
CACHE CONTENT DUPLICATION

Marios Kleanthous

University of Cyprus, 2012

The importance of caches and memory hierarchy has increased over time due to the growing

gap between processor and memory performance, and it has become more important in Simul-

taneous Multithreading processors and Chip-multiprocessors. To cover this memory gap, caches

have been the subject of numerous studies aiming to improve their performance as well as their

power and area efficiency.

This thesis identifies a new phenomenon in caches that has the potential to improve cache

performance and efficiency: the Cache Content Duplication (CCD). CCD occurs when there is a

miss for a block in a cache and the entire content of the missed block is already in the cache in a

block with a different tag. Caches aware of content-duplication can have lower miss penalty by

fetching, on a miss to a duplicate block, directly from the cache instead of accessing lower in the

memory hierarchy, and can have lower miss rates by allowing only blocks with unique content to

enter a cache.

The usefulness of CCD is also examined at all levels of the memory hierarchy. First, we

show that CCD is a frequent phenomenon for instruction caches and that an idealized duplication-

detection mechanism for instruction caches has the potential to increase performance of an out-

of-order processor, with a 16KB, 8-way, 8 instructions per block instruction cache, often by more

than 10% and up to 36%. We also propose CATCH, a hardware mechanism for dynamically

detecting CCD for instruction caches. Experimental results for an out-of-order processor show

Marios Kleanthous––University of Cyprus, 2012

that a duplication-detection mechanism with a 1.38KB cost captures on average 58% of the CCD’s

idealized potential.

Second, we examine another case of CCD which we call Text Cloning. Text Cloning can

occur when running multiple copies of the same binary, Extrinsic Text Cloning, or when running

multiple instances of the same application in a Virtually Indexed Virtually Tagged cache, Intrinsic

Text Cloning. Results show that both Intrinsic Text Cloning and Extrinsic Text Cloning can reduce

an application’s performance. Specifically, Extrinsic Text Cloning causes up to 11% slowdown on

existing platforms. Furthermore, we show that CATCH can benefit performance by eliminating

the duplication due to Intrinsic Text Cloning and Extrinsic Text Cloning.

Third, we investigate the potential of CCD for L1 data caches. The results indicate that caches

exhibit a high amount of dirty blocks thus making the CCD detection and creating stable corre-

lations between different blocks very difficult. If a block is written, all duplicate relations to that

block need to be invalidated. Our analysis also shows that zero runs are very frequent in L1 data

caches and, therefore, previously proposed zero detection mechanisms can provide good solutions.

Finally, this thesis considers the CCD phenomenon for Last Level Caches (LLCs). The LLCs

are written less frequently (L1 data cache acts as a filter) and have less zero runs because they

mostly store evicted cache blocks that have already written with non-zero values. Results indicate

that CCD is very frequent for various block granularities, from 4 to 64 bytes, and has potential

to improve processors performance or save energy. A new cache design, the Content Duplication

Aware Cache, is proposed to detect and eliminate CCD in LLCs. The results indicate that the

Content Duplication Aware Cache can improve performance moderately but can reduce Energy

Delay product considerably, 10% on average and up to 15% at most, for multiprogram workloads.

Marios Kleanthous – University of Cyprus, 2012

CACHE CONTENT DUPLICATION

Marios Kleanthous

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

April, 2012

c© Copyright by

Marios Kleanthous

All Rights Reserved

2012

APPROVAL PAGE

Doctor of Philosophy Dissertation

CACHE CONTENT DUPLICATION

Presented by

Marios Kleanthous

Research Supervisor
Yiannakis Sazeides

Committee Member
Pedro Trancoso

Committee Member
Demetrios Zeinalipour

Committee Member
Emre Ozer

Committee Member
Andre Seznec

University of Cyprus

April, 2012

ii

ACKNOWLEDGEMENTS

Foremost, I would like to thank my advisor for his support during all the years of my Ph.D. I

am deeply grateful for his help, patience, and mostly for his guidance that lead to the completion

of this thesis. He taught me how to conduct research and gave me all the tools for a promising

future. He has been a great teacher but also a great friend and for that I would like to thank him

from the bottom of my heart.

Next, I would like to thank all my Ph.D. committee members for their time and for their

punctual comments that helped me improve this thesis. Special thanks also go to all anonymous

reviewers that contributed to the development of this thesis over the years.

Also, I would like to thank all my colleagues and friends at the University of Cyprus and Xi-

Group for their feedback but also their friendship. Special thanks go to Fanos and Andreas that

have been my first colleagues in the lab and still great friends and to Damien for his support and

valuable feedback during the last few weeks while preparing my thesis defense.

I am also deeply grateful to my family and especially my parents Michalis and Giannoulla, and

my sister Rafaella that stood next to me during all the years of my studies. They have been always

there to share the good and the bad moments with me. Also, I would like express my deepest love

to my wife, Georgia, for putting up with me all these years and for being always there to support

me and encourage me. Without my family and my wife this thesis would have been impossible.

I would also like to thank all my friends outside the University of Cyprus that made my life

more interesting during my studies and I believe they will continue to be part of it for many years

to come. Especially I would like to thank my best friends Konstantinos, Kyriakos and Telis, and

my fishing buddies Giorgos and Christos.

Finally, I would like to dedicated this thesis to all the people that dream for a better world no

matter what they face.

