
Value Prediction for MPI Message-Passing Systems

Pantelis Panayiotou Yiannakis Sazeides Paraskevas Evripidou

Dept of Computer Science
University of Cyprus

CY-1678 Nicosia
Cyprus

Abstract

The predictability of various types of program information has been the subject of a plethora of work aimed to facilitate
performance increases through latency reduction and speculation. Most past studies on prediction have been in the area of
microarchitecture.

This paper attempts to characterize the predictability of data in messages exchanged in parallel applications that use
MPI message-passing protocol. Value predictors are used, drawn from the area of microarchitecture. The prediction of
data in messages can enhance the performance of message passing parallel programs through speculative execution. This
hypothesis is based on the dominance of communication latency in the overall execution time of parallel programs.

An infrastructure based on code instrumentation was developed to investigate this predictability and results are pre-
sented for five benchmarks. The results show that predictability varies depending on the program and predictor. Some
programs exhibit virtually no predictability whereas others 57–94%. Predictability is found at different levels: within a
message, across messages of the same process and across messages in different processes. The most influential - both con-
structive and destructive - component of the information vector used to predict a value in a message buffer is the offset of
the value in the buffer. The results indicate that data in MPI messages display mainly last-value and/or regularly-repeating
behavior. The data suggest that most of the observed predictability can be captured with relatively small predictors.

1 Introduction

In the past High Performance Computing (HPC) was confined to large Processors, Supercomputers or Massively Parallel
machines. Last decade’s advances in microprocessor technology and high speed networks, have made the undertaking
of HPC feasible on Networks of Workstations (NOW). Although NOWs could benefit from high speed networks such as
Myrinet [1], their great majority rely on standard networks, mainly Ethernet switches. The network performance in such
NOW configurations is a limiting factor [2]. The latest trend in high performance computing is Grid computing [3] and
web-based metacomputers [4]. The communication latency for such widespread and diverse networks can incur a severe
performance penalty.

It has been shown[5][6] that communication latency can dominate the execution of most parallel applications. This
can be attributed to network bandwidth and latency, and to message-passing software overhead. Further delay can be
encountered in the exchange of a message, if the receiving processor reaches the receive instruction before the sending
processor reaches the corresponding send instruction (see Figure 1). This situation may get worse as the number of
processors of the parallel computer increases.

There is a plethora of previous work that examines communication latency issues[7]. Prediction is a basic technique that
can be employed to reduce communication latency but has received little attention[8, 9, 10]. Communication overheads
can be reduced using speculative execution based on predicted information. This is a well known approach employed
heavily at the processor microarchitecture level to eliminate stalls or to increase instruction level of parallelism[11, 12].

Speculative execution driven by value prediction for message passing, can work in the same way as at the microarchi-
tecture level[11, 12]. The receiving process instead of waiting, uses the predicted values for speculative execution and thus
execution can move faster. Some performance penalty may be incurred in the case of misprediction since corrective action
may be needed. The potential of this approach can be significant due to the dominance of communication latency in many
message–passing applications.

1

process p

process q

Process q
issues message
recv request

Process p
issues message

send request

Process p
completes message
send operation

Process q
completes message
recv operation

(a)

(a)(c)(b)

time

Figure 1: An example of communication delays because of (a) message-passing software overhead, (b) having the receiving
process reach the recv instruction before the sending process reaches the send instruction, and (c) network latency and
bandwidth. In this example, processes p and q exchange a message using point-to-point communication.

1.1 Motivation: How Value Prediction can drive speculative execution in Message-Passing Pro-
grams

Figure 2 illustrates how value prediction could be used to reduce the total execution time of an MPI application. Part (a)
of Figure 2 shows a scenario where an MPI process p receives some data from several other processes, and subsequently
makes several calculations on that data to produce a result. This data will arrive in the form of several MPI messages, and
p will have to idle until all messages have arrived in its receive buffer. The total execution time for p can be expressed as:

� ����� � ������ �����

Where ����� is the time spent for communication, while p remains idle, and ����� is the time p spends doing
actual work (the computation time). Note that, as said in Section 1, ����� can be longer than ����� (communication
time usually dominates the execution of parallel applications).

Prediction could be used to speed up the execution time of p, as shown in part (b) of Figure 2. Process p does not
wait for the messages to arrive, but rather speculatively receives the data, using a value predictor. It then proceeds with the
calculations using the predicted data. Subsequently, when it receives the actual messages and, in case of mis-speculation,
it performs the necessary calculations only on the differences. The total execution time for p becomes:

�	
� � ���

� �	����� �	����� ������

���

 is the time taken by the predictor to deliver the predicted data. ���

 is expected to be short. �	���� is the
time taken to perform the calculations on the predicted data (note that this should be equal to �����). �	���� is the new
communication time, where p idles waiting for the real data to arrive. This is expected to be shorter than �����, since
time has already passed during ���

 and �	����. Finally, ������ is the time spent by p to perform new calculations
on the real data, in case of mis-speculation.

One can argue that, with high prediction accuracy, the above can be beneficial to the total execution time of process
p: ������ is expected to be shorter than ����� since the mis-speculated data will be fewer than the real data. This will
depend on the prediction rate, the programmer, and the problem at hand.

Note that this work only investigates the predictability of data in MPI messages; it does not investigate the potential
with speculative execution.

This paper characterizes the predictability of data in messages of MPI Message-Passing Systems. A simulation infras-
tructure that uses code instrumentation was developed to study this predictability. Value predictors are used, drawn from
the area of microarchitecture. The analysis focuses on five benchmarks that utilize the MPI standard.

An information vector that may influence the predictability of the data in MPI messages is derived from the messages’
structure and program information. An empirical analysis is performed aimed to (a) determine the extend of predictability
with different predictors, and (b) isolate the most influential components of the information vector used for prediction. Pre-

2

Ti
m

e

Tc
om

m
Tc

om
p

Tn
co

m
p

Tn
co

m
m

Tp
co

m
p

TpredCommunication time for p

Computation time for p

Time spent to make data prediction

Computation time for p,

on the predicted data

New communication time for p

predicted data and the real data

on the differences between the

Computation time for p,

Total execution time for process p,
using predictionwithout using prediction

Total execution time for process p,

(a) (b)

Figure 2: A scenario for speculative execution driven by by data-value prediction in an MPI application

dictability is investigated at different levels: within messages, across messages of the same processes and across messages
of different processes.

The results suggest that predictability exists in some but not all of the programs examined. The data also show that only
a part of the information vector is useful for higher predictability. The results indicate that small predictors are sufficient
to capture most of the predictability.

1.2 Overview

Section 2 reviews related work. Section 3 discusses the design space for the information vector used to predict data in MPI
messages. This Section includes an overview of the structure of MPI messages and elaborates on various prediction issues
such as granularity and architecture. The experimental framework is presented in Section 4. The empirical results and their
discussion is the subject of Section 5. Conclusions and future work are in Section 6.

