C o m p u t a t i o n a l    L o g i c



Foundations of Inductive Logic Programming

S.-H. Nienhuys-Cheng , Erasmus University of Rotterdam, The Netherlands

R. de Wolf , Erasmus University of Rotterdam, The Netherlands

Inductive Logic Programming is a young and rapidly growing field combining machine learning and logic programming. This self-contained tutorial is the first theoretical introduction to ILP; it provides the reader with a rigorous and sufficiently broad basis for future research in the area. In the first part, a thorough treatment of first-order logic, resolution-based theorem proving, and logic programming is given. The second part introduces the main concepts of ILP and systematically develops the most important results on model inference, inverse resolution, unfolding, refinement operators, least generalizations, and ways to deal with background knowledge. Furthermore, the authors give an overview of PAC learning results in ILP and of some of the most relevant implemented systems.

1997 . XVII, 404 pp., Softcover ISBN 3-540-62927-0

Book category: Advanced Textbook

Publication date: Available

See:http://www.springer.de/catalog/html-files/deutsch /comp/3540629270.html

Coordinator's Report ] Computational Logic and Machine Learning ] [ BOOK ANNOUNCEMENT ] The 7th International Workshop on Inductive Logic Programming (ILP-97) ] Biomedical Applications of Computational Logic and Machine Learning ] Data Mining and Knowledge Discovery ] International Summer School on Inductive Logic Programming and Knowledge Discovery in Databases ] Frontiers of Inductive Logic Programming ] Abduction and Induction in AI ]

Home ] Automated Deduction Systems ] Computational Logic & Machine Learning ] Concurrent & Constraint Logic Programming ] Language Design, Semantics & Verification Methods ] Logic Based Databases ] Program Development ] Knowledge Representation & Reasoning ]