
 - 1 -

The Duplication of Content in Instruction Caches and its
Performance Implications

Marios Kleanthous and Yiannakis Sazeides

Department of Computer Science
University of Cyprus

CS-TR-01-2005

January 2005

Abstract

This paper shows that when there is a miss for a block in a cache the required block of
data may reside already in the cache but under a different tag. We refer to this
phenomenon as Cache-Content-Duplication. This report characterizes cache-content-
duplication for instruction caches and investigates its potential for improving their
performance. The experimental results show that up to 10% of the misses of a regular
instruction cache and up to 20% of the misses of a basic-block cache are for duplicated
blocks. The paper proposes two memory hierarchy enhancements that exploit cache-
content-duplication. One of these enhancements is evaluated and shown to have the
potential to reduce instruction cache and basic-block cache misses by up to 49% and
33% respectively.

Keywords: caching, redundancy, duplication, compression

1. Introduction

The importance of caches and memory hierarchy has increased over the last two
decades due to the growing gap between processor and memory performance [13].
Caches, consequently, have been central to numerous research studies. Several techniques
have been proposed to improve various aspects of caches by reducing their miss rates,
cache size, latency and energy. Most of these techniques attempt to exploit different types
of properties of memory addresses and data, such as locality [11], predictability [2, 3, 8]
and redundancy [1, 5, 6, 7, 9].

This work identifies a new cache property that may influence cache performance: the
cache-content-duplication (CCD). This phenomenon occurs when there is a miss for a
block in a cache for which the data reside already in the cache but under a different tag.

CCD is a manifestation of redundancy in cache content. Related notions to cache
content redundancy have been investigated before. Lefurgy et al. [5] examined static
compression of instruction sequences to increase the code density for embedded
processors. The compression of code in main memory using an instruction dictionary was
studied in [7]. The selective compression of level 2 cache-content was the subject of [1].
A scheme that compresses the contents of both main memory and caches was examined
in [6]. The redundancy problem has been investigated also at the highest level of memory
hierarchy, the registers [9]. What distinguishes our work is that we investigate cache
content redundancy at the granularity of cache blocks instead of considering the
compression of patterns in the cache content. And this may enable new mechanisms for
memory hierarchy optimizations.

 - 2 -

Examples of CCD based optimizations are: (a) a mechanism that identifies blocks
with duplicated content and on a miss, for such blocks, we fetch the content of the
duplicate block already in the cache instead of fetching from lower levels in the memory
hierarchy, and (b) the unique-content-cache which contains only blocks with unique
content and maintains multiple tags for one block.

We believe that cache-content-duplication exists in various types of workloads, for
both instructions and data, and for different types of caches and cache configurations. As
a first step towards understanding and exploiting CCD this paper is focused on the
content duplication in instruction caches.

The frequency of CCD in instruction caches may be significant, because (1) high
level language programs often contain identical instruction sequences in different
segments of a program due to: copy-paste programming practices and reuse of standard
library and loops in different parts of code, and (2) compiler transformations, such as
compiler inlining and macro expansion, lead to duplicated code sequences.

This work introduces the phenomenon of cache-content-duplication and
characterizes its frequency for various instruction cache configurations. The experimental
results for SPEC benchmarks show that up to 10% of the misses of an instruction cache
and up to 20% of the misses of a basic-block cache are for duplicated blocks. The paper
also describes the required functionality to detect and use content-duplication, proposes
two techniques to exploit the phenomenon and evaluates the potential of one of them, the
unique-content-cache. The unique-content-cache is shown to have the potential to reduce
misses for an instruction cache and a basic-block cache up to 49% and 33% respectively.

In Section 2, we are discussing previous work on cache redundancy. Section 3
presents the simulation environment and the different configurations considered for
experimentation. In Section 4, we are presenting the simulation results that characterize
CCD. Section 5 discusses possible applications of CCD and evaluates one of these
applications. Finally, in Section 6 we conclude and give some directions for future work.

2. Related Work

The redundancy of the memory and cache content has been the subject of several
previous papers. The main objectives of these proposals were to increase the effective
memory/cache capacity and to achieve higher bandwidth during transfers of information
between different levels of the memory hierarchy. Some of the most relevant of these
papers are discussed below.

