
On SAT Distributions with Planted Assignments
(Extended Abstract)

Tassos Dimitriou
Athens Information Technology, Greece.

tassos@ait.gr

Abstract
While it is known how to generate satisfiable instances
by reducing certain computational problems to SAT, it
is not known how a similar generator can be developed
directly for k-SAT. In this work we almost answer this
question affirmatively by improving upon previous re-
sults in many ways. First, we give a generator for in-
stances of MAX k-SAT, the version of k-SAT where one
wants to maximize the number of satisfied clauses. Sec-
ond, we provide a useful characterization of the optimal
solution. In our model not only we know how the op-
timal solution looks like but we also prove it is unique.
Finally, we show that our generator has certain useful
computational properties among which is the ability to
control the hardness of the generated instances, the ap-
pearance of an easy-hard-easy pattern in the search com-
plexity for good assignments and a new type of phase
transition which is related to the uniqueness of the opti-
mal solution.

1 Introduction
Testing the satisfiability of a particular formula is a prob-
lem (SAT) that lies at the heart of many AI formalisms
such as reasoning, planning, etc. The use of distributions
for generating random SAT instances is therefore an impor-
tant set of benchmark problems for evaluating local search
SAT heuristics. However, as was shown by Mitchell and
Levesque[1996], the value of any study whose goal is to
evaluate the performance of any SAT algorithm depends
upon the proper selection of formula distribution and pa-
rameter values. By being more careful in generating prob-
lem instances one can obtain really hard search and rea-
soning problems. And it is exactly this controlled hardness
that ultimately led to the development of powerful stochas-
tic search methods for constraint satisfaction and satisfia-
bility problems (see [Selman et al., 1993; Morris, 1993;
Li and Anbulagan, 1997], to name a few).
The key property of such \useful" distributions is that they

generate instances that appear to be critically constrained;
at a certain ratio of variables to constraints instances be-
come extremely hard to solve and the average computational
cost of finding a solution scales exponentially with the size
of the input formula. Around this critical region however,
instances are much easier to handle mainly because in the
\underconstrained" region solutions are numerous while in

the \overconstrained" region solutions are nonexistent. At
the phase transition, where approximately half the instances
are satisfiable, one finds the most difficult to solve problem
instances.
What limits the applicability of these distributions is the

fact that they generate both satisfiable and unsatisfiable hard
instances. Since the unsatisfiable instances must be filtered
out with the use of complete methods before they can be used
in the evaluation of any incomplete SAT heuristic, the size
of the problem instances considered this way unfortunately
becomes limited. This drawback was remedied in part by
the work of Achlioptas et al.[2000] where a generator for
satisfiable instances only was developed.
This generator was based on transforming an instance of

the quasigroup completion problem (QCP) to a formula that
is guaranteed to be satisfiable. The generator starts with a
complete Latin square of order N , that is an N £ N table
where each entry has one of the N possible colors and where
there are no repeated colors in any row or column. Then the
colors from a fraction p of the entries get deleted leaving a
partial table that is guaranteed to be satisfiable.
As was demonstrated by Achlioptas et al., this gener-

ator has a number of important characteristics. The first
one is the ability to finely control the hardness of the gen-
erated instances by tuning the value of p. The second
one is the appearance of a new kind of phase transition
in the space of problem instances; under the right param-
eterization this transition coincides with the hardest region
of the satisfiable instances and corresponds to a thresh-
old phenomenon in the size of the backbone, a quantity
which measures the number of the variables which take
the same value in all solutions[Monasson et al., 1999;
Slaney and Walsh, 2001]. It is interesting to note how-
ever that while the QCP problem leads nicely to a satisfi-
able instance generator with good computational properties,
Achlioptas et al. ask whether a similar generator can be de-
veloped directly for k-SAT.
In this work we almost answer this question affirmatively

by introducing a generator for MAX k-WSAT formulas, a
weighted version of k-SAT. In MAX k-WSAT each clause
has a number associated to it, called weight or multiplicity,
which denotes how many copies of the clause appear in the
formula. While in MAX k-SAT one is looking for an as-
signment that maximizes the number of satisfied clauses, in
the weighted version of MAX k-SAT the goal is to find an
assignment that essentially maximizes the sum of weights of



the satisfied clauses, since such clauses contribute their mul-
tiplicities to the overall number of satisfied clauses. Clearly
MAX k-SAT reduces to this problem by making all weights
equal to one.
Our generator has a number of important characteristics.