iii

TABLE OF CONTENTS

Chapter 1: Introduction 1

1.1 Memory Challenges . 2

1.2 Thesis Contributions . 4

1.3 Main Output of this Thesis . 6

1.4 Other Output from this Work . 7

1.4.1 Improving Branch Prediction by Considering Affectors and Affectees Cor-

relations . 7

1.4.2 Entry Replacement Within a Data Store 7

1.5 Thesis Outline . 8

Chapter 2: Background and Related Work 9

2.1 Memory Hierarchy Optimizations . 9

2.1.1 Replacement Policies . 10

2.1.2 Prefetching . 11

2.1.3 Compression . 12

2.2 Related Work on Compression . 14

2.2.1 Dynamic Compression . 15

2.2.2 Static Compression . 18

2.3 Code Compaction . 18

2.4 Dynamic VS Static Techniques and Mechanisms 19

2.5 Cache Content Duplication (CCD) . 20

Chapter 3: Methodology 24

iv

3.1 Metrics . 24

3.2 Simulation Infrastructure . 26

3.2.1 Simulator and Extensions . 26

3.2.2 Single Core Configuration . 26

3.2.3 Multi Core Configuration . 27

3.3 Benchmarks and Characterization . 28

3.3.1 Regions . 28

3.3.2 SPEC 2000 . 29

3.3.3 TPC-H . 29

3.3.4 Multiprogram Workloads . 30

Chapter 4: CCD for Instructions 32

4.1 How to Detect CCD . 33

4.1.1 What is the Cache Content Considered for Duplication 34

4.1.2 When to Learn the Cache Content . 35

4.1.3 Which Sequences are Duplicated . 36

4.2 Code Redundancy Characterization . 37

4.3 Limits of Cache-Content-Duplication . 41

4.3.1 CCD in Instruction Caches for Entire Blocks and Valid Blocks 41

4.3.2 CCD for Basic-Block Caches . 47

4.3.3 CCD for Trace Caches . 47

4.3.4 Overall Observations . 50

4.4 CCD Applications: DAC and UCC . 50

4.4.1 Limits of the Cache-Content-Duplication 51

v

4.4.2 Performance Potential of CCD . 53

4.5 CATCH: A Method for Dynamically Detecting CCD 55

4.5.1 Hashed-Duplicate-Detection table . 56

4.5.2 The Block Compare Unit . 58

4.5.3 Duplicate-Relation table . 58

4.5.4 Allocating and Updating an HDD and a DR entry 59

4.5.5 The use of CATCH in DAC and UCC 60

4.5.6 Performance Optimizations . 61

4.5.7 Cost Reduction Optimizations . 62

4.5.8 Pipelining Issues . 64

4.6 Performance Evaluation of CATCH . 65

4.6.1 CATCH Performance for DAC and UCC Caches 66

4.6.2 CATCH Performance . 67

4.6.3 Effects of Associativity . 69

4.6.4 Effects of Cache Size . 70

4.6.5 CATCH vs Victim Cache . 71

4.6.6 Effects of Prefetching . 72

4.6.7 Increasing Cache Size . 73

4.6.8 CATCH Energy Consumption . 74

4.7 Chapter Summary . 76

Chapter 5: Extrinsic and Intrinsic Text Cloning 78

5.1 Text Cloning: Causes, Implications and Remedies 79

5.1.1 Extrinsic Text Cloning . 79

vi

5.1.2 Intrinsic Text Cloning . 80

5.1.3 How Important is ETC and ITC . 81

5.1.4 How to Eliminate ETC and ITC . 84

5.2 Grid Computing Systems . 86

5.2.1 Grid Architecture . 86

5.2.2 Extrinsic Text Cloning in Grid . 88

5.3 Evaluation Using Simulation . 90

5.3.1 Results . 90

5.4 Chapter Summary . 92

Chapter 6: CCD for Data 94

6.1 Data Redundancy Characterization . 94

6.2 Data Duplication Detection . 96

6.2.1 Compressing Dirty Blocks . 97

6.2.2 Compressing Zero Blocks . 99

6.3 The Effects of Duplication Granularity for Data Caches 100

6.3.1 Granularity at the Block Level . 100

6.3.2 Granularity at Various Block Segments 102

6.4 Chapter Summary . 102

Chapter 7: CCD for Last Level Caches 108

7.1 Single Program Workloads . 109

7.2 Multi Program Workloads . 111

7.3 Exploiting CCD on Last Level Caches . 116

7.3.1 Content Duplication Aware (CDA) Caches 118

vii

7.3.2 Accessing and Updating a CDA Cache 119

7.4 Initial Results of a CDA Cache . 122

7.4.1 Single Program Workloads . 122

7.4.2 Multi Program Workloads . 125

7.5 CDA Cache Energy Delay Characterization . 130

7.6 Implementation Issues of CDA cache . 133

7.7 Chapter Summary . 136

Chapter 8: Conclusions 138

8.1 Contributions . 138

8.2 Future Work . 140

Bibliography 142

Appendix A: CATCH Design Space Exploration 149

A.1 HDD Design Space Exploration . 149

A.2 DR Design Space Exploration . 149

Appendix B: Synthetic Benchmark to Exercises Instruction Caches 151

Appendix C: Acronyms 153

viii

LIST OF TABLES

1 Summary of related work . 23

2 Single Core Baseline Configuration . 27

3 Multi Core Baseline Configuration . 27

4 SPEC 2000 Simulated benchmarks . 29

5 TPC-H Simulated benchmarks . 30

6 Energy consumption per access of 16KB 8-way and CATCH 74

7 Cache and CATCH events and units accessed 75

8 Benchmark Classification based on their LLC cache pressure and performance

potential . 114

ix

LIST OF FIGURES

1 Memory Gap [1] . 2

2 Performance improvement of an out-of-order processor with perfect cache 2

3 Cache Content Duplication (a) Without CCD, (b) With CCD 4

4 Valid block masked out from a cache block . 35

5 Execution coverage of unique blocks for the a) SPECINT 2000, b) SPECFP 2000

and c) TPC-H benchmarks . 38

6 Execution coverage of unique valid blocks for the a) SPECINT 2000, b) SPECFP

2000 and c) TPC-H benchmarks . 39

7 Execution coverage breakdown of unique valid blocks in percentages for a se-

lected subset of benchmarks . 40

8 Accesses per 1K instructions. CCD for an 8-way, 8 inst. per block, instruction

cache, for entire blocks a) SPECINT 2000, b) SPECFP 2000, c) TPC-H 42

9 Accesses per 1K instructions. CCD for an 8-way, 8 inst. per block, instruction

cache, for valid blocks a) SPECINT 2000, b) SPECFP 2000, c) TPC-H 43

10 Accesses per 1K instructions. CCD for an 8-way, 4 inst. per block, basic block

cache, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H 45

11 Accesses per 1K instructions. CCD for an 8-way, 8 inst. per block, basic block

cache, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H 46

12 Accesses per 1K instructions. CCD for an 8-way, 8 inst. per block, trace cache, a)

SPECINT 2000, b) SPECFP 2000, c) TPC-H 48

13 Accesses per 1K instructions. CCD for an 8-way, 16 inst. per block, trace cache,

a) SPECINT 2000, b) SPECFP 2000, c) TPC-H 49

x

14 Misses and Secondary hits per 1K instructions breakdown and CCD rates for a

UCC 8-way, 8 instructions per block, instruction cache, for valid blocks

52

15 Maximum, minimum and average of the normalized IPC performance of all bench-

marks for DAC and UCC for valid blocks. Results are shown for 15, 20, 25 and

30 cycles L2 latencies and 0, 1 and 2 cycles secondary hit latencies 53

16 The CATCH flow for a Cache miss, DR miss and HDD hit 56

17 The CATCH flow for a Cache miss, DR hit, Cache hit 57

18 Performance potential captured by oracle detection (limit) and CATCH for DAC

and UCC (16KB instruction cache, 20 cycles L2 cache latency) 67

19 Effects of applying different policies on CATCH performance 69

20 CATCH with various cache associativities . 70

21 CATCH with various cache sizes . 71

22 CATCH and 8 entry Victim Cache . 72

23 CATCH with next-line prefetching . 73

24 CATCH compared to an 18KB cache . 73

25 Normalized Energy Delay product when using a 1.38KB CATCH 76

26 Intrinsic and Extrinsic Text Cloning on Intel Pentium 4 83

27 Intrinsic and Extrinsic Text Cloning on Intel i7 84

28 Extrinsic Text Cloning overhead on Intel i7 . 84

29 gLite job submission chain

(http://web.infn.it/gLiteWMS/index.php/techdoc/howtosandguides) 87

30 Weighted SpeedUp. Detecting and eliminating ETC with overlapping program

phases . 91

xi

31 Weighted SpeedUp. Detecting and eliminating ETC with 500 million instructions

shift in program phase . 91

32 Execution coverage of unique blocks for the a) SPECINT 2000 and b) SPECFP

2000 . 95

33 Execution coverage breakdown of unique blocks in percentages for the a) SPECINT

2000 and b) SPECFP 2000 . 96

34 Normalized cache size required after CCD elimination at the granularity of 64byte

blocks for benchmark LUCAS . 98

35 Normalized cache size required after CCD elimination at the granularity of 64byte

blocks, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H) 101

36 Normalized cache size required after CCD elimination at the granularity of 32byte

segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H) 103

37 Normalized cache size required after CCD elimination at the granularity of 16byte

segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H) 104

38 Normalized cache size required after CCD elimination at the granularity of 8byte

segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H) 105

39 Normalized cache size required after CCD elimination at the granularity of 4byte

segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H) 106

40 Normalized cache size required after CCD elimination at the granularity of 64byte

blocks, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H) 110

41 Normalized cache size required after CCD elimination at the granularity of 32byte

segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H) 111

42 Normalized cache size required after CCD elimination at the granularity of 16byte

segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H) 112

xii

43 Normalized cache size required after CCD elimination at the granularity of 8byte

segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H) 113

44 Normalized cache size required after CCD elimination at the granularity of 4byte

segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H) 114

45 Performance improvement of an out-of-order processor with perfect cache (Same

as Figure 2) . 115

46 Misses Per 1K instructions for various LLC cache sizes) 115

47 Normalized cache size required after CCD elimination at the granularity of 16byte

segments for a) High - High, b) Medium - Medium and c) Low - Low pressure

benchmark combinations . 116

48 Normalized cache size required after CCD elimination at the granularity of 16byte

segments for a) High - Medium, b) High - Low and c) Medium - Low pressure

benchmark combinations . 117

49 The functional componets of the proposed Content Duplication Aware Cache . . . 120

50 Normalized IPC speedup on the 8MB baseline for various cache sizes 123

51 Normalized IPC speedup on the 8MB baseline when increasing tag array 123

52 Normalized IPC speedup on the 8MB baseline when decreasing data array 125

53 Normalized IPC speedup on the 8MB baseline for various cache sizes for a) High

- High, b) Medium - Medium and c) Low - Low pressure benchmark combinations 126

54 Normalized IPC speedup on the 8MB baseline for various cache sizes for a) High

- Medium, b) High - Low and c) Medium - Low pressure benchmark combinations 126

55 Normalized IPC speedup on the 8MB baseline when increasing tag array for a)

High - High, b) Medium - Medium and c) Low - Low pressure benchmark combi-

nations . 127

xiii

56 Normalized IPC speedup on the 8MB baseline when decreasing data array for

a) High - Medium, b) High - Low and d) Medium - Low pressure benchmark

combinations . 127

57 Normalized IPC speedup on the 8MB baseline when decreasing data array for

a) High - High, b) Medium - Medium and c) Low - Low pressure benchmark

combinations . 128

58 Normalized IPC speedup on the 8MB baseline when decreasing data array for

a) High - Medium, b) High - Low and c) Medium - Low pressure benchmark

combinations . 128

59 Energy profiling of increasing execution time and decreasing LLC data array . . . 131

60 Normalized Energy delay for a 4MB CDA cache (with double the number of tags)

and a 4MB regular cache . 132

61 Performance potential of CATCH for a UCC using various sizes and associativity

of HDD and DR for 16KB cache for valid blocks 150

xiv

Chapter 1

Introduction

The importance of caches and memory hierarchy has increased over time due to the growing

gap between processor and memory performance [2]. The memory gap, as shown in Figure 1, has

been growing by more than 50% in the last decade and has become more pronounced the last few

years with the wider use of Simultaneous Multithreading (SMT) and Chip Multiprocessor (CMP).