Lefurgy et al. [5] explores the idea of keeping compressed code in instruction
memories of embedded processors. Based on static analysis common sequences of
instructions are assigned unique codes. These codes are stored in instruction memory and
are expanded to their original form after being read. Lefurgy et al. [7] studied the concept
of keeping compressed code in main memory and "software decompressing" on a cache
miss. More specifically, frequently used instructions in the original code are replaced by
pointers to an entry of an instruction dictionary. Due to the high replication of
instructions and the small size of the dictionary, the amount of memory required to store
the static code in main memory is significantly reduced.

Alameldeen and Wood [1] keeps compressed information, both instructions and data,
only in level 2 cache and can dynamically choose to keep data in uncompressed form
when the overhead of compression may cause a performance degradation. Hallnor and
Reinhardt [6] proposed a scheme that maintains compressed data both in main memory
and on-chip cache. This enables the data to travel through the bus in compressed form.
This scheme, therefore, offers both extra space on main memory and cache and higher
transfer rates from main memory to cache.

 - 3 -

Postiff and Mudge [9] proposed smart-register-files aiming to solve the aliasing
problem of more than one registers referring to the same datum, either address or data.

The distinct feature of our work is that we consider redundancy at the granularity of
cache blocks. Previous work considered the redundancy and compression of arbitrary
length sequences of data or instructions or considered the compression at the granularity
of individual instructions. We demonstrate later in the paper that approaching redundancy
in terms of cache blocks enables new mechanisms for memory hierarchy optimization.

3. Experimental Framework

We used simplescalar 3.0 to implement two types of instruction caches. The first is
an instruction cache where blocks are always block size aligned and identified by their
tag. The second is a basic-block cache [4, 12] where blocks are divided on the boundaries
of control flow instructions (CTI). A basic-block cache is used by the block-based trace
cache proposed in [4]. This is a trace cache [10] that represents traces as a sequence of
pointers to entries in a basic-block cache [4].

The experimentation was performed using benchmarks from the SPEC95 and
SPEC2000 suites with train or reference inputs. The specific benchmark set used is
shown in Table 1. These benchmarks were selected because of the different
characteristics they exhibit. The table also shows the number of dynamic instructions
skipped and simulated for each benchmark.

Benchmark Instructions Skipped
(Millions)

Instructions
Simulated (Millions)

gcc (SPEC95) 0 178
ijpeg (SPEC95) 0 130
vortex (SPEC00) 100 100
gzip (SPEC00) 300 100
ammp (SPEC00) 50 100
equake (SPEC00) 1300 100

Table 1. Benchmarks Simulated

The performance metrics used in this study are miss rates and the duplication rates of
each benchmark. The duplication rate refers to the fraction of misses that are for
duplicate-blocks. Performance was measured for the following instruction and basic-
block cache configurations:

Block Size Associativity Total Cache Sizes
32 byte direct mapped 4KB, 8KB, 16KB, 32KB and 64KB

32 byte 4-way set
associative 4KB, 8KB, 16KB, 32KB and 64KB

64 byte direct mapped 4KB, 8KB, 16KB, 32KB and 64KB

64 byte 4-way set
associative 4KB, 8KB, 16KB, 32KB and 64KB

Table 2. Cache Configurations simulated

7,54%
1,41% 2,94% 1,12%

3,62%
0,04%

 2,90% 0,62% 0,98%
8,48%6,40%

8,70%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc ijpeg vortex gzip ammp equake
benchmarks

pe
rc

en
ta

ge
 o

f m
is

se
s

4KB Cache 8KB Cache 16KB Cache 32KB Cache 64KB Cache

Figure 1. Cache-Content-Duplication for a 4-way set-associative,
instruction cache with 32B cache block (% misses for duplicates).

0,00% 0,00% 0,00%0,57% 2,43% 1,24%0,4%0,1%0,2%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc ijpeg vortex gzip ammp equakebenchmarks

pe
rc

en
ta

ge
 o

f m
is

se
s

4KB Cache 8KB Cache 16KB Cache 32KB Cache 64KB Cache

Figure 2. Cache-Content-Duplication for a 4-way set-associative,
instruction cache with 64B cache block (% misses for duplicates).