2 Related Work

2.1 MPI

The two fundamental models for Parallel Processing synchronization are: Shared Memory and Message Passing. In the
shared memory model all synchronization takes place through access to the shared memory. In the Message Passing model
all the communication and synchronization takes place through the exchange of messages. The message passing model
has been traditionally associated with the distributed memory multicomputer systems. Such systems consist of a number
of computers connected via a message passing network. The main advantage of the message passing multicomputers is
the scalability, and their main disadvantage is the overhead introduced by the movement of large amounts of data in the
form of messages. In the early days of distributed memory multicomputers every manufacturer was developing their own
version of message-passing libraries. That was followed by the development of portable message passing libraries that
were ported to multicomputers of various manufacturers [7]. The Message Passing Interface (MPI) forum [13], a coalition

3

of volunteers from industrial, academic, and governmental organizations, develop the MPI standard which is essentially a
third generation system.

In the Message Passing parallel model an application is divided into a number of processes that are executed in parallel.
The synchronization and communication among these processes is done through the exchange of messages. MPI is the
defacto Message Passing standard [7]. It is also becoming the defacto standard for Grid computing [3]. MPI establishes a
practical, portable, efficient, and flexible standard for message passing. It is defined as a set of processes using only local
memory, where processes communicate by sending and receiving messages. MPI is a very rich library with more than 100
functions. The communication part of MPI consists of the usual point-to-point communication as well as collective com-
munication/operations. It supports both synchronous and asynchronous communication. The concept of a communicator
is used to support communication among the processes. A communicator is a virtual network in which each process has
a unique identification number to allow communication with each other. Existing implementations of programming envi-
ronments for clusters are built on top of a point-to-point communication layer (send and receive) over local area networks.
MPI bindings exist for all major programming languages (FORTRAN, C, C++, Java).

2.2 Prediction

Performance is the main motivation for employing predictive techniques in high performance processors. Predictability
can drive speculative execution[11] - execution based on predicted information - allowing computations to proceed to
execution prior to the deterministic (non-speculative) computation of preceding required information.

Predictability has been considered for architectural and non-architectural information. Examples of architectural infor-
mation are branch directions[11], branch targets[14], addresses[15], values[16], dependences[17], and coherence protocol
information[18]. Examples of non-architectural information are cache bank conflicts[19], cache misses[19], and cache
way[20].

Predictability of a sequence is determined by the sequence itself and the predictor used to predict the sequence[21].
Therefore an understanding of the sequence behavior can be essential for choosing an accurate predictor. This work can
draw from a wealth of work in computer architecture that examined the behavior and predictability of program information.

Predictability is measured in terms of a particular predictor. Virtually all predictors used in computer architecture can
be classified into two categories[22]: computational and context-based. Other types of predictors exist and are the subject
of other fields of studies but are beyond the scope of this paper. Computational predictors predict the next value based on
a computation using previous values. Whereas context-based predictors learn the value(s) that follow a particular context,
a finite sequence of values, and predict one of the values when the context repeats. These two classes of predictors are
mainly aimed to capture the following behaviors: stride - e.g. 1 2 3 4 5 6 ... - and regularly repeating - e.g. 7 -3 1 5 7 -3 1
5

Some research has focused on the investigation of the actual sources of predictable information in programs[23]. These
have shown that the observed predictability is mainly due to program structure not input data.

An orthogonal but very relevant notion to predictability is confidence estimation[24]: assigning likelihood for (in)correctness
for a prediction. This may be necessary to employ when prediction accuracy is low and/or the cost of mis-prediction is
high.

This work attempts to characterize the predictability of the data in MPI messages, based on the assumption that MPI
messages behave similarly to other types of program information. Consequently, the class of predictors considered are
drawn from computational and context-based predictors. In this paper we do not attempt to formalize the causes of the
observed predictability but rather isolate the information vector that influences it.

2.3 Prediction and Message-Passing

The use of prediction for message-passing systems has been considered before. For example, it has been shown that
parallel programs which use the message-passing model exhibit communication locality[5]: When a source-destination
pair is used in a communication event, it has a high probability to be re-used in the near future or in a portion of code
”near” the place that it was used earlier. Based on this observation, prediction techniques can been developed that help
avoid re-buffering of incoming messages in MPI systems, by predicting their user-space destination before they arrive[8].
Similar predictors have also been proposed to help avoid re-configuration delays in a reconfigurable optical interconnect
network with N nodes and k (possible) direct connections between them[10][9]: the connections between the nodes that
will be needed in future communication events are predicted before these events take place, thus reducing the time spent
for network re-configuration.

4

To the best of our knowledge no previous study has considered the use of value prediction for message-passing systems,
to reduce communication time via speculation.

3 Design Space: What influences the Predictability of Data in MPI Messages

In general, two important decisions influence the predictability of a sequence[21]:

� what is an element of the sequence. This will determine the granularity of prediction, i.e. the amount of information
predicted at a time, and

� what is the information vector used to predict each element in the sequence

Since in this paper we are concerned with the predictability of data in MPI messages it is important first to understand the
structure of MPI messages and then derive the possible information that may influence the predictability of its data.

3.1 Structure of MPI Messages

MPI provides two distinct communication patterns: Point-to-point communication, where two processes exchange data
between them, and collective communication, where data is exchanged between an arbitrary number of processes (usually
more than 2).

Point to Point MPI Operations

Typical MPI operations that perform point to point communication between two processes, say �� and ��, are:

� MPI Send and MPI Recv: data of process �� is transmitted to process ��.
� MPI ISend and MPI IRecv: data of process �� is transmitted to process ��, but in a non-blocking fashion.
� MPI Sendrecv: data of process �� and data of process �� are swapped.
� MPI Sendrecv replace: data of process �� and data of process �� are swapped and replaced.

Collective MPI operations

Typical MPI operations that perform collective communication between a set of processes, say � � ���� ��� ��� ���� �	�
are:

� MPI Bcast: data of a ”root” process (which is a member of �) is sent to all processes in �.
� MPI Reduce: data of process ��, for each �� in �, are used to calculate a result (using an operation, such as sum,

maximum or minimum), which is then sent to a ”root” process, member of �.
� MPI Allreduce: same as MPI Reduce, with the difference that the resulting data is received by all processes in �.
� MPI Gather: data of process ��, for each �� in �, are concatenated and sent to a ”root” process, member of �.
� MPI Scatter: data of a ”root” process (member of �) is broken up to n parts,
��
�� ����
	, each of which is sent to
��� ��� ���� �	 respectively.

� MPI Allgather: same as MPI Gather, with the difference that the gathered data is received by all processes in �.

MPI Message Contents

An MPI message, whether it responds to a collective or a point-to-point operation, typically consists of two parts:

� The actual data that will be transmitted - the predictability of these data is the focus of this paper.
� An envelope, which contains meta-information on the message’s data, and the necessary information for the com-

munication to take place.