The first one is a theoretical result that provides a unique
characterization of the optimal assignment. Since any satis-
fiability heuristic when fed with an instance from our gen-
erator will try to maximize the number/weight of satisfied
clauses, this characterization provides algorithm designers
with an a priori knowledge of the optimal assignment. We
call this solution the hidden or planted assignment. Thus by
knowing what to expect, algorithm designers will be able to
evaluate the effectiveness of their algorithms.
The second characteristic is the appearance of an easy-

hard-easy pattern in the search complexity for good assign-
ments. Traditional phase phenomena usually involve a tran-
sition from satisfiable to unsatisfiable instances in the search
space. This is not the case here since our generator outputs
only instances that can be satisfied in the MAX k-SAT sense.
Under the right choice of parameters however, an easy-hard-
easy pattern emerges that makes it possible to test algorithms
on hard generated instances only.
Finally, we were able to link this behavior with a new

threshold phenomenon which is related to the uniqueness of
the hidden assignment. Below the threshold, there are other
solutions that achieve equal total weight and differ from the
hidden one in a few variables. Above the threshold however,
the hidden assignment becomes the unique optimal solution.
Thus there exists a transition from a phase where there are
more than one good assignments to a phase where the op-
timal assignment is unique. The point to be made is that
this transition coincides with the hardest to solve problem
instances.

2 The Model
We start our exposition by showing how to generate instances
of the MAX 2-WSAT problem. Later in Section 4, we will
extend our results to instances of MAX k-WSAT. In general,
MAX k-WSAT consists of Boolean expressions in Conjuc-
tive Normal Form, i.e. collection of clauses in which every
clause consists of exactly k literals and has a positive inte-
ger weight associated to it denoting the multiplicity of each
clause in the formula. Given an instance of this problem, one
is looking for an assignment to the variables that satisfies a
set of clauses with maximum total weight.
It is clear that MAX 2-WSAT is NP-hard as MAX 2-SAT

reduces to it by setting all weights equal to one. In this work
we will present a generator for instances for a degenerate
version of MAX 2-WSAT, in which all weights to the clauses
are either ¯ or ¯+1, where ¯ is a fixed integer greater than
0. While this simplification may seem very restrictive at
first look, it is all we need to create a generator of k-SAT
instances with useful computational properties.
To generate a formula with the above properties we first

start with 2n variables, n green and n blue, create the clauses
and finally assign weights to them. Here we adopt the view
of working with weights directly and not actually creating
multiple instances of the same clause as proofs become sim-
pler. Furthermore, as explained in Section 5, this leads to
faster implementations of heuristics treating WSAT formulas.

We call our model Fn;±, where n indicates the number of
variables of each color and ± is a parameter used to control
the maximum total weight achieved by the hidden assign-
ment. We do not include the weight ¯ in the definition of
the model since this will be set to a specific value later on.

The model Fn;± (with super-clauses)

1. Start with 2n variables, n green and n blue.
2. (Create the formula) For every pair of variables x; y, ir-
respective of their color and without repetitions, add to the
formula the \super-clause" c(x; y) = (x¹y + ¹xy).

3. (Assign the weights)
² For all clauses c(x; y), with probability 1

2
set the

weight w(x; y) of the clause equal to ¯ + 1, other-
wise set it equal to ¯.

² For all clauses c(x; y), such that x; y have different
colors and w(x; y) = ¯, with probability 2± increase
the weight of the clause to ¯ + 1.