4. Results

In this Section we present measurements that characterize the frequency of the CCD
in an instruction cache and a basic-block cache. Two blocks are considered duplicates if
each instruction in one block is identical in the exact order with its corresponding
instruction in the other block.

4.1 CCD for Instruction Caches

Fig. 1 shows the frequency of CCD with a 4-way, 32B per block instruction cache
for various cache sizes. The data show that the phenomenon exists in several benchmarks
(gcc, ijpeg and vortex). The general trend with increasing cache size is that the frequency
of content duplication, relative to the misses, also increases. This occurs because with a
larger cache is more likely for a missed block to already have a duplicate in the cache.

Fig. 2 reports the same results as in Fig. 1 but for a 64B per block. It can be observed
that CCD occurs more rarely with larger blocks. This is expected because with increasing
block size it is less likely for two static sequences of instructions to be identical.

Benchmarks ijpeg and equake exhibit a rather distinct behavior in Fig. 1.
Specifically, for few cache configurations their CCD frequency is decreasing while the
cache size increases. This can happen when duplicated misses observed with smaller
cache size are not misses with a larger cache. This is illustrated with the aid of an
example shown in Fig. 3.

 - 4 -

Figure 3. Example where there is Lower Frequency of CCD with a larger Cache.

Fig. 3 uses the following sequence of block references: A B E F A B J K A B J K A B

J K A B J K A B J K and assumes that blocks A, J and K are duplicates. The example
considers two caches, both 2-way set associative with LRU replacement but the one has
two sets whereas the other has only one set. For the first cache, blocks A and B are
mapped to the first set and blocks E, F, J and K are mapped to the second set. The figure
shows the content of the two caches at different times for the same order of block
reference. Time 1 shows the content after referencing the sequence A B E F A B. After
that, blocks J (time 2) and K (time 3) follow, and they are both counted as duplicate
misses in both caches. Then blocks A (time 4) and B (time 5) arrive. In the large cache
they are hits and not counted as duplicates misses whereas in the small cache are misses
for which there is already a duplicated block in the cache. If the sequence continuation is
a repeated reference to blocks J K A B, the large cache will not incur any misses whereas
the small cache will incur each time three duplicated misses.

We have also examined the effects of varying associativity on CCD. As shown in
Fig. 4 and 5, the frequency and the trends of this phenomenon for a direct mapped cache
appear almost the same as with a 4-way set-associative cache (Fig. 1 and 2).

4.2 CCD for Basic-Block Cache

We have already evidence, Section 4.1, that the smaller the block size the higher the
CCD frequency. This is due to the smaller number of instructions that are compared and
need to match in a block. Furthermore, an instruction cache block may contain
instructions that never get executed, i.e. instructions after an always taken control flow
instruction (CTI), and this may lead to otherwise identical blocks to appear dissimilar.

Motivated by the above, we measured CCD for a basic-block cache [12]. A basic-
block is a sequence of instructions where only the first instruction is an entry and only the
last instruction is an exit. Consequently, all instructions in a basic-block get executed as
long as we enter the block. The cache block in a basic-block cache contains either an
entire basic-block or a partial basic-block when it is larger than a cache block. The
expectation is that CCD will be more dominant for basic-block caches as compared to
instruction caches. An example that illuminates why CCD may be more frequent in basic-
block cache is presented in Table 3.

 - 5 -

3,75%6,62% 9,03%

1,26% 3,68% 1,25% 0,02%
4,35%

0,15%2,04%
0,00%

8,01%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc ijpeg vortex gzip ammp equake
benchmarks

pe
rc

en
ta

ge
 o

f m
is

se
s

4KB Cache 8KB Cache 16KB Cache 32KB Cache 64KB Cache

Figure 4. Cache-Content-Duplication for a direct-mapped

instruction cache with 32B cache block (% misses for duplicates).

1,31%0,71% 2,28% 0,33%0,13%0,20% 0,00%0,00%0,00%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc ijpeg vortex gzip ammp equakebenchmarks

pe
rc

en
ta

ge
 o

f m
is

se
s

4KB Cache 8KB Cache 16KB Cache 32KB Cache 64KB Cache

Figure 5. Cache-Content-Duplication for a direct-mapped

instruction cache with 64B cache block (% misses for duplicates).