The message data is typically an array of values, stored in a memory buffer and accompanied by meta-information,
which includes its datatype, the buffer’s location in memory, and the buffer’s size. MPI includes support for 13 basic
datatypes, eleven of which correspond to the standard C variable types, plus the MPI BYTE type, usually used for the
communication of raw data between nodes with a different architecture, and the MPI PACKED type.

MPI provides mechanisms to allow non-contiguous data to be transmitted in a single message using packing and derived
datatypes. Packing involves storing arrays of non-contiguous data in a contiguous buffer and then transmitting it using the

5

MPI PACKED datatype. The buffer is then un-packed to the original non-contiguous data by the receiving process. The
derived datatypes method allows the ad-hoc creation of new, complex datatypes by the programmer. Essentially, a derived
datatype is a sequence of pairs �����
��� ����
��� ���� ��	�
	�� where �� is a basic datatype and
� is a displacement into
the buffer.

Finally, the envelope of an MPI message contains all the information required for the communication to take place. For
brevity, henceforth we will refer to this information as the message’s communication context. It includes (at a minimum) the
rank of the sending process, the rank of the receiving process, and a communicator. A communicator is simply the identifier
of a collection of processes that can send messages to each other. A process rank is an integer that uniquely identifies a
process within the scope of a communicator. Therefore, a process rank is of consequence only if it is accompanied by a
communicator. The envelope of some point-to-point operations also includes a tag, which is an integer that can be used
to identify the operation that the message corresponds to. Since MPI messages can be delivered asynchronously, tags are
used to distinguish sequences of point-to-point operations with otherwise identical communication contexts.

Based on the above understanding the next three subsections discuss various issues regarding the prediction of MPI
messages data: the granularity of prediction, the information vector used to read and train a predictor, and various options
for prediction architecture.

3.2 Prediction Granularity

At least two possibilities exist regarding the granularity of prediction of MPI message data: either the data can be treated
as an atomic unit or be broken to smaller subparts. Since, in most cases, the data in an MPI message is in the form of an
array of values, we opted for the second choice because it allows examination of predictability at a finer granularity within
a message. This may be helpful to establish if correlations exist within elements of a message’s data buffer.

Consequently to predict one message’s data several smaller predictions are made. For example, the data in messages
with basic data types (e.g. MPI CHAR, MPI INT, MPI FLOAT, ...) is in the form of an array of values and a prediction
will be performed for each array element.

Special treatment may be needed for the handling of messages with derived data types and MPI PACKED data type. For
example, messages with derived data types can be broken up into smaller messages, one for each of their basic datatypes
and subsequently treated as distinct messages. Messages with the MPI PACKED data type can be treated as bearers of
raw data. The specific choices made in this work for the handling of derived and packed message types are discussed in
Section 4.2.

3.3 Information Vector

Based on the the structure of an MPI message an information vector will be derived that can be used for reading and
training an MPI message data predictor. The general philosophy behind the use of a particular information type is to
enable the predictor to distinguish between different data values in a message buffer. Such a distinction is important to
avoid destructive aliasing during prediction [25]. Conversely, the omission of a component may be beneficial to prediction
when different message elements exhibit identical behavior (constructive aliasing).

The following information, extracted from the the structure of MPI messages, may be influential - constructive or
destructive - to the predictability of data in a message:

� The communication context of the message. This includes the rank of its sender process, the rank of its receiving
process, and the communicator they refer to. Note that the sender process rank does not provide useful information
for some MPI operations (such as MPI Gather, where information is sent by all processes in a communicator). In
such cases, the rank of the sender process can be ignored and instead characterize the communication context of the
message only by its receiving process and communicator.

� The datatype of the message, e.g. MPI CHAR, MPI INT, MPI FLOAT, etc.
� The type of the MPI operation that the message responds to, e.g. MPI Send / MPI Recv, MPI Bcast, MPI Gather,

etc.
� The position of the memory buffer where the message’s data is stored in the receiving process’ address space,

hereafter referred to as the memory position.
� The offset of the value to be predicted in the message’s data buffer. Note that when the offset is part of the information

vector used to obtain a prediction, it prevents a predictor from observing predictability within elements of a particular
buffer. The use of the offset is aimed to capture predictability across messages for elements with the same offset.

6

In addition to the above we also considered the position of the MPI operation that receives the message, in its receiving
process’ address space, hereafter referred to as the program position. This position is not part of the MPI message itself,
but provides basic information about the control flow that leads to the reception of a particular message. This may be
important since messages at different locations in an MPI program may exhibit different behavior. It may also be helpful
to distinguish between messages with identical envelopes and data buffers.

3.4 Prediction Architecture: Local vs Global Prediction

There are several prediction architectures that can be employed to measure the predictability of data in MPI messages.
Probably the most basic architecture is one that employs a separate predictor for each program position of an MPI operation
that receives a message. In this scenario, if there are p processes and each process contains m program positions then p x
m predictors will be used. Each time a message is received, the predictor associated with the program position is used to
predict all elements in the message. This scheme is referred to as Per-Message-Prediction.

Alternatively, a predictor can be used to predict the data in all messages received by one process (i.e. there are only
as many predictors as number of processes). We refer to this scheme as Local-Prediction. This scheme may be at a
disadvantage, as compared to Per-Message-Prediction, when predictor capacity is an issue - since one local-predictor
needs to learn information for all messages in a process. However, Local-Prediction may exploit redundant information
contained in different messages received by the same process.

A third option, is a Global-Prediction scheme where one predictor is used to predict data for all messages in all
processes. This scheme represents possibly not a realistic scheme - since such global view of the messages may be not
practical or desirable in real time. But its performance may reveal the amount of predictability across messages sent to
different processes.

In the experimental section we explore the performance of Local and Global schemes.

4 Experimental Framework

4.1 Benchmark Suite

We have experimented with five different MPI applications. Three of them are simple parallel programs which solve simple
mathematical problems, with pseudo-random numbers (integers or floating-point, depending on the application) as their
input data. These are fox (a parallel implementation of Fox’s algorithm for multiplying two NxN matrices)[26], bitonic (an
implementation of the parallel bitonic sorting algorithm)[26], and jacobi (a parallel implementation of Jacobi’s method for
solving systems of linear equations)[26]. The other two are real-life MPI applications, available in the public domain. The
first, pov-mpi[27] is a parallel version of the well-known ray tracing engine Pov-Ray. The second is a parallel version of
the bladeenc[28] audio MPEG encoder. Both applications were fed with realistic input data (a 3D scene description file in
the case of pov-mpi, and a 50 MB .wav file in the case of bladeenc). Table 1 provides information for each benchmark and
its data set.

Name Input Output
fox two 1024x1024 matrix, populated by random inte-

gers, ranging from 0 to 100000
a 1024x1024 matrix that contains the product of
the input matrices

bitonic an array, containing 1000000 integers, ranging
from 1 to 100000

The input array, sorted in ascending order

jacobi a 512x512 and a 1x512 matrix, which represent a
system of 512 linear equations

a 512x1 matrix that contains the solution to the
input system

bladeenc a 50 MB uncompressed audio file (16-bit samples,
44 KHz rate), in .wav format

a 4 MB compressed audio file (in 128 Kbps MP3
format)

pov-mpi a 20 KB text file that contains the description and
textures of a 3D scene representing a flying teapot

a 2000x16000 image of the input 3D scene, in un-
compressed .tga format

Table 1: Benchmarks Characteristics

7

4.2 Simulation Infrastructure

Program
Original MPI

Modified MPI

Program

Preparation
Module

 .
 .
 .
.