The applications are also becoming more demanding by exploiting all the computational power

provided by the state of the art processors.

The combination of multi-cores and multi-threading is effective in improving processor uti-

lization as long as the memory hierarchy can satisfy all running threads instructions and data

needs. Consequently, modern processors devote a large fraction of their real estate for the cache

hierarchy and numerous research studies are conducted on how to efficiently share the cache hier-

archy among concurrent on-chip threads [3, 4, 5]. These proposals are aimed to overcome various

daunting memory related challenges.

1

2

1

10

100

1000

10000

100000

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Year

P
e
r
f
o
r
m
a
n
c
e

CPU

DRAM

!"#$%&'()*'+,-./'
!! The importance of caches and memory hierarchy has

increased over time due to the growing gap between

processor and memory performance

University of Cyprus, Department of Computer Science – Ph.D Proposal 29/07/2011
2

!"#$%&'$()*$+),*-$./$01$234$+),*5$

6789$:'$()*$+),*-$./$01$2&$+),*5$

;,($<*)=$

4&'$()*$+),*$

Figure 1: Memory Gap [1]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

g
z
ip

0
0

v
p
r0

0

g
c
c
0
0

m
c
f0

0

c
ra

ft
y
0
0

p
a
rs

e
r0

0

e
o
n
0
0

p
e
rl
b
m

k
0
0

g
a
p
0
0

v
o
rt

e
x
0
0

b
z
ip

2
0
0

tw
o
lf
0
0

w
u
p
w

is
e
0
0

s
w

im
0
0

m
g
ri
d
0
0

a
p
p
lu

0
0

m
e
s
a
0
0

g
a
lg

e
l0

0

a
rt

0
0

e
q
u
a
k
e
0
0

fa
c
e
re

c
0
0

a
m

m
p
0
0

lu
c
a
s
0
0

fm
a
3
d
0
0

s
ix

tr
a
c
k
0
0

a
p
s
i0

0

Q
1
F

Q
2
F

Q
3
F

Q
4
F

Q
5
F

Q
6
F

Q
7
a

Q
8
a

Q
9
a

Q
1
0
F

Q
1
1
a

Q
1
2
a

Q
1
3
a

Q
1
4
a

Q
1
5
F

Q
1
6
F

Q
1
7
F

I
P

C
 S

p
e
e
d

u
p

Perfect IL1 Perfect DL1 Perfect L2

Figure 2: Performance improvement of an out-of-order processor with perfect cache

1.1 Memory Challenges

The performance of caches has always been limited by their size and energy constrains. In

order for the caches to be beneficial they have to be small, because this will provide lower latencies,

but also need to be energy efficient since they occupy a large portion of the chip.

Adding more levels in the memory hierarchy and bigger caches in the processors is not the

answer anymore since both approaches are costly. The Figure 2 shows the performance potential

of a high performance processor using various workloads with a perfect L1 instruction, L1 data

3

and L2 unified cache. The results indicate that there still room to improve the memory gap. We

can also observe that different application types to need more instruction cache and others more

data and L2 cache. The main challenges of caches are the following:

• Average Latency: The ultimate goal is to reduce the average latency as low as possible

while maintaining the same or similar cache size. This can be achieved by several mecha-

nisms, like prefetching, victim caches, e.t.c [6, 7]. Reducing misses, by using prefetching

for example, helps reduce the average access latency of the cache.

• Effective Capacity: Another challenge is to increase the effective capacity of a cache with-

out increasing the physical area. The most common technique to achieve this is by com-

pressing the data in the cache. In this way, more data will fit in the same cache size. A

trade off when using compression is to increase the hit latency for larger capacity. The goal

though is to achieve a total lower average latency, so the increase in the hit latency will be

eventually compensated by the savings due the cache miss reduction.

• Bandwidth Requirements: With the use of SMT and CMP processors, requests to the main

memory and lower levels of the cache have increased putting pressure to limited off-chip

bandwidth. To overcome this challenge several techniques have been proposed, including

the use of compressed data through the bus.

• Power Constraints: The power constraints have been and will remain to be a primary

design constraint for the years to come. The challenge aimed to provide high performing

memory hierarchies and low energy has been the subject of several research projects and is

still an open issue.

4

168

123

114

141

Tag

168 r1=0+1, r2=r2+r3, if(r2)targ1

123 r3=82(r5), r4=0+r1, r3=r4+4

114 r6=0+r1, r1=r4+r2, if(!r1)targ2

141 r3=82(r5), r4=0+r1, r3=r4+4

Tag Content Content

(a)

Cache
 Content

Duplication

(b)

Figure 3: Cache Content Duplication (a) Without CCD, (b) With CCD

1.2 Thesis Contributions

This thesis identifies a new cache property that may influence cache performance: the Cache-

Content-Duplication (CCD). This phenomenon occurs when there is a miss for a block in a cache

and the content of the missed block resides already in the cache in another block with a different

tag. Therefore, CCD is a manifestation of redundancy in the cache content. For example, Fig.

3.a shows an instruction cache where each block is identified by its tag and Fig. 3.b shows an

instruction cache which is aware of the block content. This example shows that two different

blocks, with tags 123 and 141, have identical content. If block 141 is evicted and later we have a

miss on it, the content of 123 can be used without accessing a lower level of the memory hierarchy.

By identifying and exploiting CCD we can address most of the memory challenges mentioned

earlier. Removing CCD from caches helps increase the effective cache capacity and therefore

improve the cache performance. Also, by identifying CCD and reducing the cache misses will

affect the bandwidth since the requests for data reduced. Compressing the data array and power

gating its inactive portion can reduce static leakage of the cache.

The main contributions of this thesis are the following:

• CCD for Instruction Caches: In Chapter 4 we investigate the potential of CCD in instruc-

tion caches. We will characterize the phenomenon of CCD and measure its frequency in var-

ious types of instruction caches like block-based caches, trace caches, and normal caches.

5

We will also discuss which cache parameters might influence CCD and what optimizations

can be applied to improve the detection of CCD in caches.

Then we propose two new cache types, the Duplicate-Aware-Cache (DAC) and the Unique-

Content-Cache (UCC) that can exploit the CCD phenomenon. Both caches aim to reduce

the cache latency on a miss by using a duplicated block in the cache while the UCC cache

also increases the effective cache size by allowing unique blocks to enter the cache.

Furthermore we propose CATCH, a hardware mechanism that can dynamically detect CCD,

and an investigation of its performance for DAC and UCC instruction caches. The various

components of the mechanism are described, and various optimizations are proposed to

increase performance and to reduce the cost of the mechanism.

In Chapter 5 we study another case of CCD for instruction caches, the Extrinsic and In-

trinsic Text Cloning. Text Cloning refers to the phenomenon where identical code, from

the same or different applications, coexist simultaneously in an instruction cache. We inves-

tigate the effects of Text Cloning on real platforms to quantify the performance degradation

due to this type of redundancy. Finally, we discuss possible applications of CATCH mech-

anism to detect and eliminate this text cloning.

• CCD for Data Caches: Chapter 6 investigates the potential of CCD for data caches. We

present analysis of duplication in data caches at the block level and discuss why CCD opti-

mizations are hard to apply on data caches.

• CCD for Last Level Caches: In Chapter 7 we present a study on Last Level Caches both

for single and multiprogram workloads. Specifically we measure the frequency of CCD in

a LLC cache at various granularities. We also propose a new cache design, the Content

Duplication Aware (CDA) cache uses extra tags to insert more compressed data in the data

6

array or improves energy efficiency by switching off part of the data array that is not used

due to compression.

An optimistic implementation of CDA is evaluated in terms of performance and energy to

establish the potential of the proposed approach.

1.3 Main Output of this Thesis

The work during this thesis resulted in the publication of a journal paper, a conference paper, a

workshop paper (later published in a special issue journal), three technical reports and two posters.

A technical report [8] described CCD in instructions caches and provided an initial analysis

of the phenomenon. An abstract and a poster of this technical report was presented in ACACES

2005 [9].