The basic-blocks in Table 3 were found to be duplicates in a simulation of

benchmark vortex for a basic-block cache with 32B cache block (four instructions per
block). Specifically, when BLOCK A produced a miss, a duplicate, BLOCK B, was
already resident in the basic-block cache. The first two lines of each block are the
contents of a cache block in a basic-block cache. The other two lines correspond to the
next static instructions in the code. It can easily be verified that these two blocks
correspond to cache blocks, in an instruction cache, since the address of the first
instruction is aligned at a block boundary (multiple of 32). Therefore, these two blocks
could not have been detected as duplicates in an instruction cache even when both
branches are taken.

BLOCK A BLOCK B

ba
si

c
bl

oc
k { [004a9f20] lw $a2[6],0($s1[17])

[004a9f28] beq $a2[6],$zero[0],20
[004c04c0] lw $a2[6],0($s1[17])
[004c04c8] beq $a2[6],$zero[0],20

ca
ch

e
bl

oc
k {

 [004a9f30] addu $a0[4],$zero[0],$s2[18]
[004a9f38] addu $a1[5],$zero[0],$s3[19]

[004c04d0] lw $a0[4],36($sp[29])
[004c04d8] lw $a1[5],96($sp[29])

Table 3. Identical blocks in a direct mapped basic-block cache with 32B cache block

 - 6 -

0,02%
4,96%

1,03%

10,83%

0,48% 7,08%6,59%5,93%

19,41%

10,53% 12,55%

1,17%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc ijpeg vortex gzip ammp equake
benchmarks

pe
rc

en
ta

ge
 o

f m
is

se
s

4KB Cache 8KB Cache 16KB Cache 32KB Cache 64KB Cache

Figure 6. Cache-Content-Duplication for a 4-way set-associative,

basic-block cache with 32B cache block (% misses for duplicates).

4,47%

21,25%

2,61%2,68% 0,88%
7,96%

1,97% 2,92%

19,59%

2,77%5,65% 3,63%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc ijpeg vortex gzip ammp equake
benchmarks

pe
rc

en
ta

ge
 o

f m
is

se
s

4KB Cache 8KB Cache 16KB Cache 32KB Cache 64KB Cache

Figure 7. Cache-Content-Duplication for a 4-way set-associative,
basic-block cache with 64B cache block (% misses for duplicates).

Fig. 6 and 7 present the CCD frequency in a 4-way set-associative cache with 32B

and 64B block sizes. The data show clearly that across all benchmarks CCD is more
prevalent with a basic-block cache as compared to an instruction cache (see Fig. 1). For
almost all benchmarks the CCD is at least twice as high. The trend with increasing cache
size is higher CCD frequency.

One other observation is that with bigger block size the frequency of CCD remains at
the same levels. This is contrary to the behavior of an instruction cache where larger
blocks meant lower CCD. This mainly occurs because the typical basic-block size is 4-5
instructions. This suggests that for a basic-block cache larger block size may result in
block fragmentation and higher miss rates. This was confirmed by the experimental data
that show for equal size basic-block caches larger block meant usually higher miss rate.

 - 7 -

7,82% 4,43%
10,01%

0,98%
4,67% 2,72%

9,46%
7,90%7,73% 9,46%9,73%

18,76%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc ijpeg vortex gzip ammp equakebenchmarks

pe
rc

en
ta

ge
 o

f m
is

se
s

4KB Cache 8KB Cache 16KB Cache 32KB Cache 64KB Cache

Figure 8. Cache-Content-Duplication for a direct-mapped

basic-block cache with 32B cache block (% misses for duplicates).

18,41%

1,63%
8,32%

1,84% 0,28% 2,90%

10,46%
5,06%

0,04%
5,01% 4,54% 4,04%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

gcc ijpeg vortex gzip ammp equake
benchmarks

pe
rc

en
ta

ge
 o

f m
is

se
s

4KB Cache 8KB Cache 16KB Cache 32KB Cache 64KB Cache

Figure 9. Cache-Content-Duplication for a direct-mapped

basic-block cache with 64B cache block (% misses for duplicates).

Fig. 8 and 9 present the same results, as in Fig. 6 and 7, for a direct mapped basic-
block cache. The results show that the CCD frequency is similar to the frequency for a 4-
way set-associative basic-block cache.