P1 P2

P3

Pn

Server
Module

File or StdOut

 predictors, to characterize the data in these
4. The server module uses LVP, SP and CBP
 using TCP/IP sockets

 finally recorded to a file or stdout
5. The predictability of the MPI application is
 messages

 received MPI message to the server module,
3. The processes (being modified) send each
 processes which exchange MPI messages
2. Run modified MPI program − it spawns multiple
 module
1. Pass original MPI program through preparation

Overview of Simulation Infrastructure

(1)

(2)

(5)

(3)
(4)

Figure 3: Overview of Simulation Infrastructure

To perform the experimentation, a simulation infrastructure was developed that is able: (a) to extract the messages
exchanged between the processes of an MPI application during run-time, (b) use a set of predictors to characterize pre-
dictability, and, (c) store and analyze the results. Figure 3 provides an overview of the simulation engine developed and
used for this study.

The engine is composed of 4 distinct modules: preparation, server, scheduler and analysis. The preparation module is
written in C with the help of the GNU flex lexical analyzer. It automatically scans the contents of the benchmarks source
files, inserting instrumentation code after each MPI call that results to a message being received (most point-to-point and
collective operations are supported). This code uses standard TCP/IP sockets to send the message’s envelope and data to
the server module of our engine. The preparation module currently supports C and C++ source files, but it can be easily
extended to include other programming languages, such as Fortran.

The server module is an application written in C++ and includes the implementation of the predictors used in this work.
It behaves as a standard TCP/IP server application, binding itself to a port and continuously accepting the messages that the
processes of a (previously altered by the engine’s preparation module and re-compiled) MPI application exchange during
its life-time. Upon the acceptance of a message, it predicts its elements using the predictors, keeping the results in its local
memory. Upon program termination, the results are written to a file.

The server module is parameterized to specify, among other things, the information vector used by the predictors (see
Section 4.3). The scheduler module is a shell script that allows to define the set of MPI applications to be tested, along
with different predictor configurations. The analysis module is a set of scripts used to summarize the data stored by the
server module and generate different graph types.

Handling of Derived and Packed Message Types

Messages with derived data types are broken up into smaller messages, one for each of their basic datatypes. For example,
a message with the derived data type ����� ���� ��� ���� ������ ���� ���� ����� �	�� and a 30-byte buffer

8

is broken up into 3 messages, whose data is characterized by the following sizes and data types �.
First message: an array of 4 values of type MPI INT.
Second message: an array of 2 values of type MPI FLOAT.
Third message: an array of 6 values of type MPI CHAR.
Messages with the MPI PACKED data type are treated as bearers of raw data, arrays of words (whose size depends on the
architecture the MPI application is running on). This is specific to the implementation of MPI we were using, which does
not provide a mechanism to decode data in an MPI PACKED buffer. We recognize that the above transformations may
impair the success rate of predictors.
Note that in the test platform� two thirds of the basic MPI datatypes correspond to C datatypes with one word size.

4.3 Predictors

The predictability of the data in MPI messages was measured using three types of predictors: Last Value[16], Stride[15]
and Context-Based[22].
The last value (LVP) predictor consists of a fully associative table with replacement guided by LRU. Each entry contains a
tag and a prediction. Each tag contains an unhashed information vector used to access the table. The prediction field holds
a value associated with a particular information vector. After a misprediction, the prediction in an entry is replaced with
the correct value.
The stride predictor (SP) is similar to the last-value, with an additional field that contains the difference (stride) between
two consecutive values. The prediction for a stride predictor is computed as the sum of the prediction field and the stride
field.
The context-based predictor (CBP) consists of two tables. Each first level table entry contains a tag, an unhashed informa-
tion vector used to access the first level table, and a context - n most recent values associated with the tag. The first level
table is accessed to obtain a context that is used to index the second table. The second level table that contains a tag and a
prediction. The tag in a second level table entry contains the context of a first level table entry.

For all predictors, when there is a tag mismatch - i.e. no entry matches the information vector used to access the
prediction table - a prediction is considered incorrect.

We recognize that the predictor organization may be engineered in more efficient manner but the purpose of this paper
is mainly to characterize the data predictability of MPI messages not to propose efficient predictors. The use of fully
associative tables allows the removal of predictor idiosyncrasies due to aliasing and hashing.

In the experimentation unless indicated otherwise: (a) each predictor table contains 256K entries, (b) for each bench-
mark the best performing information vector is used (c) for the context-based predictor a context contains four previous
values, and (d) the prediction architecture is local (i.e. one predictor per process).

5 Results

5.1 Benchmarks Runtime Behavior

Some of the run time characteristics of the various benchmarks are shown in Table 2. The inputs of the applications were
selected in a way that the volume of data exchanged during their run-time (with a 4 process configuration) is similar. More
specifically, fox, bitonic and jacobi exchange 3.8-4.7 million data values, and bladeenc and pov-mpi exchange 16.9-24.3
million. The amount of exchanged messages ranges between 15 and 32816. When run with more processes (configurations
with 8 and 16 processes have been tested) the amount of data values increases either linearly (fox and bitonic) or remains
the same (jacobi, bladeenc and pov-mpi).

The applications exchange data mainly of types MPI INT, MPI FLOAT, MPI CHAR and MPI SHORT and perform
both point-to-point (fox, bitonic, bladeenc, pov-mpi) and collective communication (fox, jacobi). The aggregate number of
unique program positions of MPI operations and memory positions of data buffers in the MPI processes’ address space is
relatively small (except in the case of fox which has 3084 unique memory positions).

�The sizes of the arrays are calculated by the displacement information in the message’s derived data type, and the sizes of MPI INT (4 bytes),
MPI FLOAT (4 bytes) and MPI CHAR (1 byte) for the Intel 80386 architecture. In different architectures these sizes may be different.

�An SMP Intel 80x86 machine, running RedHat Linux 7.2, LAM/MPI 6.5.4 and GCC 2.96.