The careful reader should have observed by now that the
\clauses" c(x; y) are not really clauses in the ordinary 2-SAT
sense. In fact, c(x; y) = (x+y)¢(¹x+¹y). We chose, however,
to work with super-clauses as the results are much easier to
describe and the passing to ordinary 2-SAT expressions is
again easy. We will denote the two simple clauses of c(x; y)
by c1x;y = (x+ y) and c2x;y = (¹x+ ¹y).
It is also clear from the model that the generated formulas

are \dense" in that they consist of all possible combinations
of the 2n variables. Thus it makes no sense to try to sat-
isfy all super-clauses but it makes sense to try to satisfy a
suitable subset of those that incures the maximum possible
total weight. We will be able to show later on that the best
assignment is the one that has the green variables set to true
and the blue set to false (or vice versa). However, before we
proceed with our main result we need a few definitions and
preliminary lemmas.
Definition 1 An assignment is said to split the variables if
exactly n variables are set to true and n are set to false
(irrespective of their color).
Lemma 1 (Monochromatic clauses are lighter)
If x; y have the same color then

w(x; y) =

½
¯ + 1; with probability 1

2
¯; otherwise

If x; y have different colors then

w(x; y) =

½
¯ + 1; with probability 1

2 + ±
¯; otherwise

Proof: The first statement is obvious since by definition
monochromatic clauses (clauses with variables of the
same color) have weight ¯ or ¯ + 1 with probability
a half. To prove the second statement observe that a
non-monochromatic clause will have weight ¯ + 1 if it was
initially assigned this weight, or if it had weight ¯ and with
probability 2± increased its weight. The probability of these
two events is 12 +

1
22± =

1
2 + ±. ¦



This lemma provides an alternative definition for our
model and it will come handy when we prove our result about
the optimality of the hidden assignment. The next lemma is
used to reduce the space of good assignments. Since our
goal is to be able to generate formulas where assignments
are planted, this lemma allows algorithm designers to test
their algorithms by knowing what to expect for.

Lemma 2 (Look for split assignments) When the weight
¯ is equal to n2, the best assignments split their variables.

Proof: (Sketch) Given any assignment we construct a bipar-
tite graph that has on one side the true variables and on the
other the false ones. Furthermore, for each pair of nodes on
different sides, we create an edge and assign to it the weight
of the corresponding super-clause.
Then we show that the particular choice of weights

assigned to clauses makes the overall weight achieved by
the best unevenly split assignment less than the weight
achieved by any assignment with split variables. Thus it is
always best to look for split assignments. ¦

Observe that the previous discussion is valid only if the
super-clauses are satisfied as a whole or at least in the NAE-
SAT sense (NAESAT for Not All Equal SAT, is the variant
of SAT where we don't allow all literals in a clause to have
the same truth value). To pass to ordinary 2-SAT models,
since most algorithms are not restricted in their search for
assignments, we modify the model by assigning the weight
w(x; y) to each of the clauses c1x;y and c2x;y of the super-
clause. Call this new model F 0n;±. Now, we have to take
into account the weight incurred by these clauses even if
both literals have the same truth value.

Lemma 3 (Equivalence of the two models) An assign-
ment A achieves total weight W for a formula f generated
according to Fn;± if and only if it achieves total weight
W + cf when the formula is generated according to F 0n;±,
where cf in a constant that is easily computable and
depends only on the particular formula f .

Proof: The proof is very similar to the proof of Lemma 2
and is omitted from this extended abstract. ¦

An immediate corollary of this lemma is that again we
only have to look for split assignments in the new model.

Corollary 1 By choosing ¯ = n2, the best assignments for
formulas generated according to F 0n;± again split their vari-
ables.

3 Characterizing the Optimal Assignment
In the previous section we showed that the two models are
equivalent. Thus from now on we will work only with
formulas that consist of super-clauses. To simplify things
further we will work only with split assignments since by
Lemma 2 we are allowed to do so.
Our goal in this section is to show that for a suitable choice

of the parameter ±, the optimal assignment is one that has
the green variables set to True and the blue variables set to
False (or vice versa).

Definition 2 We say an assignment has distance k from the
optimal one, where 0 ∙ k ∙ n

2 , if it has split the variables
and furthermore it has k blue and n¡ k green variables set
to True.
Thus in some sense the value of k counts the distance from

the planted assignment which has k = 0 and as we will show
in a while it is the optimal one with high probabibility.
Theorem 1 (Optimality of hidden assignment) There is a
constant such that for values of ± ¸ ­(plnn=n), the as-
signment which has only the green variables set to true is
optimal with high probability.
Proof: We only give a sketch of the proof here since this
result is provided only for completeness. The first lemma we
need is one which shows that assignments of distance k from
the hidden one achieve total weight close to their expected
values. This is easy to prove since by using Chernoff bounds
we can estimate with great accuracy the total weight achieved
by the given assignment. An immediate corollary of this
result is that no assignment of distance greater than some
predefined k0 achieves better weight than the hidden one.
The second lemma we need is one which proves that

any assignment of distance smaller than a predefined
value k1, has a neighboring assignment that achieves even
better weight except of course the hidden assignment.
This last result suggests that these assignments cannot be
optimal. Combining the two lemmas, we get that the hidden
assignment is optimal with high probability for the range of
± described in the theorem. ¦