The effects of detecting duplication at the granularity of valid blocks were presented in ACACES

2006 [10] as a poster. Next there was another technical report [11] that extended the first with

performance analysis and provided a detail mechanism to dynamically detect and exploit CCD,

CATCH. The same work was later published in DATE [12].

A special case of CCD, the Text Cloning, was presented during WIOSCA 2010 workshop

[13]. The paper was later published in LNCS journal. Also, an extension of the DATE paper with

more thorough analysis of the effects of CCD and CATCH on other caches optimizations, like

prefetching, was accepted for publication in TACO journal in 2011 [14]

Finally, a framework to identify the simulation regions for benchmarks was developed during

this thesis and appears as a technical report in [15].

7

1.4 Other Output from this Work

During this thesis we have also worked on other projects that resulted to publications and a

patent.

1.4.1 Improving Branch Prediction by Considering Affectors and Affectees Correlations

Branch prediction has been the subject of several papers. In this work [16, 17] we have inves-

tigated the potential of direction-correlations, for both affectors and affectees, to improve branch

prediction. The correlations are determined based on data-flow graph information and used to

select a subset of history bits that affect a prediction.

The main contribution of this work is the insights that provide on how and why predictors

work using history and the possibility of predictors that can efficiently learn correlations that may

be non-consecutive from long branch history.

1.4.2 Entry Replacement Within a Data Store

A mechanism to improve the performance of value predictors was developed in [18, 19]. A

value predictor’s performance relies on the predictability of the program phase. Some program

phases are very predictable, for example streaming or stride behavior, while others are completely

random. The more load instructions we can keep history of in the value predictor the better

performance we will have.

Investigating the behavior of several applications we observed that only a fraction of the load

instructions is really predictable and the rest just pollutes the value predictor and evicts useful

information.

A replacement predictor was proposed that predicts the predictability of a bigger subset of

load instructions by approximating a large direct mapped value predictor without tag matching and

8

using hashed information. Using this table we effectively profile the behavior of an application,

or a certain phase of it, and decide whether the value predictor should be updated or not with a

certain load instruction.

The main contribution of this work was a novel replacement policy to select the best values to

update a value predictor using a small direct mapped table.

1.5 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2, a background on memory opti-

mizations and previous work related to cache redundancy is discussed. The Chapter 3 presents the

metrics, the simulation environment and the benchmarks that were used in this thesis. In Chapter

4, we discuss our work on Instruction Caches and Chapter 5 presents another case of CCD for

instruction. Chapter 6 investigates the potential of CCD in Data Caches. In Chapter 7, an analysis

of CCD in LLCs is presented and a mechanism is proposed to exploit CCD. Finally, Chapter 8

provides conclusions and directions for future work.

Chapter 2

Background and Related Work

Since their introduction to the motherboards as fast small off-chip memories and later their

integration into the processors as on-chip memories, the caches have improved the processor’s

performance. This Chapter will provide a background on several memory optimizations that have

been proposed with more emphasis on previous work related to cache compression optimizations.

2.1 Memory Hierarchy Optimizations

The caches have been the central to numerous research studies, all aiming to cover this gap

more efficiently. Several techniques have been proposed to improve various aspects of caches by

reducing their miss rates, size, latency, and energy. Most of these techniques attempt to exploit

different types of properties of memory addresses and data, such as locality [20], predictability

[21, 22], and redundancy [23, 24].

The rest of this section categorizes and describes the most important techniques that are ap-

plied to improve cache performance and comments on different approaches.

9

10

2.1.1 Replacement Policies

The optimal cache replacement policy has been the holy grail in cache optimizations research.

The decision for which block to replace from the cache is very critical. The policy has to choose

a block that hasn’t been used for a long time but also to predict, in a way, that will not be reused

in the near future.

Replacement policy’s performance always depends on the workloads characteristics so a good

replacement policy must be able to adapt to different phases of a program. There are mainly three

different approaches that researchers are using to develop or improve a cache replacement policy.

The first approach is the Optimal Replacement Approximation [25, 26]. The main goal is

to predict which block in the set will be needed further in the future. This can be achieved by

keeping a history of the previous replacements and accesses and employing a predictor to indicate

the victim. The new block to be inserted in the cache can also be the victim and here the new

block is just bypassed, and there are no replacements in the cache.

The second approach is the Adaptive Replacement Policies [27, 28, 29]. In this case, re-

searchers attempt to categorize different program phases, such as streaming or good locality or

big workloads, and dynamically identify these phases. Once the behavior of the application that

is exhibited in the current phase is identified, the appropriate replacement policy can be applied.

It is very common that a phase that exercises a big workload is best handled by an MRU policy,

while a phase with a good locality will be exploited better using an LRU policy.

Finally, the third approach is the Global Replacement Policies [30, 31, 32]. The idea behind

this approach is that some of the sets in the cache are very hot while some others are rarely used

and can also have empty slots. Using a secondary index the Global Replacement Policies attempt

to find an alternative place to insert a block if it doesn’t fit in its primary location. Effectively the

11

Global Replacement Policy attempts to emulate a fully associative cache using a direct cache or

a set associative cache. By doing this, we can achieve better utilization without bearing the high

cost of accessing a fully associative cache.

2.1.2 Prefetching

Another common optimization is the cache prefetching. The researchers noticed that since the

memory hierarchy on a miss is not fast enough to cover the throughput of out-of-order processors

then the missed block should be predicted and prefetched before the processor requests it.

To achieve prefetching, future knowledge is required to predict the next access. Since this not

possible, even with profiling it cannot be 100% accurate, many have tried to exploit the program

regularities to predict the next missed block and prefetch it. We divide the previous work on cache

prefetching into three categories.

The first category is the Compiler assisted prefetching [33]. The ideal prefetcher will be the

one that knows the future and the best way to learn the future is to take a look by profiling. Using

profiling and programmer’s knowledge the compiler can be armed with the ability to “know” the

future and add special instructions that will initiate prefetching when necessary. This approach

is very fast and accurate since we have almost perfect knowledge of the program behavior and

there is no need for probing and updating predictors. The downside of this technique is that it

requires profiling which is extra work and not always possible, for example with legacy code.

Also, different program inputs may lead to multiple control flow paths and this will require either

more profiling or less accurate prefetching.

Another category of prefetching is the Fetch streaming [34, 35]. The use of history predictor is

very common in processor designs and has been also used for prefetching. Although sometimes a

simple next line predictor can be very efficient most of the times the addresses of the instructions

12

executing are not continuous. The authors in this category tried to create a chain of dynamic

instructions that do not have to be continuous in the static code to use this later for prefetching.

Once the sequence of instructions is identified and stored in the predictor the first instruction of the

sequence is assigned as the trigger instruction. When the program execution reaches the trigger

instruction, a sequence of events is also initiated by the predictor to execute the instructions that

were also executed in the past when the trigger was called. This will result to speculative data and

instructions to prefetched in the cache.

The last category is the Runahead Execution [36, 6, 37] where mechanisms are proposed

to speculative run the application and force the misses before they are requested so they will

prefetched in cache. By exploiting the extra throughput provided by the SMTs when at least

one thread slot is idle, the processor can run a speculative version of the application in parallel

with the normal execution but slightly forward few hundred of instructions. If the speculation

is correct, useful data will be fetch in both data and instruction caches. A very important detail

of the runahead execution is to detect the optimal distance between the runahead version of the

application and the normal version. Going too much forward means that unnecessary information

will be fetched that may pollute the cache and cause more misses, while going too little forward

means that the runahead execution will not be fast enough to fetch the requested information on

time.

2.1.3 Compression

Data compression techniques have been around for a long time. People noticed from the

beginning of writing that some words are most common than others and if we represent those

words with fewer letters then the size of the text gets smaller. The same idea applies when we

compress bits and bytes in a computer’s memory and using a dictionary we represent the most

13

common sequences of data that can be from few bits to a whole memory page, with smaller codes

aiming to reduce the space needed to store our data.

The data compression was first applied in disks in the early 1990s where the size of a hard

disk was at the range of few megabytes to few tens of megabytes. There were several DOS [38]

applications to compress files and directories in the disks to increase the free space. Today, disk

compression is still used but is mainly applied to increase the effective bandwidth in networks such

as the internet or any other network systems. Venti [39] is an example where disk compression

is used to save space in a network storage system intended for archival data. Venti hashes the

data to detect and eliminated duplicated information stored in magnetic disks. Also, a common

application of disk compression is for files that are going to be distributed through the internet or

any other local network to save bandwidth.