9

Fox Bitonic Jacobi Bladeenc Pov-mpi
Total Messages (4 procs) 7700 15 32816 207 2409
Total Data Values (4 procs) 3932180 3750000 4720664 24325416 16898238
Total Messages (8 procs) - 55 65632 256
Total Data Values (8 procs) - 6875000 4720688 24408495
Total Messages (16 procs) 19344 175 131264 344
Total Data Values (16 procs) 4915344 10937500 4720736 24556151
Values per Data Type (4 procs)
MPI CHAR - - - 3679099 145343
MPI SHORT - - - 20646144 -
MPI INT 20 3750000 16 173 24180
MPI FLOAT 3932160 - 4720648 - 16728715
Values per Operation (4 procs)
MPI Recv 3932160 750000 - 24325416 16898238
MPI Sendrecv - 3000000 - - -
MPI Sendrecv replace 8 - - - -
MPI Bcast 12 - 24 - -
MPI Scatter - - 525312 - -
MPI Allgather - - 4195328 - -
Memory Positions (4 procs) 3084 4 28 72 12
Program Positions (4 procs) 14 5 56 11 4

Table 2: Benchmarks Runtime MPI Characteristics

5.2 Overall Data Value Predictability of MPI Messages

The predictability results for each benchmark for the three predictors are shown in Figure 4. The results show that value
predictability in MPI messages varies across benchmarks. The prediction rate for fox and bladeenc is near zero, while for
the rest of the applications the prediction accuracy ranges between 46 % – 94 % for LVP, for SP 41–94 %, and for CBP
36–94 %.

In most cases CBP seems to exhibit the highest success rate, followed by LVP. SP’s rate is marginally lower than LVP.
Thus, we can speculate that the exchanged messages contain mostly regularly-repeating (e.g. 1, 4, 7 , 1, 4, 7, ...) and
last-value sequences (e.g. 2, 2, 2, ...), but not stride sequences (e.g. 1, 2, 3, ...) and therefore, in most occasions SP works
as an LVP with a longer learning-time.

The only exception to the above trends is bitonic. For this benchmark LVP performs considerably better than CBP.
This can be explained by considering that this program’s input is an array of 1000000 integer values, which range between
0 and 100000. Based on the bitonic sorting algorithm the program is expected to communicate these integers in arrays
which contain either unsorted sequences (hardly predictable), or sorted sequences (very predictable). Because of the data
set used, the sorted sequences are expected to contain same-value sub-sequences, with average length converging to 10.
Based on the learning times[22] of our predictors (1 observed value for LVP, 2 for SP, and 4 for CBP) we can deduce that,
for such sequences, the success rate of each predictor is expected to be: 90 % for LVP, 80 % for SP and 60 % for CBP.
This is in agreement with the obtained results for bitonic shown in Figure 4.

5.3 Local Versus Global Prediction

The predictability of global and local prediction architectures for all three predictors is depicted in Figure 5. Recall that
global prediction architecture uses one predictor for all processes whereas local uses one for each process. The results
show that the predictors’ success rates for these two cases are very similar, with that of global-prediction being marginally
higher. This may suggest either or both of the following:

� Most predictability can be found between messages received by the same process, as opposed to messages received
by all processes.

� The prediction rate for global-prediction could be higher but is limited by the predictors’ capacity.

Further investigation revealed that capacity is probably not an issue. Because (a) similar behavior to the above was
observed for various predictor sizes (1K, 8K, 64K and 256K entries), and (b) in a global-prediction scheme if capacity was
an issue its prediction rate would fall more rapidly than that of local-prediction as predictor sizes decrease.

10

fox jacobi bitonic bladeenc pov-mpi
Benchmarks

0

20

40

60

80

100

P
re

d
ic

ti
on

 R
at

e
(p

er
ce

n
t)

LVP
SP
CBP

Figure 4: Overall Predictability

For bitonic global prediction achieves higher accuracy than local-prediction with large predictor sizes. Specifically,
prediction rate is 4 - 12 % higher with predictor sizes of 256K entries, while for smaller sizes there is no significant
difference. This may suggest that global-prediction scheme can achieve better results than local-prediction but is limited
by capacity problems. This may also be true for other benchmarks and future work should consider the behavior with
larger sizes.

In the remaining discussion we focus on the three benchmarks that exhibited data predictability: bitonic, jacobi and
pov-mpi.

5.4 Information Vector Combinations

In Section 3 an information vector was defined that may influence the predictability of a data value in an MPI message. It
includes: the offset in the message’s data buffer, the communication context, the program position, the memory position,
the datatype, and the MPI operation.

These can be viewed as six binary variables that can lead to sixty-four combinations of information vectors. Each
combination was tested with all benchmarks to assess which vector component(s) is (non)influential to predictability.
Figures 6–8 show the prediction rate for each benchmark for all three predictors for these sixty-four combinations. A
configuration is represented by a binary six-tuple in the x-axis. A one in a tuple means that the variable it corresponds to
is used in the information vector. The order of the variables in the tuples from bottom to top correspond to the above order
of variable presentation. For example the data value offset corresponds to the bottom variable in the graph, and therefore
the first 32 configurations do not include the offset whereas the last 32 do.

Overall, the results suggest that the data value offset is the most influential component of the information vector. It
affects the success rate of all predictors and applications, either constructively or destructively. This dual behavior can be
explained by considering two scenarios that can lead to predictable behavior. In the first, a message can be predictable
because the values in its buffer are predictable. In the second, a message is predictable because values at the same offset
across messages exhibit predictability. For the first scenario the use of the offset can be destructive whereas for the second
the use of the offset can be constructive. The results show that value predictability is also sensitive to the communication
context, program position, and memory position. We now proceed to analyze the prediction behavior for each benchmark
with the different information vector configurations.

11

fox jacobi bitonic bladeenc pov-mpi

Benchmarks

0

20

40

60

80

100

Pr
ed

ic
tio

n
ra

te
 (p

er
ce

nt
)

Global LVP
Global SP
Global CBP
Local LVP
Local SP
Local CBP

Figure 5: Global vs Local Predictability

Bitonic

In bitonic, Figure 6, prediction rates for LVP, SP, and CBP are at 73 %, 57 % and 34 % respectively, when offset is not used.
This suggests that data within message buffers contains mostly same-value sequences, which are captured with different
success rates by different predictors because of their respective learning times. This assumption agrees with our analysis
in section 5.2. When offset is used, prediction rate for LVP drops to 13 % while for SP it drops to 0 %. This suggests
that some last-value sequences, but no stride ones, are found across all messages of this benchmark. These sequences
must be short (2 data values long) otherwise SP would have been able to predict some of them. When both offset and
communication context are used, CBP exhibits its lowest prediction rate (26 %). On the other hand, when offset is used
and communication context is not used CBP exhibits its highest (36 %). This may indicate that:

� Regularly-repeating patterns exist across all messages, since the success rate of CBP is in both cases higher than that
of LVP in this configuration.

� These patterns are more frequent across messages exchanged by different processes.

Jacobi

In jacobi, Figure 7, prediction rate for CBP is at 94 % when offset is not used, while prediction rates for LVP and SP
are around 88 %. This suggests that many same-value sequences exist within the application’s messages. Some regularly-
repeating but not same-value sequences also exist, since the success rate for CBP is higher than those of LVP and SP. When
offset is used, the prediction rate of CBP drops marginally (88 %), which suggests that regularly-repeating sequences are
found across messages.