4 Extension to MAX k-WSAT
To generate instances of MAX 3-WSAT or MAX k-WSAT,
k ¸ 3, we follow the same approach as for the 2-SAT case.
We start again with 2n variables, n green and n blue. The
only difference now is that clauses consist of exactly k vari-
ables. We call our model Fkn;±, where k indicates that we
working with k-WSAT formulas.

The model Fk
n;± (with super-clauses)

1. Start with 2n variables, n green and n blue.
2. (Create the formula) For every k-tuple of variables
x1; x2; : : : ; xk, irrespective of their color and without rep-
etitions, add to the formula the \super-clause"

c(x1; x2; : : : ; xk) = :(x1x2 ¢ ¢ ¢xk + ¹x1¹x2 ¢ ¢ ¢ ¹xk):
3. (Assign the weights)

² For all clauses c(x1; x2; : : : ; xk), with probability 1
2

set the weight w(x1; x2; : : : ; xk) of the clause equal
to ¯ + 1, otherwise set it equal to ¯.

² For all non-monochromatic clauses c(x1; x2; : : : ; xk),
such that w(x1; x2; : : : ; xk) = ¯, with probability 2±
increase the weight of the clause to ¯ + 1.

As in the 2-WSAT case, the super-clauses are satis-
fied only when not all variables have the same truth
value. To pass to ordinary k-SAT formulas observe that
c(x1; x2; : : : ; xk) = (x1+x2+ ¢ ¢ ¢+xk)(¹x1+¹x2+ ¢ ¢ ¢+¹xk).



We then have to modify the model by assigning the weight
w(x1; x2; : : : ; xk) to each of the sub-clauses of the super-
clause.
A lemma similar in spirit to Lemma 2 shows that again

we have to concentrate our search for split assignments by
setting ¯ = n2.

5 Locating the Hard Instances
In this section we present experimental results showing that
random instances can be generated by our model in such
a way that easy and hard instances can be predictable in
advance. Our motivation is to provide developers of local
search SAT heuristics with a challenging set of k-SAT in-
stances in which the optimal solution is known beforehand.
The local search procedure we used for our tests is a mod-

ified version of WalkSat[Selman et al., 1993] which we de-
scribe below. The main reason for choosing WalkSat is be-
cause it is one of the best performing SAT procedures and
because we believe that these results on hard instances will
be applicable to other SAT heuristics as well.
To apply WalkSat to formulas with weights on clauses

(even if the weights degenerate to the two values ¯ and ¯+1)
we need the intuitive modification of the algorithm shown on
Table 1. Basically what this table says is replace \number
of satisfied clauses" with \weight of satisfied clauses". The
rest of the algorithm remains the same. Also observe how
the weighted version reduces to the classic WalkSat when all
weights are set to one. The reason for this modification is to
avoid the extra overhead in running time caused by having
multiple copies of the same clause. Since each clause would
have to appear at least ¯ = n2 times, this would greatly slow
down the execution time of any SAT heuristic.

WalkSat Weighted version of
WalkSat

Goal Maximize the number of
satisfied clauses

Maximize the weight of
satisfied clauses

Strategy

Pick a random unsatis-
fied clause and flip the
variable that results in
the smallest decrease in
the number of satisfied
clauses

Pick a random unsatis-
fied clause and flip the
variable that results in
the smallest decrease in
the weight of satisfied
clauses

Table 1: Changes to the basic WalkSat algorithm.