Another emerging application of compression is in the region of virtualization. Virtual caches

might have vast amount duplication because they might be even running the exact image of a

system multiple times. This duplication can be eliminated by using mechanisms [40] to detect

whole memory pages that contain the same data and merge them. A similar approach is used

by the Linux operating system and is called Kernel SamePage Merging (KSM) [41, 42] where a

hypervisor is checking all memory pages and merge any duplicated pages, pages that contain the

exact same data. In case of a write on such a page the dirty page is copied (copy-on-write). KSM

idea was first proposed for virtual memory and then applied to Linux operating system for the first

time on version 2.6.32.

Finally, another application of Compression is the cache compression, which is also the most

relevant to our work. More specifically in caches the compression is very important to keep them

small and fast. By compressing the data we increase the effective cache size without increasing

14

its physical size that will lead to longer access times and higher energy per access. Also by trans-

ferring data in a compressed form between various levels in the memory hierarchy the effective

memory bandwidth is also increased.

There are two different approaches in cache compression, the Dynamic Compression[43, 23,

44, 45, 46, 47, 48, 49, 50, 51, 23, 52, 53, 54] and the Static Compression [55, 56, 57, 24, 58, 59].

Dynamic Compression provides flexibility and adaptivity to the program phase changes. Sev-

eral researchers adopted this approach and either by building a dictionary through profiling or by

dynamically detecting the redundancy they tried to improve the cache performance by increasing

the effective cache size. Furthermore, the dynamic compression also provides the option to turn

off compression if the overheads become too high on a certain program phase.

On the other hand the Static Compression gives more room for transformations and a global

view of the application in order reduce the required space even more. The main disadvantages

of Static Compression are that it cannot be applied to legacy code either can be turned off during

execution.

A more extended discussion on Cache Compression techniques is presented in Section 2.

2.2 Related Work on Compression

This thesis will focus on the redundancy of the memory and cache content, which has also

been the subject of several previous works. The main objectives of memory hierarchy redundancy

optimizations are to increase the effective memory/cache capacity or to achieve higher bandwidth

during the information transfer between the different levels of the memory hierarchy or both. This

will result to performance improvement and/or energy reduction.

Previous work on memory hierarchy compression can be separated in two main categories, the

Dynamic Compression which means the redundancy is detected dynamically and compressed in

15

any level of the memory hierarchy and the Static Compression where the data, either instructions,

or information, are compressed before they are loaded in the memory.

2.2.1 Dynamic Compression

A scheme for main memory on-line compression was first proposed by Douglis [43]. This

work is targeting the main memory to reduce the I/O between the memory and the disk. Keeping

the LRU memory pages compressed the main memory can accommodate more pages, and thus

reducing the misses and the need for I/O. The LZRW1 dictionary based algorithm is used for the

compression with a 16KB hash table.

Kjelso and Gooch [23] proposed a hardware implementation of the X-Match dictionary com-

pression algorithm for main memory data. Their algorithm requires about 30% more hardware

than previously proposed hardware designs but can achieve 2-3 times faster compression and de-

compression rates.

Lefurgy et al. [44] studied the concept of keeping compressed code in main memory and

“software decompressing” on a cache miss. More specifically, frequently used instructions, in the

original code, are replaced by pointers to an entry in a 64K instruction dictionary. The authors

observed that the high overhead of software decompression was slowing down the benchmarks,

and they show that selective compression can reduce this performance loss.

The high redundancy of a subset of values in data caches was identified in [45]. A Frequent

Value Cache (FVC) was proposed to hold the frequent values in compressed form. The FVC is

accessed in parallel with a Direct Mapped Cache (DMC) and in case of a cache miss and a hit on

FVC the miss was served from there. The FVC is updated only on replacements from the DMC.

Very relevant to our work is [46] that introduces the notion of address correlation: two different

addresses are correlated when at the same time they contain the same value. Address correlation

16

can improve performance if on a cache miss the correlated address is found in the cache in another

location. The authors investigated the limits of oracle address correlation, and found it to be

significant, but did not propose a mechanism for detecting it.

Molina et al. [47] noticed the value replication in the cache and proposed the use of a decou-

pled tag array and data array in order to keep unique values in the data array and pointers from the

tags to these values. They called this type of a cache a Non Redundant Data Cache.

In the same concept of [47] the authors of [48] proposed the Content-Based Block Caching.

The difference from the previous is that is done for a buffer cache and given the advantage of

higher latencies in software and memory availability the authors achieve to eliminate most of the

limitations that [47] faced on hardware.

Alameldeen and Wood [49] keep information compressed, for both instructions and data, only

in L2 cache and can dynamically choose to keep data in uncompressed form when the overhead

of compression may cause degradation in performance.

Hallnor and Reinhardt [50] proposed a scheme that can map multiple compressed blocks into

a single physical cache block using an Indirect Index Cache. A compressed block will require

fewer segments for its data leaving additional storage for other blocks. This scheme maintains

compressed data both in main memory and on-chip and enables the data to travel through the bus

in compressed form. Therefore, this approach offers both extra space on main memory and cache,

and a higher transfer rate from main memory to cache.

Biswas et al. [51] investigate the phenomenon of data similarity in multi-execution programs.

They observed that when multiple instances of the same application are running on a multicore

sharing the same L2 cache, their data are usually very similar.

17

Many researchers have also noticed that there is a big tradeoff of compressing only zeros

instead of all possible values. The main idea is that the zero runs in the data are very common and

although may not cover a big part of the execution they are much simpler to compress.

Kjelso and Gooch [23] proposed an extension to their hardware implementation X-Match just

to zero runs and they called it X-RL.

The zero values were exploited by Villa et al. [52] to save energy. They propose to use an

extra bit for every byte stored in the cache that indicates if the block is zero or not. In case of a

zero block only that one bit is needed to be read.

Ekman and Stenstrom [53] detected cache blocks that are for zeros using 1 extra bit per block

in the Block Size Table (BST). The BST has as many entries as the TLB array and each entry in the

BST has pageSize/blockSize bits. In this way, once a zero block arrives in the L2, it’s marked it in

its corresponding BST entry and they don’t cache it at all. Eventually, if that block is referenced

again the BST will indicate that the block is all zeros.

The benefit of eliminating zero blocks was also studied by Dusser et al. [54]. The authors

propose an extra cache, called Zero-Content cache, to keep track of zeros in the regular cache.

Each entry in the ZC cache contains a tag (the sector address) and a number of N bits. N equals

to SectorSize/CacheBlockSize and each bit corresponds to one of these blocks. A cache miss

followed by a ZC cache hit means that the block is all zeros and an access to lower levels of

memory hierarchy is saved.

Finally, the effects of compression to the area and energy were studied by Kim et al. [60].

They proposed the use of two smaller caches, instead of a big one, and smaller block size. All

the compressible blocks reside in the first cache while the uncompressed blocks can be in both

caches. The authors show that using their scheme can save both and energy and area as compared

to a conventional L2 cache with at most 0.5% performance degradation.

18

2.2.2 Static Compression

Lefurgy et al. [55] explored the idea of keeping compressed code in instruction memories of

embedded processors. Based on static analysis, common sequences of instructions are assigned

unique codes. These codes are stored in instruction memory and are expanded to their original

form when requested for execution.

Benini et al. [56] proposed a dictionary based compression technique for firmware code ex-

ecuted on embedded systems. The aim for this work was to reduce the energy required during

execution by compressing the most commonly used instructions to reduce memory accesses. This

scheme does not require any processor modification since the instruction decompression is per-

formed on the fly by a hardware module between the memory and processor.

Hines et al. [57] proposed the use of an Instruction Register File (IRF) for holding frequently

executed instructions. An integrated compiler/hardware mechanism exploits this to reduce the

code size and power requirements and to improve performance.

2.3 Code Compaction

Code compaction methods [24, 58, 59] are used to reduce the executable code size without

a need to decompress the compacted code for execution. Code compaction work could be eas-

ily labeled as Static Compression and included in the previous Section, 2.2.2, but we wanted to

differentiate it because it deals only with instructions and employs very special optimizations.

The main idea behind most compaction techniques is to have the compiler back-end identify

repeated sequences in a program and eliminate the repetition by either cross-jumping or procedural

abstraction. Cross-jumping replaces all instances of a repeated sequence with a jump to a new

location that contains a single copy of the repeated sequence. Procedural abstraction is used to

19

convert a repeated sequence to a procedure and replace the repeated sequences with calls to this

procedure. Control flow dominance criteria are used to decide which of the two methods is applied

in each case of repetition.

