
Bettina Heim

Microsoft, QuArC

Ammonia production

•

•

• Ambient temperature and pressure

• Catalyst: Nitrogenase enzyme

FeMoco

molecule

Qubits Memory

50 16PB

Machine

Number of Atoms

Age of the Universe
C

a
lc

u
la

ti
o

n
 T

im
e

Classical

Computing

Wikipedia:
https://en.wikipedia.org/wiki/
Double-slit_experiment

Animation by

G. Mikaberidze

state

amplitude

state

amplitude

state

amplitude

state

amplitude

state

amplitude

state

amplitude

state

amplitude

state

amplitude

state

amplitude

state

amplitude

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒

state

amplitude

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒

state

amplitude

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒

state

amplitude

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒

state

amplitude

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒

state

amplitude

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒

state

amplitude

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒

state

amplitude

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒

state

amplitude

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒

state

amplitude

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒

state

amplitude

|000⟩

|001⟩

|010⟩

|011⟩

|100⟩

|101⟩

|110⟩

|111⟩

|000⟩

|001⟩

|010⟩

|011⟩

|100⟩

|101⟩

|110⟩

|111⟩ 𝑓 𝑥 = 0

𝑓 𝑥 = 1

• State of the computation:
quantum state (Schroedinger picture)

• Program description:
discrete sequence of actions (digital)

•

•

• Qubit lattice with fixed

geometry

• Fixed set of unable couplings

and fields

• program describes how field

and coupling strengths vary

over time

• can in principle be universal

Challenges on Analog Devices:

• overhead for non-native problems

• mostly restricted to quadratic optimization

• embedding and problem engineering

• limited possibility for error correction

• required coupling precision

nested quantum annealing correction

Vinci, Albash, Lidar, 2016

embedding for all-to-all two-body interactions

Lechner, Hauke, Zoller, 2015solving set cover with pairs problem by QA

Cao, Jiang, Perouli, Kais, 2016

Applications:

• NP-complete combinatorial optimization problems

• sampling and machine learning

• chemistry, biology & materials simulations

→ heuristic solver for Quadratic Unconstrained

Binary Optimization Problems

Computing by time evolution (annealing)

Program description:
discrete sequence of actions (digital)

state

10

Classical:

state

|1⟩|0⟩

Quantum:

Program description:
discrete sequence of actions (digital)

Classical: Quantum:

10 |1⟩|0⟩

state state

X-gate

Program description:
discrete sequence of actions (digital)

Classical: Quantum:

state state

X-gate

probability amplitude

10 |1⟩|0⟩

Program description:
discrete sequence of actions (digital)

Classical: Quantum:

10 |1⟩|0⟩

state state

H-gate

?

Program description:
discrete sequence of actions (digital)

Classical: Quantum:

10 |1⟩|0⟩

state state

H-gate

?

Program description:
discrete sequence of actions (digital)

⟩ + ⟩

2

⟩

⟩

Program description:
discrete sequence of actions (digital)

⟩ + ⟩

2

⟩

⟩

Input: n,φ,δ ⊲ n – T-count, Rz(φ) – target rotation
1: m ←⌊(n + 1)/2⌋+ 2

2: for k = 0,1 do

3: Lre,k ← FIND-HALVES(cos(φ−πk/8),m,δ)

4: Lim,k ← FIND-HALVES(sin(φ−πk/8),m,δ)

5: end for

6: Interval I ← [0,α] ⊲ Pick α > 0 based on Lre,k,Lim,k

7: while I ∩[0,δ] 6= ∅ do

8: Find an array A of tuples (ε,a0,b0,a1,b1,k) s.t.:

• (εre,a0,b0) from Lre,k

• (εim,a1,b1) from Lim,k

• ε = εre + εim and ε ∈ I ∩[0,δ]

9: Sort A by ε in ascending order

10: ε1 < ... < εM ← all distinct ε that occur in A

11: for j = 1 to M do

12: ∂ ← ∅
13: for all (εj,a0,b0,a1,b1) ∈ A do

14: x′ ← a0 + b0√2 + i(a1 + b1√2)