In the experiments that follow we chose to work with
MAX 2-WSAT formulas to illustrate the fact that these for-
mulas become extremely difficult to optimize in direct con-
trast to ordinary 2-SAT formulas, which are solvable in linear
time[Aspvall et al., 1979].
In all the figures each sample point was computed after

generating 1000 random instances of MAX 2-WSAT. Data
represent the median of the total number of variable flips
required to locate an assignment that achieves the maximum
total weight. We used medians and not means in order to
eliminate the fluctuations caused by a small number of in-
stances incurring extremely high values.
In Figure 1 we considered the performance of WalkSat on

such random formulas. This figure shows the total number

0

2000000

4000000

6000000

8000000

10000000

0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450
Parameter δ

M
ed

ia
n 

Nu
m

be
r o

f V
ar

ia
bl

e 
Fl

ip
s

N = 40
N = 38
N = 36
N = 34
N = 32

Figure 1: Median number of total variable flips for random
2-WSAT formulas as a function of the parameter ±.

of flips required by WalkSat to find an assignment that beats
the weight of the hidden assignment for formulas of size n =
32; 34; 36; 38 and 40. As can be seen, an easy-hard-easy pat-
tern emerges which results in an exponential increase in com-
putational cost in the hardest region. This behavior is similar
to the behavior of 3-SAT formulas [Mitchell et al., 1996;
Gent and Walsh, 1994]. This figure also suggests that the
notions of under-constrained and over-constrained formulas
apply here as well although we cannot link this behavior
with the length of the formulas as all of them have the same
number of clauses. But we will return to this issue in the
next section where we try to relate this behavior with a phase
transition in structural properties of the WSAT instances.

6 Phase Transition
An important characteristic of Figure 1 is that the transition
region becomes narrower (occurs for a smaller range of ±)
for larger values of n when at the same time the peak shifts
to the left as n is increased. Our goal in this section is to
demonstrate a relationship between the hard region and a
phase transition in the structural properties of the generated
formulas.
It is clear that we cannot have a SAT/UNSAT transition

as all instances are unsatisfiable. Neither we can relate it
to the so-called backbone variables[Monasson et al., 1999;
Slaney and Walsh, 2001]. The backbone ratio of a SAT
problem is the ratio of its variables that take the same values
in all solutions, i.e. they are fully constrained. A phase
transition in such a case has the the backbone ratio drop from
nearly 1 to nearly 0, with the hardest instances lying around
the 50% point. In the case of WSAT formulas however,
their solution is planted and provided that ± is sufficiently
large, the solution is also unique. So we cannot relate the
hardness peak with the backbone as there is essentially only
one solution. However, we were able to relate this behavior
with the probability of uniqueness of the hidden assignment.
In Figure 2 we show how the probability that there exist

good assignments other than the planted one changes as a
function of the parameter ± for a large range of values for n.
Observe how the threshold function sharpens up for larger



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500

Parameter δ

Un
iq

ue
ne

ss
 P

ro
ba

bi
lit

y

N = 150
N = 100
N = 70
N = 60
N = 50
N = 40

Figure 2: Phase transition for various values of n.

values of n, like the satisfiability threshold function for ran-
dom k-SAT formulas[Mitchell et al., 1996]. One difference
however is that curves do not cross. Instead the curves are
moving to the left, something that is to be expected since the
hidden solution is with high probability unique for values of
± larger than c

p
lnn=n, for some constant c.

All this discussion leads naturally to the question of how
one can generate the hardest 2-WSAT formulas. Given some
arbitrary value of n how can we determine the value of ± that
results in the most difficult to solve instances? The answer is
given by finite-size scaling[Kirkpatrick and Selman, 1994],
in which the horizontal axis is rescaled by a quantity that
is a function of n. This has the effect of slowing down the
transition for larger values of n and mapping the different
curves into a single \universal" curve from which one can
derive by working backwards the point where the hardest
instances lie.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Rescaled δ

Pr
ob

ab
ili

ty
 o

f U
ni

qu
en

es
s

N = 150
N = 100
N = 70
N = 60
N = 50
N = 40

Figure 3: Phase transition for various values of n after rescal-
ing.

Figure 3 shows the result of rescaling the curves of Figure
2. The uniqueness probability is plotted against ±0, a rescaled

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Rescaled δ

N
or

m
al

iz
ed

 C
os

t a
fte

r R
es

ca
lin

g

N = 40
N = 38
N = 36
N = 34
N = 32

Figure 4: Computational cost for various values of n after
rescaling.

version of ± equal to ±0 = ±n²=2
p
1¡ ², where ² = 0:56. It

is perhaps instructive at this point to describe how we derived
the rescaling factor n²=2

p
1¡ ².