Code compaction transformations have also been proposed to convert “superficially” dissimi-

lar sequences to repeated. For example, two sequences can perform exactly the same computation

using different registers. These differences can be eliminated using move instructions to rename

registers prior and after executing a compacted repeated sequence. The main cost of code com-

paction is run-time overhead due to the extra instructions executed to steer the control flow to/from

unique copies of repeated sequences and to transform dissimilar sequences to similar. This over-

head, however, can be offset by a possible reduction in instruction cache misses.

2.4 Dynamic VS Static Techniques and Mechanisms

The benefit of static compression comes from the advantage that the compiler and the pro-

grammer can have a bigger picture of the application and that enables better transformations and

optimizations to eliminate redundancy. On the other hand the Dynamic approach, although lim-

ited in the number of transformation, can be adaptive and applicable to legacy code. Especially

the adaptivity seems to be a very important factor in cache optimizations since the behavior of an

application can change so radically that a specify optimization will degrade, rather than improve,

its performance.

Another aspect of compression though is the mechanism that detects and removes redundancy.

There are Static and Dynamic mechanisms mostly in the sense of static and dynamic dictionaries

that keep the most frequent patterns for compression. The advantage of a static dictionary is that

we can achieve maximum compression for a certain set of patterns, but the downside is that those

patterns might be not frequent anymore if the application was profiled with different inputs than

20

the ones are currently used. Using a dynamic mechanism, that can update its dictionary or create

other kind of dynamic correlations between duplicated data, will provide more performance in

cases where profiling is not efficient or even cannot be done due to legacy code. The downside of

such a mechanism is that it needs more logic to detect the redundancy rather than just probing a

dictionary of frequent patterns.

In the next section, we will describe our approach and why we choose it based on the previous

work and discussion in this chapter.

2.5 Cache Content Duplication (CCD)

We propose Cache Content Duplication (CCD), a phenomenon that appears in the cache and

can be exploited by a dynamic hardware mechanism. CCD is defined in Section 1.2.

The key difference of our work from most of the previous effort [43, 23, 44, 45, 49, 50,

52, 55, 56, 57, 53, 54] is that we consider redundancy at the granularity of cache blocks and

detect it dynamically using a hardware mechanism instead of comparing arbitrary patterns with

profiling aid. Furthermore, most of the previously proposed techniques have static dictionaries or

compress only the zero value. We propose the use of a dictionary that is built during execution by

dynamically detecting duplicated sequences.

Code compaction [24, 58, 59] and CCD for instruction caches share some similarity since

both exploit redundancy in code. However, compaction methods are compiler based whereas the

method considered here is dynamic hardware based. The static approach can detect repetition at

a coarser scale, for example functions with multiple basic blocks. CCD duplication is limited to

at most a cache block at a time. Code compaction typically reduces code size and cache misses,

at the expense of increasing the dynamic instruction count. CCD, on the other hand, aims to

reduce execution time using extra hardware, instead of extra instructions, to minimize/eliminate

21

the penalty for misses on duplicated sequences. Furthermore, CCD may be the only way to exploit

duplication in legacy code where there is no opportunity for re-optimization.

Few other works attempted to use dynamic mechanisms and dynamic dictionaries to compress

the caches like CCD. One of these works is the address correlation [46] which also exploits the du-

plication of content at different addresses dynamically. Nonetheless, our work is distinct because:

(a) we also consider the duplication of instruction blocks whereas in [46] the focus is individual

data values, and (b) we propose hardware mechanisms for detecting and exploiting CCD.

The authors of [47] and [48] propose something similar to our work on Last Level Caches.

The approach is the same but the authors of [47] do not provide any performance evaluation of

their mechanism and also make many assumptions for the cache to avoid the problem of backward

pointers from data to tags when a tag invalidation is needed on data replacements. On the other

hand the authors of [48] present a mechanism that is only applicable on buffer caches and cannot

be applied in hardware since it requires expensive data structures like very long link lists.

Biswas’ work [51] also exploits the CCD phenomenon dynamically as proposed in [12] but

only for a specific scenario in which multiple instances of the same application share an L2 cache.

Our work extends more by detecting CCD in multiple levels of the memory hierarchy, different

granularities and multiprogram workloads with different applications. We also detect CCD within

the same application while [51] considers only CCD across multiple instances of an application.

Overall, previous work considered either the compression and compaction of arbitrary length

sequences of data or instructions, or the compression at the granularity of individual instructions

or values. Our work’s major differences from previous are that we combine all the following

characteristics:

• We propose a dynamic hardware detection mechanism that detects and creates relations

of duplicated content dynamically. This, as opposed to profiling, enables the mechanism

22

to detect and remove all possible duplication in the cache at the block level and smaller

granularities

• The redundancy is detected dynamically without static dictionaries and profiling. The dy-

namic detection using hash content allows to apply our design to any application and inputs

and legacy code

• We detect duplication at block level for various granularities while most of the previous

work was focusing on frequent values or whole cache blocks.

• We detect duplication within the same application on a single thread execution and across

different applications on a multiprogram execution. This enables the detection of duplica-

tion among similar codes and statically linked libraries.

Table 1 summarizes all previously proposed techniques and their characteristics including their

hardware and performance overheads.

23

Ta
bl

e
1:

Su
m

m
ar

y
of

re
la

te
d

w
or

k

A
rt

ic
le

G
ra

nu
la

ri
ty

A
lg

or
ith

m
V

al
ue

ra
ng

e
Pe

rf
.O

ve
rh

ea
d

A
re

a
ov

er
he

ad
C

ac
he

L
ev

el
D

yn
am

ic
C

om
pr

es
si

on
D

ou
gl

is
[4

3]
M

em
or

y
Pa

ge
s

L
Z

R
W

1
16

K
B

ha
sh

ta
bl

e
-

38
K

B
+

0.
8%

of
m

em
or

y
si

ze
M

ai
n

m
em

or
y

K
je

ls
o

[2
3]

M
em

or
y

Pa
ge

s
X

-M
at

ch
-

10
0M

B
/s

ec
C

om
pr

es
si

on
,

14
0M

B
/s

ec
D

ec
om

pr
es

si
on

11
0k

ga
te

s
M

ai
n

m
em

or
y

L
ef

ur
gy

[4
4]

In
st

ru
ct

io
n

Fr
eq

ue
nt

in
st

ru
ct

io
ns

64
K

in
st

ru
ct

io
ns

75
cy

cl
es

/c
om

pr
es

se
d

bl
oc

k
So

ft
w

ar
e

D
ec

om
pr

es
si

on
M

ai
n

m
em

or
y

Z
ha

ng
[4

5]
W

or
d

Fr
eq

ue
nt

va
lu

es
7

va
lu

es
0

(A
cc

es
se

d
in

pa
ra

lle
l)

3K
B

(3
2K

B
D

M
C

,6
4b

yt
e

bl
oc

k)
L

1
da

ta
ca

ch
e

Se
nd

ag
[4

6]
W

or
d

D
yn

am
ic

C
or

re
la

tio
n

-
-

-
L

1
da

ta
ca

ch
e

M
ol

in
a

[4
7]

Se
gm

en
ts

D
yn

am
ic

C
or

re
la

tio
n

-
-

-
L

2
ca

ch
e

M
or

re
y

[4
8]

Se
gm

en
ts

D
yn

am
ic

C
or

re
la

tio
n

-
-

-
B

uf
fe

rc
ac

he
A

la
m

el
de

en
[4

9]
Pa

tte
rn

s
Fr

eq
ue

nt
Pa

tte
rn

s
7

pa
tte

rn
s

5
cy

cl
es

/c
om

pr
es

se
d

bl
oc

k
19

bi
ts

-c
ou

nt
er

+
D

ec
om

p.
lo

gi
c

L
2

ca
ch

e

H
al

ln
or

[5
0]

B
lo

ck
se

gm
en

ts
L

Z
SS

-
32

cy
cl

es
co

m
pr

es
si

on
,8

cy
cl

es
de

co
m

pr
es

si
on

13
4K

B
M

ai
n

m
em

or
y

an
d

L
3

ca
ch

e
B

is
w

as
[5

1]
C

ac
he

bl
oc

ks
Sa

m
e

vi
rt

ua
la

dd
re

ss
A

ll
po

ss
ib

le
0

(n
or

m
al

ca
ch

e
ac

ce
ss

)
4.