The behavior of LVP and SP when offset is set is noteworthy. The prediction rate of LVP drops to 50 % when program
position and memory position are not used, while it drops to 0 % when memory position is not used but program position is
set. The prediction rate of SP drops to 6 % when both program position and memory position are not set, while it remains
at 88 % when program position is used and memory position is not set. When both program position and memory position
are set, prediction rate for both predictors remains at 88 %, while it rises to 94 % when program position is not used and
memory position is set. This may point to the following:

� Memory position increases the prediction rate for both LVP and SP. This leads to the conclusion that many same-
value sequences exist across messages that place incoming data to the same memory locations (both predictors can
find same-value sequences).

� Program position either increases or does not affect the prediction rate for SP, while it lowers it for LVP. This leads
to the conclusion that stride sequences exist across messages which correspond to the same MPI operation.

12

0_
0_

0_
0_

0_
0

0_
0_

0_
0_

0_
1

0_
0_

0_
0_

1_
0

0_
0_

0_
0_

1_
1

0_
0_

0_
1_

0_
0

0_
0_

0_
1_

0_
1

0_
0_

0_
1_

1_
0

0_
0_

0_
1_

1_
1

0_
0_

1_
0_

0_
0

0_
0_

1_
0_

0_
1

0_
0_

1_
0_

1_
0

0_
0_

1_
0_

1_
1

0_
0_

1_
1_

0_
0

0_
0_

1_
1_

0_
1

0_
0_

1_
1_

1_
0

0_
0_

1_
1_

1_
1

0_
1_

0_
0_

0_
0

0_
1_

0_
0_

0_
1

0_
1_

0_
0_

1_
0

0_
1_

0_
0_

1_
1

0_
1_

0_
1_

0_
0

0_
1_

0_
1_

0_
1

0_
1_

0_
1_

1_
0

0_
1_

0_
1_

1_
1

0_
1_

1_
0_

0_
0

0_
1_

1_
0_

0_
1

0_
1_

1_
0_

1_
0

0_
1_

1_
0_

1_
1

0_
1_

1_
1_

0_
0

0_
1_

1_
1_

0_
1

0_
1_

1_
1_

1_
0

0_
1_

1_
1_

1_
1

1_
0_

0_
0_

0_
0

1_
0_

0_
0_

0_
1

1_
0_

0_
0_

1_
0

1_
0_

0_
0_

1_
1

1_
0_

0_
1_

0_
0

1_
0_

0_
1_

0_
1

1_
0_

0_
1_

1_
0

1_
0_

0_
1_

1_
1

1_
0_

1_
0_

0_
0

1_
0_

1_
0_

0_
1

1_
0_

1_
0_

1_
0

1_
0_

1_
0_

1_
1

1_
0_

1_
1_

0_
0

1_
0_

1_
1_

0_
1

1_
0_

1_
1_

1_
0

1_
0_

1_
1_

1_
1

1_
1_

0_
0_

0_
0

1_
1_

0_
0_

0_
1

1_
1_

0_
0_

1_
0

1_
1_

0_
0_

1_
1

1_
1_

0_
1_

0_
0

1_
1_

0_
1_

0_
1

1_
1_

0_
1_

1_
0

1_
1_

0_
1_

1_
1

1_
1_

1_
0_

0_
0

1_
1_

1_
0_

0_
1

1_
1_

1_
0_

1_
0

1_
1_

1_
0_

1_
1

1_
1_

1_
1_

0_
0

1_
1_

1_
1_

0_
1

1_
1_

1_
1_

1_
0

1_
1_

1_
1_

1_
1

Configurations

0

20

40

60

80

100

Pr
ed

ict
ion

 ra
te

(p
er

ce
nt

)

LVP
SP
CBP

Figure 6: Predictability for various Information Vectors – Bitonic

0_
0_

0_
0_

0_
0

0_
0_

0_
0_

0_
1

0_
0_

0_
0_

1_
0

0_
0_

0_
0_

1_
1

0_
0_

0_
1_

0_
0

0_
0_

0_
1_

0_
1

0_
0_

0_
1_

1_
0

0_
0_

0_
1_

1_
1

0_
0_

1_
0_

0_
0

0_
0_

1_
0_

0_
1

0_
0_

1_
0_

1_
0

0_
0_

1_
0_

1_
1

0_
0_

1_
1_

0_
0

0_
0_

1_
1_

0_
1

0_
0_

1_
1_

1_
0

0_
0_

1_
1_

1_
1

0_
1_

0_
0_

0_
0

0_
1_

0_
0_

0_
1

0_
1_

0_
0_

1_
0

0_
1_

0_
0_

1_
1

0_
1_

0_
1_

0_
0

0_
1_

0_
1_

0_
1

0_
1_

0_
1_

1_
0

0_
1_

0_
1_

1_
1

0_
1_

1_
0_

0_
0

0_
1_

1_
0_

0_
1

0_
1_

1_
0_

1_
0

0_
1_

1_
0_

1_
1

0_
1_

1_
1_

0_
0

0_
1_

1_
1_

0_
1

0_
1_

1_
1_

1_
0

0_
1_

1_
1_

1_
1

1_
0_

0_
0_

0_
0

1_
0_

0_
0_

0_
1

1_
0_

0_
0_

1_
0

1_
0_

0_
0_

1_
1

1_
0_

0_
1_

0_
0

1_
0_

0_
1_

0_
1

1_
0_

0_
1_

1_
0

1_
0_

0_
1_

1_
1

1_
0_

1_
0_

0_
0

1_
0_

1_
0_

0_
1

1_
0_

1_
0_

1_
0

1_
0_

1_
0_

1_
1

1_
0_

1_
1_

0_
0

1_
0_

1_
1_

0_
1

1_
0_

1_
1_

1_
0

1_
0_

1_
1_

1_
1

1_
1_

0_
0_

0_
0

1_
1_

0_
0_

0_
1

1_
1_

0_
0_

1_
0

1_
1_

0_
0_

1_
1

1_
1_

0_
1_

0_
0

1_
1_

0_
1_

0_
1

1_
1_

0_
1_

1_
0

1_
1_

0_
1_

1_
1

1_
1_

1_
0_

0_
0

1_
1_

1_
0_

0_
1

1_
1_

1_
0_

1_
0

1_
1_

1_
0_

1_
1

1_
1_

1_
1_

0_
0

1_
1_

1_
1_

0_
1

1_
1_

1_
1_

1_
0

1_
1_

1_
1_

1_
1

Configurations

0

20

40

60

80

100

Pr
ed

ict
ion

 ra
te

(p
er

ce
nt

)