Overall, the experimental results suggest that CCD exists across benchmarks, for
different cache types and configurations. The data indicate that with increasing cache size
CCD gets more frequent. Finally, CCD is more dominant for basic-block caches, as
compared to instruction caches, mainly due to the smaller number of instructions that
need to be identical for duplication to occur. We believe that the degree of CCD observed
provides a basis to explore mechanisms that can exploit CCD.

5. Exploiting Cache-Content-Duplication

This section describes two possible memory hierarchy enhancements based on CCD
that can be useful to improve the performance. The performance potential of one of these
mechanisms is investigated experimentally. This section also describes the essential
functionality required to detect and use content duplication.

5.1 Memory Hierarchy Enhancements based on CCD

 - 8 -

CCD can be exploited to reduce either or both cache latencies and miss rates. Cache
latency can be reduced by detecting a miss to a block that has a duplicate already in the

Figure 10. Cache enhancement exploiting CCD

cache. We refer to such cache as the Duplicate-Aware-Cache (DAC). Latency can be
reduced by fetching the block from the cache instead of reading it from a lower level in
the memory hierarchy. CCD can also be used to reduce misses by maintaining in the
cache only blocks with unique content. We refer to the latter as the Unique-Content-
Cache (UCC). In a UCC one block can have more than one tags.

To facilitate the above CCD based enhancements a mechanism is required that given
the tag and index of a block that caused a cache miss it returns whether there is a
duplicate in the cache and the tag-index of the duplicated block. This mechanism can be
implemented using the duplicate-relation cache (DR). A DR is accessed with a hashed
tag-index of a missed block and in each entry contains a tag (the tag-index of a missed
block) and another tag-index for its duplicated block. Each valid DR entry indicates a
duplicate relation between two blocks. For instruction caches once a duplicated relation is
established is assumed to be always correct (in the case of self-modifying code the DR
may need to be flashed to ensure correctness).

To create an entry in the DR a mechanism is required to detect duplicated blocks.
This mechanism can be implemented using the Hashed Duplicate Detection cache
(HDD) and the Block Compare Unit (BCU). The HDD is indexed using a hash of the
content of a missed block after is fetched from the lower-level of memory hierarchy.
Each HDD entry contains a code and a tag-index. The code represents a hash, different
from the one used to index the HDD, of a block’s content and the block's full tag-index.
When the missed block's code and the code in the HDD entry match, this indicates the
possibility for content duplication with the block in the HDD entry. In that case, the cache
is accessed using the tag-index found in the HDD. If the required block is in the cache, its
contents and the contents of the new block are compared using the BCU to detect whether
there is duplication. If the BCU finds duplication, an entry is created in the DR. In the
case of a cache block miss that also misses in the DR and the HDD, an entry can be
allocated in the HDD, initialized with the block’s hash content and tag-index, so that
future blocks can check if their duplicates with this block.

 - 9 -

A DAC and a UCC can use the above mechanism to detect duplicated block misses
and read the missed block directly from the cache as long as the duplicated block is in the
cache. To better understand the functionalities of the different abovementioned structures
we show in Fig. 10 the sequence of steps in the case of a cache miss that has a duplicated
in a unique-content cache.

49,03%

12,97%
19,08%

3,31%1,72%

16,72%

5,37%
0,22% 0,45%

1,58%
7,42%

1,71%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc ijpeg vortex gzip ammp equakebenchmarks

pe
rc

en
ta

ge
 o

f m
is

se
s

4KB Cache 8KB Cache 16KB Cache 32KB Cache 64KB Cache

Figure 11. Miss Reduction due to UCC for a 4-way 32B per block instruction cache.

0,02%

18,45%

5,64%
1,07%

13,26% 14,13%

0,53%

14,42%

0,80%

15,62%

33,49%

19,89%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc ijpeg vortex gzip ammp equakebenchmarks

pe
rc

en
ta

ge
 o

f m
is

se
s

4KB Cache 8KB Cache 16KB Cache 32KB Cache 64KB Cache

Figure 12. Miss Reduction due to UCC for a 4-way 32B per block basic-block cache.