28
%

of
th

e
ca

ch
e

si
ze

L
2

ca
ch

e
K

je
ls

o
[2

3]
M

em
or

y
Pa

ge
s

X
-R

L
(A

dd
iti

on
to

X
-

M
at

ch
)

Z
er

os
10

0M
B

/s
ec

C
om

pr
es

si
on

,
14

0M
B

/s
ec

D
ec

om
pr

es
si

on
0

(A
dd

iti
on

to
X

-M
at

ch
)

M
ai

n
m

em
or

y

V
ill

a
[5

2]
B

yt
es

D
yn

am
ic

de
te

ct
io

n
Z

er
os

0
cy

cl
es

1
bi

tp
er

by
te

L
1

da
ta

ca
ch

e
E

km
an

[5
3]

C
ac

he
bl

oc
ks

Z
er

o
bl

oc
ks

Z
er

os
5

cy
cl

es
-(

1
bi

tp
er

ca
ch

e
bl

oc
k

in
th

e
T

L
B

)
L

2
ca

ch
e

D
us

se
r[

54
]

C
ac

he
bl

oc
ks

Z
er

o
bl

oc
ks

Z
er

os
0

cy
cl

es
80

K
B

A
ll

le
ve

ls
K

im
[6

0]
H

al
f

C
ac

he
bl

oc
ks

Sm
al

lM
em

or
y

V
al

ue
s

16
K

B
4b

yt
e

va
lu

es
1

cy
cl

e
-5

3%
L

2
ca

ch
e

St
at

ic
C

om
pr

es
si

on
L

ef
ur

gy
[5

5]
In

st
ru

ct
io

n
se

-
qu

en
ce

s
Fr

eq
ue

nt
se

qu
en

ce
s

up
to

8
in

st
ru

ct
io

ns
81

92
se

qu
en

ce
s

-
-

St
at

ic
co

de
(A

ll
le

ve
ls

)
B

en
in

i[
56

]
In

st
ru

ct
io

n
Fr

eq
ue

nt
in

st
ru

ct
io

ns
25

5
in

st
ru

ct
io

ns
1

cy
cl

e/
co

m
pr

es
se

d
in

st
ru

ct
io

n
1.

2K
B

M
ai

n
m

em
or

y
H

in
es

[5
7]

In
st

ru
ct

io
n

se
-

qu
en

ce
s

Fr
eq

ue
nt

se
qu

en
ce

s
up

to
5

in
st

ru
ct

io
ns

32
se

qu
en

ce
s

0
(E

ith
er

IR
F

or
IC

ar
e

ac
-

ce
ss

ed
)

12
8B

yt
e

(I
R

F)
L

1
in

st
ru

ct
io

n
ca

ch
e

Chapter 3

Methodology

This chapter describes the methodology we used to achieve the goals of this thesis. We define

the metrics that will be used to evaluate our ideas and mechanisms, we present the simulation

infrastructure that has been used and finally we discuss the choice for the benchmarks and their

characteristics.

3.1 Metrics

We will use several metrics to evaluate our limit studies and for the performance evaluation

and energy analysis. Different metrics for single program workloads and others for multiprogram

workloads will be used. Also, we define a new metric that is related to our work and it’s called

CCD rate.

The metrics that will be used in this thesis are the following:

• Accesses per 1K instructions: A very important metric that we will be using is the Ac-

cesses per 1K instructions. We choose this metric to estimate the performance potential of

a benchmark during the functional execution. We decided to use Accesses per 1K instruc-

tions and especially MissesPer1K instructions over the Miss Ratio because we believe that

24

25

it is a more representative performance metric during functional simulations. The reason is

that an improvement on a benchmark with very low MissesPer1K instructions will have no

effect on performance while the Miss Ratio reduction might be misleading. For example,

a benchmark that has only 100 cache accesses and 50% Miss Ratio will result to only 50

misses. Even if we eliminate all 50 misses and decrease the Miss Ratio from 50% to 0% this

will have no effect on the performance. On the other hand, the MissesPer1K Instructions

metric will immediately indicate the very low miss count that would be an indication for no

margins for performance improvement.

• CCD rate: The next metric that is also very important for our analysis is the CCD rate. The

CCD rate refers to the fraction of misses that are for duplicate-blocks already in the cache

in another location. This metric will be used during the limit study analysis and will show

if any benchmark has potential to improve its performance if we could avoid the misses that

already have a duplicate in the cache.

• IPC speedup: As a performance improvement metric for our single program workloads we

choose the IPC speedup. The IPC speedup represents the improvement of IPC using our

mechanisms relative to the baseline configuration with a cache that is not CCD-aware. To

summarize the IPC speedup of many benchmarks the geometric mean is used.

• Weighted IPC speedup and Harmonic mean: For the multiprogram workloads we choose

the Weighted IPC speedup [61] and Harmonic mean [62]. The Weighted IPC speedup pro-

vides the performance improvement in terms of throughput while the Harmonic mean pro-

vides an indication of the fairness during execution. The second, the Harmonic mean, will

be used as a filter to avoid coming to conclusions for unfair workloads.

26

• Dynamic Energy per access: The dynamic energy per access will be used to measure

the effects of our proposed mechanisms in energy consumption. This metric will be an

indication of how much the energy consumption is increasing when our mechanisms are

employed.

• Energy Delay product: Finally, the last metric that will be used in this thesis is Energy

Delay product. This metric provides the energy efficiency of a mechanism considering also

its performance variation as compared to the baseline. The Energy Delay product will be

used to evaluate our mechanisms energy efficiency.

3.2 Simulation Infrastructure

This sections describes the simulator we used and the extensions we made to evaluate the CCD

phenomenon and the proposed mechanisms.

3.2.1 Simulator and Extensions

We used the SMTSIM [63] simulator for our experiments. The SMTSIM simulator provides

both functional and timing simulations and enables the study of single cores processors, SMT ca-

pable processors and chip multiprocessors. The configurations that we will be using are described

and explained below.

3.2.2 Single Core Configuration

Table 2 shows the parameters that we used for our single core configuration. We choose these

parameters that reflect to a high end single chip processor based on initial version of Intel Core

Solo at 1.5Ghz but instead we assume a 2.4Ghz frequency. Based on Core’s configuration and

27

Table 2: Single Core Baseline Configuration

fetch/issue/commit width 4/4/4
INT Issue Queue/FP Issue Queue/ROB 64/64/256
Pipeline Stages 10
L1 instruction cache 16KB 8-way 32B/block, 3 cycles
L1 data cache 16KB 8-way 32B/block, 3 cycles

Write-back, Write-allocate
L2 unified cache 2MB 8-way 32B/block, 20 cycles

Write-back, No Write-allocate, Non inclusive
Main memory latency 200 cycles
Cond. branch predictor 8KB combining predictor
BTB 1024 entries
RAS 32 entries
Indirect predictor 512 entries

Table 3: Multi Core Baseline Configuration

fetch/issue/commit width 4/4/4
INT Issue Queue/FP Issue Queue/ROB 64/64/256
Pipeline Stages 10
L1 private instruction cache 16KB 8-way 64B/block, 3 cycles
L1 private data cache 16KB 8-way 64B/block, 3 cycles

Write-back, Write-allocate
L2 shared unified cache 8MB 16-way 64B/block, 40 cycles

Write-back, No Write-allocate, Non inclusive
Main memory latency 200 cycles
Cond. branch predictor 8KB combining predictor
BTB 1024 entries
RAS 32 entries
Indirect predictor 512 entries

with the new frequency we ran the caches on Cacti [64] and the results were the latencies shown

in Table 2.

3.2.3 Multi Core Configuration

For the multicore configuration we used a similar configuration to the single core processor

but with bigger L2 cache and cache block size. Table 3 shows the core parameters and the cache

configuration for the private and shared caches.

28

3.3 Benchmarks and Characterization

For the workloads we choose to use the SPEC2000 suite and the TPC-H suite. All binaries

are run with reference inputs and were compiled for the ALPHA ISA[65] using the Compaq C

compiler and -O2 optimization level. Compiler optimizations, such as loop unrolling that increases

duplication, are disabled. For the TPC-H suite we are using the postgres database server with

SF=0.5 for the data set and the queries used are shown in Table 5.

Below we discuss our choice of regions and benchmarks that will be used throughout this

thesis.

3.3.1 Regions

The regions that we choose to simulate were selected based on a framework [15] that was

developed during this thesis. The idea of this framework is based on simpoint [66] analysis but

instead of doing this automatically we decide to visualize the execution using various application

statistics and choose the best regions to simulate. We define the best region as the region that is

beyond the initialization phase, and it represents a large portion of the benchmarks execution.

For example by visualizing the access in different locations in memory and separating text

segment access and data segment access we can define with high accuracy the region of the ap-

plication that the most work is done which will be also the most representative regions for this

application. More details can be found in [15] where there is a detail analysis and explanation for

the choice of SPEC 2000 simulation regions. We followed the same procedure also for the TPC-H

benchmarks but are not documented in any article.