LVP
SP
CBP

Figure 7: Predictability for various Information Vectors – Jacobi

13

0_
0_

0_
0_

0_
0

0_
0_

0_
0_

0_
1

0_
0_

0_
0_

1_
0

0_
0_

0_
0_

1_
1

0_
0_

0_
1_

0_
0

0_
0_

0_
1_

0_
1

0_
0_

0_
1_

1_
0

0_
0_

0_
1_

1_
1

0_
0_

1_
0_

0_
0

0_
0_

1_
0_

0_
1

0_
0_

1_
0_

1_
0

0_
0_

1_
0_

1_
1

0_
0_

1_
1_

0_
0

0_
0_

1_
1_

0_
1

0_
0_

1_
1_

1_
0

0_
0_

1_
1_

1_
1

0_
1_

0_
0_

0_
0

0_
1_

0_
0_

0_
1

0_
1_

0_
0_

1_
0

0_
1_

0_
0_

1_
1

0_
1_

0_
1_

0_
0

0_
1_

0_
1_

0_
1

0_
1_

0_
1_

1_
0

0_
1_

0_
1_

1_
1

0_
1_

1_
0_

0_
0

0_
1_

1_
0_

0_
1

0_
1_

1_
0_

1_
0

0_
1_

1_
0_

1_
1

0_
1_

1_
1_

0_
0

0_
1_

1_
1_

0_
1

0_
1_

1_
1_

1_
0

0_
1_

1_
1_

1_
1

1_
0_

0_
0_

0_
0

1_
0_

0_
0_

0_
1

1_
0_

0_
0_

1_
0

1_
0_

0_
0_

1_
1

1_
0_

0_
1_

0_
0

1_
0_

0_
1_

0_
1

1_
0_

0_
1_

1_
0

1_
0_

0_
1_

1_
1

1_
0_

1_
0_

0_
0

1_
0_

1_
0_

0_
1

1_
0_

1_
0_

1_
0

1_
0_

1_
0_

1_
1

1_
0_

1_
1_

0_
0

1_
0_

1_
1_

0_
1

1_
0_

1_
1_

1_
0

1_
0_

1_
1_

1_
1

1_
1_

0_
0_

0_
0

1_
1_

0_
0_

0_
1

1_
1_

0_
0_

1_
0

1_
1_

0_
0_

1_
1

1_
1_

0_
1_

0_
0

1_
1_

0_
1_

0_
1

1_
1_

0_
1_

1_
0

1_
1_

0_
1_

1_
1

1_
1_

1_
0_

0_
0

1_
1_

1_
0_

0_
1

1_
1_

1_
0_

1_
0

1_
1_

1_
0_

1_
1

1_
1_

1_
1_

0_
0

1_
1_

1_
1_

0_
1

1_
1_

1_
1_

1_
0

1_
1_

1_
1_

1_
1

Configurations

0

20

40

60

80

100

Pr
ed

ict
ion

 ra
te

(p
er

ce
nt

)

LVP
SP
CBP

Figure 8: Predictability for various Information Vectors – Pov-MPI

Pov-mpi

In pov-mpi, Figure 8, when offset is not used the prediction rate for LVP is around 46 %. Thus, same-value sequences must
exist within the application’s messages. The success rate of SP (learning time = 2) remains at 8 %, therefore most of these
sequences can not be more than 2 values long. It is not clear whether the relatively low accuracy of SP can be attributed
to stride sequences or to same-value sequences whose size is bigger than 2. CBP has a prediction rate of 44 % when offset
is not used. This may indicate that regularly-repeating (but not same-value) sequences also exist within the messages of
pov-mpi because all same-value sequences are short and therefore cannot be learned in time by CBP (learning time = 4).
When offset is used, the prediction rate of LVP falls to around 41 %. Therefore, same-value sequences must exist across
all messages. At the same time, the prediction rate of CBP rises to around 54 %, thus some regularly-repeating sequences
also exist. Finally, the prediction rate of SP rises to 41 %, which is similar to the prediction rate of LVP. This is because of
the same-value sequences and possible stride sequences that exist.

Overall, the variable behavior observed across benchmarks may suggest that adaptivity[29] may need to be adopted so
that the best information vector is used per application based on program behavior. Table 3 shows the “best” performing
information for each benchmark. These are the configurations used to obtain the results in the remaining sections.

Fox Bitonic Jacobi Bladeenc Pov-mpi
Offset 0 0 0 0 1
Communication Context 0 1 1 1 0
Program Position 0 0 1 0 0
Memory Position 0 1 1 1 0
Datatype 1 0 1 0 1
MPI Operation 0 1 0 0 1

Table 3: Best Information Vector Configuration for Each Benchmark

5.5 Distribution of Predictability

Figure 9 shows the static distributions of messages according to their data predictability. For the static distribution each
message was given the same weight. Figure 10 shows the dynamic distribution, however, each message here is assigned
weight equal to its data buffer size. Note that a message belongs to the 100% bucket if all of its data values have been

14

0 to 9 %
10 to 19 %

20 to 29 %
30 to 39 %

40 to 49 %
50 to 59 %

60 to 69 %
70 to 79 %

80 to 89 %
90 to 99 % 100 %

Prediction rate (percent)

0

20

40

60

80

100

M
es

sa
ge

s (
%

 of
 to

ta
l m

es
sa

ge
s)

Fox
Bitonic
Jacobi
Bladeenc
Pov-mpi

Figure 9: Predictability Distribution (Static) - CBP

0 to 9 %
10 to 19 %

20 to 29 %
30 to 39 %

40 to 49 %
50 to 59 %

60 to 69 %
70 to 79 %

80 to 89 %
90 to 99 % 100 %

Prediction rate (percent)

0

20

40

60

80

100

M
es

sa
ge

s (
%

 of
 to

ta
l m

es
sa

ge
s)

Fox
Bitonic
Jacobi
Bladeenc
Pov-mpi

Figure 10: Predictability Distribution (Dynamic) - CBP

15

predicted correctly. The two graphs show the results for CBP.
For bitonic the fraction of messages that is predicted with 70–100 accuracy is 67 % when using LVP, 14 % when

using SP, and 20 % when using CBP. Almost 100 % of jacobi’s messages are predicted with 100% accuracy when using
any of the predictors. Pov-mpi has 21 % of its messages predicted with 100% accuracy when using LVP and 27 % when
using CBP, while 28 % of them are predicted with 90–99% accuracy when using LVP and 21 % when using CBP. Another
observation is that all tested applications, including fox and bladeenc, have some messages that are predicted with 100%
accuracy.

The dynamic distributions in Figure 10 follow similar trends to the static, with a tendency toward lower accuracy
buckets.

5.6 Predictor Size and Number of Processes

The effect of increasing predictor size, 1K, 8K, 64K, and 256K entries, on the prediction rate for the different predictors
and benchmarks is shown in Figure 11.

The results show that good prediction rates can be achieved even with small predictor sizes (e.g. 1024-entry table).
CBP exploits better bigger tables than LVP, whose prediction rate is not sensitive to predictor size. For CBP, jacobi and
pov-mpi predictability saturates after 64K entries, suggesting that for these benchmarks the predictor may not require
additional space. However, CBP’s prediction rate for bitonic is getting better even with a 256K configuration.

Figure 12 shows the effect of increasing the number of MPI processes from 4 to 8 and 16, on the predictability. The
data show that prediction rate is insensitive to the number of processes. We do recognize that in many realistic situations
the number of processes can be much higher, therefore more experimentation may be needed in that direction.