Theorem 1 tells us that the planted solution is unique when
± = ­(

p
lnn=n). This led us to believe that the threshold

point will also be a function of this quantity, something like
±0 = c

p
lnn=n, for some (unknown) constant c. If n is to

be rescaled and become n1¡², then the translated point must
become ±00 = c

q
lnn1¡²
n1¡² . By some algebraic manipulation

we see that ±0 and ±00 are related by the equation

±00 = ±0n
²=2
p
1¡ ²;

which, when applied to all values of ±, gives us the universal
match shown in Figure 3.
Finally, Figure 4 demonstrates how the computational cost

for various values of n collapses into a universal curve. To
obtain these data we first normalized the curves shown in
Figure 1 and then applied the rescaling described previously.
We see clearly that the critical point is when the rescaled ±
is equal to 0:60 which corresponds to the 65% uniqueness
probability in Figure 3. Thus the main empirical observation
we can draw from these pictures is that when p = 1=2,
the hardest 2-WSAT formulas for WALKSAT lie at the point
where about 65% of them have the hidden assignment as the
optimal one.

7 Conclusions
In this work we presented a generator for instances of k-SAT
in which every clause has a weight or multiplicity associated
with it and the goal is to maximize the total number of satis-
fied clauses. We showed that our generator produces formu-
las whose hardness can be finely tuned by a parameter ± that
controls the weights of the clauses. Under the right choice of
this parameter an easy-hard-easy pattern in the search com-
plexity emerges which is similar to the patterns observed for
traditional SAT formulas and complete methods.
We were also able to relate this behavior with a new type

of phase transition in the structural properties of the gener-



ated formulas. In particular, we showed how the hardness
peak corresponds to a point where there is a transition from
formulas which have many optimal assignments to formulas
where the optimal assignment is unique. And this is perhaps
the most important characteristic of our generator; under the
right choice of the parameter ±, not only we know that the
optimal solution is unique but we also know that it must as-
sign (a predefined) half of the variables to TRUE and half to
FALSE. In conclusion, we believe that our generator will be
useful in the analysis and development of future SAT heuris-
tics since by knowing what to expect algorithm designers
will better test the effectiveness of their search procedures.

References
Achlioptas D., Gomes, C., Kautz H. and Selman B. Generating
satisfiable problem instances. In Proc. AAAI-00, 2000.
Bengt Aspvall, Micahel F. Plass and Robert E. Tarjan. A linear-time
algorithm for testing the truth of certain quantified boolean formu-
las. Information Processing Letters, 8(3):121-123, March 1979.
M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of ACM, 7:201-215, 1960.
I. Gent and T. Walsh. The SAT Phase Transition. In Proc. ECAI-94,
105-109, 1994.
Kirkpatrick, S. and Selman, B. Critical behavior in the satisfiability
of random Boolean expressions. Science, 264, 1297-1301, 1994.
Li, Chu Min and Anbulagan. Heuristics based on unit propagation
and satisfiability problems. In Proc. IJCAI-97, 1997, 366-371.
Mitchell, D. and Levesque, H.J. Some pitfalls for experimenters
with random SAT. Artificial Intelligence, Vol. 81(1-2), 1996, 111-
125.
Mitchell, D., Selman, B., and Levesque, H.J. Generating hard sat-
isfiability problems. Artificial Intelligence, Vol. 81(1-2), 1996. A
previous version appeared in Proc. AAAI-92, pp. 459--465, San
Jose, CA, 1992.
Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and Troy-
ansky, L. Determining computational complexity from characteristic
`phase transitions'. In Nature, Vol. 400(8), 1999.
Morris, P. The breakout method for escaping from local minima. In
Proc. AAAI-94, 1993, 40-45.
B. Selman, H. A. Kautz and B. Cohen. Local search strategies
for satisfiability testing. In Second DIMACS Challenge on Cliques,
Coloring and Satisfiability, October 1993.
J. Slaney and T. Walsh. Backbones in Optimization and Approxi-
mation. In Proc. IJCAI-01, 2001.


