CAP theorem says.

* Describe a key difference in the
profile of a cloud workload
corresponding to Google's Web
search and AdSense services. Explain
why this difference can be very
important for the design,
implementation, and configuration of
the underlying cloud infrastructure.
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