Th issues

regarding the timing and how the two caches are updated for different scenarios have not
been

CC)
This Section reports on the performance potential of the UCC. The various

be
imp

lock cache
over

che respectively. In Fig. 11 the large

e above description of the DR and HDD is incomplete since several

 addressed. The intention in this paper is to provide an indicative description about
the required functionality and explore the potential assuming an ideal implementation of
these mechanisms. Provided, the initial results for exploiting CCD appear promising,
future work will examine a more detailed implementation of these mechanisms.

5.2 Exploiting cache-content-duplication using the Unique Content-Cache (U

mechanisms required to exploit CCD (described in Section 5.1) are assumed to
lemented ideally. Specifically, on a miss if there is a duplicated block in the cache,

the duplicate content is always identified and used instead of fetching the missed block
from the lower levels of memory hierarchy and inserting it in the cache. Also the LRU of
the duplicate block is updated as if we had "a request and a hit" for that block.

Fig. 11 shows the miss rate reduction of a UCC instruction cache over a conventional
instruction cache and Fig. 12 shows the miss rate reduction of a UCC basic-b

 a conventional basic-block cache. More specifically, the data show the percentage of
misses that were removed using a UCC as compared to conventional cache
implementations that allow block duplication.

The data indicate that the UCC has reduced the number of misses up to 49% and
33% for an instruction cache and basic-block ca
 - 10 -

Figure 13. Analysis of Unique-Content Cache Behavior.

fraction of misses r very small number

f misses for that cache configuration.

figurations, the fraction of misses removed in the
UCC

ociative cache and contain two sets.
Sup

ill load the block C in the
seco

ays be replacing each other in the first set. In this
exam

This paper presents a new cache property: the cache-content-duplication (CCD).
block in a cache for which the data reside already

in th

emoved in equake for a 32KB cache is due to the
o

Comparing Fig. 1 with Fig. 11 and Fig. 6 with Fig. 12, it can be observed that, for
most of the benchmarks and cache con

 cache is more than the fraction of duplicate misses found in conventional caches.
The reason for this is that without getting any duplicate content in the cache a lot of
conflict misses are also avoided, consequently, reducing the total number of misses by
more than the duplicate misses observed. However, the data also indicate that a UCC may
not always removes as many misses as the duplicates found. For example, Fig. 6 shows
that for gzip with 64KB cache 5,2% of the total misses were for blocks with duplicates
but Fig. 12 shows the total misses removed by the UCC were only 2,7%. In Fig. 13 we
provide an example that can lead to this behavior.

The example compares the performance of a UCC cache with a conventional
instruction cache when both are 2-way set ass

pose we have the sequence of blocks B A C D C A C D C A C D C A C D. Blocks A,
B and D are mapped to the first set of the 2 way set-associative cache and block C to the
second set. Also assume that blocks C and B are duplicates.

At time 1, Fig. 13 shows the content of the cache after referencing blocks B and A.
Next, the block C is requested. The conventional cache w

nd set but the UCC cache will detect that a duplicate of block C exists, the block B,
and will use the content of this block and update the LRU stack as shown at time 2. After
that, block D is requested. In the conventional cache block D will be mapped to the first
set replacing block B, the least recently used, but in the second cache will replace block A
(time 3). For the next two requests for block C and A (time 4 and 5), the conventional
cache will have hits and update accordingly the LRU stack. But in the UCC block C will
cause its duplicate block B to become the most recently used and then block A will
replace D, resulting in one more miss.

By repeating the pattern C D C A, all references in the conventional cache will hit
but in the UCC blocks D and A will alw

ple scenario, and other similar situations, the UCC can have more conflict misses
than a conventional cache and therefore may have worse performance. Nevertheless, the
experimental data do not show this to be a serious problem.

6. Conclusion and Future work

CCD occurs when there is a miss for a
e cache but under a different tag. This work provides empirical evidence that CCD

occurs frequently for instruction caches. Overall, the experimental results suggest that
CCD exists across benchmarks, for different cache types and configurations. The data

 - 11 -

 - 12 -

tions the
dupl

or both the duplicate-aware-cache and the unique-content-cache.
Furt

eldeen and D. A. Wood, "Adaptive Cache Compression for High-Performance
rocessors", Proceedings of the 31st Annual International Symposium on Computer Architecture,

EE Conference on Supercomputing, Albuquerque,

gs of the 26th Annual International Symposium

United States,

s", Proceedings of the 30th Annual International Symposium on

rsity of Michigan, 2004.

n High-Performance

indicate that with increasing cache size CCD gets more frequent. Finally, CCD is more
dominant for basic-block caches, as compared to instruction caches, mainly due to the
smaller number of instructions that need to be identical for duplication to occur.