15: n0 ← MIN-T-COUNT(x′,m,k) ⊲ (computes Tk(x′/√2m)

16: if n = n0 then

17: ∂ ← ∂ ∪ALL-UNITARIES(x′,m,k) ⊲ minimal unitaries

18: end if

19: end for

20: if ∂ 6= ∅ then

21: return (εj,∂) ⊲ Solution

22: end if

23: end for

24: Replace I = [α0,α1] by I = [α1,2α1 −α0]

25: end while

26: return (δ,∅) ⊲ No solution
[Kliuchnikov, Maslov, Mosca (2014)]

⟩

⟩

Challenges:

• Detecting errors – we can’t look at

the state

• Correcting errors – an erroneous

state cannot easily be reset

• No duplication or easy comparison

of arbitrary quantum states

• The physical space within which the

computation takes place is not

clearly defined

s1 fa° g1

fa° g2

fa° g3

…

fa° g1

fa° g2

fa° g3

…

fa° g1

fa° g2

fa° g3

…

fa° g1

fa° g2

fa° g3

…

fa° g1

fa° g2

fb° g3

…
fa° g1

fa° g2

fb° g3

…

fa° g1

fa° g2

fb° g3

…

fb° g1

fb° g2

fb° g3

…

fa° g1

fa° g2

…fa° g1

fa° g2

fc° g3

…
fa° g1

fc° g2

fc° g3

fc° g1

fc° g2

fc° g3

…

fa° g1

fa° g2

fa° g3

…

fa° g1

fa° g2

fa° g3

…

fa° g1

fa° g2

fa° g3

…

fa° g1

fa° g3
fa° g1

fa° g2

fb° g3

…
fa° g1

fa° g2

fb° g3

…

fa° g1

fa° g2

fb° g3

…

fb° g1

fb° g2

fb° g3

…

fa° g1

fa° g2

fc° g3

…fa° g1

fa° g2

fc° g3

fa° g1

fc° g2

fc° g3

fc° g1

fc° g2

fc° g3

…

s2

g3

efficient enough

decoder

fault-tolerant

universal gate set

implementable

in hardware [DiVincenzo
(2009)]

space

time

(sufficiently large)

error threshold

Supporting

Libraries

User Code

Quantum

Libraries
Compiler

Classical

Compiler

Hardware

Specifications

Executable

Binary

Runtime

Environment

Quantum

Processor

Classical

Processor

Development

Environment

Compilation and

Optimization

Execution

Platform

Tools for verification

and benchmarking of

quantum algorithms

Executable

Binary

Execution

Model

Resource

Management

Error Sources

Validation

Abstraction

• Hardware

independent

formulation of

mathematical

concepts

• Algorithm

formulation on a

logical level

• Encapsulation

• Resource

requirements

• Correctness of the

algorithm

• Verifiable behavior

• Algorithmic Errors

• Approximation Errors

• Hardware Errors

• Memory management

• Asynchronous execution

• Classical processing

• Hardware specific

optimization

→ Hardware specifications

→ Classical/quantum coordination

→ Precision distribution

→ Available information

→ Context dependent dispatch

→ Performance metrics

→ Static vs. runtime

→ Heuristics

Library: variations for each quantum (sub-)routine

User code defining an algorithm, optimization of algorithmic errors

Dependency model of subroutines, constant folding, optimization of the overall error

Subroutine dispatch based on hardware, erasure of subroutine boundaries

Exploiting (de-facto) commutation relations to reduce algorithm cost

Optimization of synthesis errors

Choice of error

correction code

Determine state distillation routines (possibly dynamic)

Physical layout, “routing” (dynamic and/or look-up)

Applying or tracking error correction, communication for runtime compilation

- What is the relevant information?

- How do we obtain the necessary information?

- How do we represent that information?

- How do we use that information?

- How do we generalize this process?

Formalization of a
Quantum Computing Architecture