6 Conclusions and Future Work

This paper characterizes the predictability of data exchanged via MPI messages using an infrastructure that relies on code
instrumentation. The predictability analysis is based on an information vector derived from the structure of the MPI
message and program control flow.

Empirical analysis demonstrated that data predictability does not exist in all message-passing applications. In those
applications where predictability is found, is varies between 57–94%. Predictability was found at different levels: within
messages, across messages of the same processes and across processes. The most influential component of the information
vector is the offset of the data value in a message’s buffer. The offset can have constructive or destructive effects on
predictability depending on the benchmark. This suggests that adaptivity may be needed to select the best information
vector for each program. The data also suggest that the observed predictability can be achieved with relatively small
predictors. The best prediction rates are achieved by context-based with close second last-value prediction. The results
suggest that typically sequences exhibited last-value and/or regularly-repeating characteristics. Finally the data reveal
insensitivity of predictability to increasing number of processes.

This work points to several directions for future research. Further analysis should be performed for other bench-
marks and input data sets. This will provide insight about the generality and robustness of data predictability in MPI
messages. Another direction for future work is developing predictors that may capture better MPI idiosyncrasies. For
example, consider additional information during prediction such as program position and memory position of the sending
process. Ultimately, if MPI message predictability is found to be generic, it can be used to to extend MPI libraries to allow
speculative execution based on prediction of data in messages.

References

[1] C. Seitz, “Myrinet- a gibabit per second local-area network,” IEEE Micro, February 1995.

[2] A. Lachanas and P. Evripidou, “Regional Weather prediction on Small Network of Workstations,” in Proceedings of
24�� Euromicro conference, 1998.

[3] I. Foster and C. Kesselman, “Globus: A toolkit-based grid architecture,” in The Grid: Blueprint for a Future Com-
puting Infrastructure, pp. 259–278, Morgan Kaufmann, 1998.

16

Figure 11: Predictability with Increasing Predictor Size - Local Predictors

Figure 12: Predictability with Increasing Number of Processes - Local Predictors

17

[4] P. Evripidou, C. Panayiotou, G. Samaras, and E. Pitoura, “The PaCMAn Metacomputer: Parallel Computing with
Java Mobile Agents,” Future generation Computer Systems, vol. 19, no. 2, pp. 265–280, 2001. FGCS special issue
on Java in High Performance Computing.

[5] J. Kim and D. J. Lilja, “Characterization of Communication Patterns in Message-Passing Scientific Application
Programs,” in Lecture Notes in Computer Science 1362, 1998.

[6] S. Karlsson and M. Brorsson, “A Comparative Characterization of Communication Patterns in Applications using
MPI and Shared Memory on an IBM SP2,” in CANPC, 1998.

[7] I. Foster, Designing and Building Parallel Prgrams. Addison Weseley, 1995. Includes a succinct and readable
introduction to an MPI subset. Also available online at http://www.mcs.anl.gov/dbpp.

[8] A. Afsahi and N. J. Dimopoulos, “Efficient Communication Using Message Prediction for Cluster of Multiproces-
sors,” in TR ECE-99-5, University of Victoria, December 1999.

[9] A. Afsahi and N. J. Dimopoulos, “Hiding Communication Latency in Reconfigurable Message-Passing Environ-
ments,” in IPPS/SPDP-13, 1999.

[10] A. Afsahi and N. J. Dimopoulos, “Communications Latency Hiding Techniques for a Reconfigurable Optical Inter-
connect: Benchmark Studies,” in TR ECE-98-2, University of Victoria, June 1998.

[11] J. E. Smith, “A Study of Branch Prediction Strategies,” in Proceedings of the 8th International Symposium on Com-
puter Architecture, pp. 135–148, May 1981.

[12] M. H. Lipasti and J. P. Shen, “Superscalative Microarchitecture for Beyond AD 2000,” Computer, September 1997.

[13] M. P. I. Forum, “MPI: A Message-Passing Interface Standard,” Tech. Rep. Computer Science Department Technical
Report CS-94-230, University of Tennessee, Knoxville, TN, May 5 1994. International Journal of Supercomputing
Applications, Volume 8, Number 3/4, 1994.

[14] J. Lee and A. J. Smith, “Branch Prediction Strategies and Branch Target Buffer Design,” IEEE Computer, January
1984.

[15] J. L. Baer and T. F. Chen, “An Effective on-chip Preloading Scheme to Reduce Data Access Penalty,” in Proceedings
of Supercomputing, pp. 176–186, November 1991.

[16] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and Data Speculation,” in Proceedings of the 7th
International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 138–
147, October 1996.

[17] A. Moshovos, S. E. Breach, T. J. Vijaykumar, and G. Sohi, “Dynamic Speculation and Synchronization of Data
Dependences,” in Proceedings of the 24th International Symposium on Computer Architecture, pp. 181–193, June
1997.

[18] S. S. Mukherjee and M. D. Hill, “Using Prediction to Accelerate Coherence Protocols,” in Proceedings of the 25th
Annual International Symposium on Computer Architecture, pp. 179–190, June 1998.

[19] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculative techniques for improving load related instruction schedul-
ing,” in Proceedings of the 26th Annual International Symposium on Computer Architecture, June 1999.

[20] K. So and R. N. Rechtschaffen, “Cache Operations by MRU Change,” IEEE Transactions on Computers, vol. 37,
pp. 700–709, June 1988.

[21] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression. Prentice-Hall Inc., New Jersey, 1990.

[22] Y. Sazeides and J. E. Smith, “The Predictability of Data Values,” in Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, pp. 248–258, December 1997.

[23] Y. Sazeides and J. E. Smith, “Modeling Program Predictability,” in Proceedings of the 25th International Symposium
on Computer Architecture, pp. 73–84, June 1998.

[24] E. Jacobsen, E. Rotenberg, and J. E. Smith, “Assigning Confidence to Conditional Branch Predictions,” in Proceed-
ings of the 29th Annual ACM/IEEE International Symposium on Microarchitecture, pp. 142–152, December 1996.

[25] S. Sechrest, C.-C. Lee, and T. Mudge, “Correlation and aliasing in dynamic branch predictors,” in Proceedings of the
23rd International Symposium on Computer Architecture, pp. 22–32, May 1996.

[26] P. S. Pacheco, Programming Parallel Processors Using MPI. Morgan Kaufmann, 1995.

18

[27] A. Fava, E. Fava, and M. Bertozzi, “Mpipov: A parallel implementation of pov-ray based on mpi,” in Proceedings of
the 6th European PVM/MPI Users’ Group Meeting, vol. 1697, Lecture Notes in Computer Science-Springer, 1999.

[28] “Parallel mp3 encoding version 0.92.1b5 released: September 3, 2000.”

[29] T. Juan, S. Sanjeevan, and J. J. Navarro, “Dynamic History-Length Fitting: A third level of adaptivity for branch
prediction,” in Proceedings of the 25th International Symposium on Computer Architecture, pp. 155–166, June 1998.

19