CCD considers redundancy at the granularity of blocks and this enables novel
optimizations in the memory hierarchy. The paper introduces two such optimiza

icate-aware-cache (DAC) and the unique-content-cache (UCC). Experimentally, is
shown that a UCC has the potential to reduce the misses that need to be serviced by a
lower-level memory by up to 49% and 33% for an instruction cache and a basic-block
cache respectively.

This work points to several direction of future research. There is a need to explore
the design space f

hermore, it is important to investigate the various units used to detect and exploit the
content duplication (Section 5.1). Some of the functionality required by these units was
discussed but a rigorous investigation was not performed. For example, the function
employed by the BCU, to compare instructions of two potentially duplicate blocks, used
very strict criteria. For two instructions to be identical the opcode, the destination operand
and the source operands must have been be identical and the source operands must be in
the same order. For example add r1, r2, r3 will be identified as different from add r1, r3,
r2. Furthermore, instructions must appear in the same order in the two blocks. A more
advanced compare function could rearrange source operands of commutative operations
and reorder data independent instructions in a block to facilitate content duplication.
Other transformations to be discovered may help uncover even more duplication. Another
important direction of research is to consider CCD for data caches and for different levels
in the memory hierarchy. Finally, the proposed mechanisms must be evaluated in the
context of a processor timing simulator where the effects of wrong path instructions are
accounted for and the actual performance benefits can be measured.

References

[1] A. R. Alam
P
Munich, Germany, June 2004, pg. 212-223.
[2] J. Baer and Tien-Fu Chen, "An effective on-chip preloading scheme to reduce data access
penalty", Proceedings of the 1991 ACM/IE
New Mexico, United States, 1991, pg. 176-186.
[3] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport, A. Yoaz and U. Weiser,
"Correlated Load-Address Predictors", Proceedin
on Computer Architecture, Atlanta, Georgia, United States, May 1999, pg. 54-63.
[4] B. Black, B. Rychlik and J. P. Shen, "The Block-based Trace Cache", Proceedings of the 26th
Annual International Symposium on Computer Architecture, Atlanta, Georgia,
May 1999, pg. 196-207.
[5] C. Lefurgy, P. Bird, I-Cheng Chen and T. Mudge, "Improving Code Density Using
Compression Technique
Microarchitecture, December 1997, pg. 194-203.
[6] E. G. Hallnor and S. K. Reinhardt, "A Compressed Memory Hierarchy using an Indirect Index
Cache", Technical Report CSE-TR-488-04, Unive
[7] C. Lefurgy, E. Piccininni and T. Mudge, "Reducing Code Size with Run-time
Decompression", Proceedings of the 6th International Symposium o
Computer Architecture, Toulouse, France, 2000, pg. 218-227.

 - 13 -

] Chi-Keung Luk and T. C. Mowry, "Cooperative Prefetching: Compiler and Hardware Support
r Effective Instruction Prefetching in Modern Processors", Proceedings of the 31st Annual

0.

"Micro-Operation
gs of the 2001

cture News, 1995, 23(1):20-24.

[8
fo
International Symposium on Microarchitecture, Dallas, Texas, United States, 1998, pg. 182-194.
[9] M. A. Postiff and T. Mudge, "Smart Register File for High-Performance Microprocessors",
University of Michigan CSE Technical Report CSE-TR-403-99, June 1999.
[10] E. Rotenberg, S. Bennett and J. E. Smith, "A Trace Cache Microarchitecture and
Evaluation", IEEE Transactions on Computers, February 1999, 48(2):111-12
[11] A. Jay Smith, "Cache Memories", Computing Surveys, 1982, 14(3):473-530.
[12] B. Solomon, A. Mendelson, D. Orenstien, Y. Almog, and R. Ronen,
Cache: A Power Aware Frontend for Variable Instruction Length ISA", Proceedin
International Symposium on Low Power Electronics and Design, Huntington Beach, California,
United States, 2001, pg. 4-9.
[13] W. A. Wulf and S. A. McKee, "Hitting the memory wall: implications of the obvious", ACM
SIGARCH Computer Archite

 - 14 -

Appendix: Misses per 1000 Instructions

Conventional Cache with 32B cache line
Direct Mapped 4 way set-associative Benchmark

4KB 8KB 16KB 32KB 64KB 4KB 8KB 16KB 32KB 64KB
gcc (SPEC95) 136,85 107,71 80,63 51,04 30,97 128,04 97,82 66,57 32,43 10,02
ijpeg (SPEC95) 9,50 6,82 4,55 1,98 0,81 10,90 3,18 1,36 1,01 0,82
vortex (SPEC00) 202,60 135,49 98,44 64,09 38,22 168,73 125,04 82,34 48,95 16,46
gzip (SPEC00) 31,12 31,10 31,09 0,01 0,01 0,06 0,026 0,01 0,00 0,00
ammp (SPEC00) 63,15 31,78 11,82 0,29 0,10 61,01 22,25 2,51 0,01 0,01
equake (SPEC00) 162,09 93,77 32,89 21,78 3,50 166,47 52,76 7,09 0,50 0,01

Basic-block Cache with 32B cache line
Direct Mapped 4 way set-associative

4KB 8KB 16KB 32KB 64KB 4KB 8KB 16KB 32KB 64KB
gcc (SPEC95) 161,81 129,30 98,56 66,33 41,37 149,80 118,88 84,79 45,46 17,82
ijpeg (SPEC95) 52,76 13,24 5,15 3,56 2,25 78,38 12,93 2,84 1,37 1,10
vortex (SPEC00) 206,25 166,37 117,54 80,61 48,13 188,83 137,36 94,65 58,21 24,75
gzip (SPEC00) 35,89 29,64 2,97 2,95 2,94 6,68 0,52 0,02 0,01 0,01
ammp (SPEC00) 70,79 45,28 23,38 9,86 3,99 72,54 40,71 8,93 0,80 0,03
equake (SPEC00) 176,64 119,50 65,83 27,67 7,26 189,08 86,27 14,24 2,54 0,02

Conventional Cache with 64B cache line
Direct Mapped 4 way set-associative

4KB 8KB 16KB 32KB 64KB 4KB 8KB 16KB 32KB 64KB
gcc (SPEC95) 87,54 69,75 53,22 34,68 20,87 81,81 62,95 45,06 23,94 7,46
ijpeg (SPEC95) 5,57 3,98 2,62 1,19 0,50 6,25 1,93 0,85 0,59 0,49
vortex (SPEC00) 123,85 84,72 61,99 41,09 24,77 105,92 77,61 51,47 31,60 11,66
gzip (SPEC00) 19,27 19,26 19,25 0,01 0,01 0,04 0,01 0,01 0,00 0,00
ammp (SPEC00) 37,49 21,03 7,90 0,26 0,07 37,57 16,50 2,27 0,01 0,00
equake (SPEC00) 99,95 61,10 23,17 15,71 2,10 106,60 37,94 7,51 0,43 0,00

Basic-block Cache with 64B cache line
Direct Mapped 4 way set-associative

4KB 8KB 16KB 32KB 64KB 4KB 8KB 16KB 32KB 64KB
gcc (SPEC95) 132,13 109,82 85,72 62,10 41,06 123,83 100,19 77,24 50,97 24,61
ijpeg (SPEC95) 56,03 26,52 4,41 2,25 1,66 52,86 40,76 3,18 1,04 0,80
vortex (SPEC00) 162,05 130,31 104,15 70,79 44,56 150,52 113,57 82,01 53,41 28,26
gzip (SPEC00) 46,25 20,22 14,47 1,30 1,29 24,32 2,04 0,02 0,01 0,00
ammp (SPEC00) 53,02 40,86 25,64 12,97 6,44 54,50 40,55 17,86 2,15 0,20
equake (SPEC00) 158,39 120,70 74,69 41,07 18,61 160,35 112,75 43,75 3,96 0,26