29

Table 4: SPEC 2000 Simulated benchmarks

SPECINT Skip Execute SPECFP Skip Execute
2000 (106) (106) 2000 (106) (106)
GZIP 19400 500 WUPWISE 7950 500
VPR 25600 500 SWIM 1150 500
GCC 8400 500 MGRID 150 500
MCF 13400 500 APPLU 2100 500

CRAFTY 950 500 MESA 450 500
PARSER 1000 500 GALGEL 4450 500

EON 26400 500 ART 3150 500
PERLBMK 13800 500 EQUAKE 19300 500

GAP 20900 500 FACEREC 36600 500
VORTEX 18600 500 AMMP 5200 500

BZIP2 43000 500 LUCAS 2650 500
TWOLF 7200 500 FMA3D 10300 500

SIXTRACK 8200 500
APSI 1650 500

3.3.2 SPEC 2000

Table 4 show the simulation regions for SPEC2000 benchmarks. These benchmarks will be

used mostly to evaluate the data and L2 cache. As shown in Fig. 2 all the benchmarks in this

suite, with the exception of CRAFTY, EON, PERLBMK and FMA3D, have very little room for

improvement in the instructions cache while they have many data and L2 cache misses that can

elevate performance if they are eliminated.

3.3.3 TPC-H

Table 5 shows the simulation regions for TPC-H queries. TPC-H suite exhibits a high miss

counts in the instruction cache and very few misses in the data and L2 caches. This is also sup-

ported from the results in Fig. 2. So these benchmarks will only be used to evaluate instruction

caches.

30

Table 5: TPC-H Simulated benchmarks

TPC-H Skip (106) Execute (106)
Q1F 200 500
Q2F 50 178
Q3F 200 500
Q4F 50 500
Q5F 1000 500
Q6F 500 500
Q7A 400 500
Q8A 500 500
Q9A 1000 500
Q10F 900 500
Q11A 500 500
Q12A 400 500
Q13A 400 500
Q14A 300 500
Q15F 500 500
Q16F 300 500
Q17F 50 133

To improve figure clarity, sometimes only a subset of these benchmarks will be presented

but the results for all benchmarks will be also summarized and discussed. This applies to both

SPEC2000 and TPC-H benchmark suites.

3.3.4 Multiprogram Workloads

A representative region should be an amount of time or instructions that will exercise different

phases of a benchmark. The decision between time and instructions depends on the nature of the

experiment. For multiprogram workloads we face a new challenge because it is very difficult to

control all applications to run in their representative regions.

This requirement was also challenged in the past. Previous approaches [67, 68] to reduce the

problem were by making the workload composition as homogeneous as possible. By doing this,

the researchers assume that the experimental results will be more representative.

31

We have studied and evaluated all previous work, and we believe that a very accurate and

efficient way to run a multiprogram workload is by using Constant Time. To do this, all applica-

tions are run in a single program mode and the total cycles to complete a representative region are

noted. When we have multiprogram workloads, the total execution time will be equal to the total

cycles of all applications in the workload when they ran alone. Furthermore, we already know for

how many dynamic instructions a representative region expands for each application and after the

execution of the multiprogram workload we reevaluated and test if any of the applications in the

workload have executed more than 10% of instructions outside its representative region. If such a

case is detected, then the specific workload composition is excluded from our experiments.

Chapter 4

CCD for Instructions

As a first step toward understanding and exploiting CCD, this work is focused on the con-

tent duplication in instruction caches. CCD in instruction caches exists because: (a) high level

language programs often contain identical instruction sequences [69] in different segments of a

program due to: copy-paste programming practices and reuse of standard libraries and loops in

different parts of code, (b) conventions, such as for calls and returns, produce similar sequences,

and (c) compiler transformations, such as compiler inlining and macro expansion, lead to dupli-

cated code sequences.

By eliminating this redundancy, we aim to reduce cache misses and therefore improve proces-

sor’s performance. The main challenge of this approach is to achieve better performance without

increasing the energy or area in prohibitive levels. The effects and tradeoffs of detecting and

eliminating CCD in instructions will be investigated further in this Chapter.

32

33

4.1 How to Detect CCD

CCD occurs when there is a miss in a cache and the entire content of the missed block is

already in the cache in another block with a different tag. This section discusses key issues that

can influence the CCD frequency in instruction caches.

The discussion is concerned with the following types of instruction caches:

1. regular instruction cache

2. basic-block cache [70], where blocks are divided on the boundaries of control flow instruc-

tions and identified by their starting address. A basic-block is a sequence of instructions

where only the first instruction is an entry and only the last instruction is an exit. Conse-

quently, all instructions in a basic-block get executed as long as we enter the block. The

cache block, in a basic-block cache, contains either an entire basic-block or a partial basic-

block when it is larger than a cache block. This work considers basic-blocks with a maxi-

mum of 4 instructions. A basic-block cache is used in the block-based trace cache proposed

in [70]

3. trace cache [71] with the following trace termination criteria: (a) the maximum number of

instruction has been reached, (b) the maximum number of basic blocks has been reached,

(c) the last instruction is an indirect jump or a system call, and (d) a basic block, other than

the first in the trace, that is larger than the remaining space in the trace. A trace is identified

with a 33-bit value. The 28 most significant bits of the trace-id correspond to the address of

the first instruction in the trace. The five least significant bits of the trace-id represent the

direction of three conditional branches and the number of basic blocks in the trace. This

report considers traces with a maximum of 8 instructions. When the last instruction of the

trace is a conditional branch then the direction of the branch is not recorded in the trace-id.

34

This prevents duplicating traces with the same starting PCs and the same content, but with

different direction of the last branch [71]

4.1.1 What is the Cache Content Considered for Duplication

One important parameter than can influence the frequency of CCD is the cache content that is

considered for duplication.

For an instruction cache, a block always contains a block size number of instructions starting

from the block address, whereas for a basic block and a trace cache the block may contain (a) less

than block size instructions, and (b) the block starting address usually corresponds to the beginning

of a basic block. It is expected that CCD will occur more likely between blocks that have fewer

instructions (smaller cache blocks) and they are basic block aligned. Smaller sequences are more

likely to match, and sequences aligned at basic block boundaries are more likely to be identical. To

clarify, consider two basic blocks that are identical but reside in two different instructions blocks

at different positions. In an instruction cache, the duplication may not be detected because the

blocks that contain them are not aligned. Also, the instruction cache blocks may contain other

instructions, aside from the duplicated basic blocks that are different.

According to the above qualitative discussion, it is expected that CCD will be more common

for a basic block cache (one aligned basic-block per cache block), less common but still prevalent

for a trace cache (many aligned basic-blocks per cache block) and infrequent for an instruction

cache (many non aligned basic blocks per cache block).

A way to increase the frequency of CCD for regular instruction caches is to consider the dupli-

cation between valid instructions sent down the pipeline on an instruction cache access, instead of

entire instruction cache blocks. In [72] a valid block is defined as the static consecutive instruction

sequence starting from the current PC until: (a) the first predicted-taken conditional branch, or (b)

35

block content

PC

valid sequence

mask

filter

Cache

Branch

Predictor

index

Figure 4: Valid block masked out from a cache block

the first unconditional branch, or (c) a number of instructions equal to fetch bandwidth are read

from the cache. A valid block is identified by the starting PC and a bit mask that can be produced

at each cycle using the BTB and the direction predictor [72]. This mask indicates the location of

the first taken branch in a sequential instruction sequence. A valid block represents, therefore, the

predicted instructions that are sent down the pipeline after a cache access, and we will refer to

it as a valid block. Figure 4 shows how a valid block is build. Valid blocks have properties that

make them more amenable to CCD. They are usually basic block aligned, and their size roughly

corresponds to a basic block.

The distinction between an entire cache block and a valid block is only applicable to regular

instruction caches. For other caches, such as a basic block or a trace cache, the valid block is

virtually the same with the entire block content.

4.1.2 When to Learn the Cache Content

To detect duplication between cache blocks it is necessary to know the content of blocks

already in the cache. This way, when a block misses the cache, it can be detected whether its

content is a duplicate with a block already in the cache.

36

For a regular cache, a basic block cache, and a trace cache the content of a block can be learned

by remembering its content when it is inserted in the cache. This is referred to as learn-on-miss

learn policy. This policy is also sufficient to learn all the content in regular instruction caches

when considering duplication of entire cache blocks. However, the learn-on-miss is not sufficient

to learn all the relevant content in the case of valid blocks because, on a cache miss, an entire

cache block is filled in the cache and the missed valid block covers only a subsequence of the

entire block. One way to increase the frequency of CCD for valid blocks is to learn both missed

valid blocks and valid blocks that are cache hits. This is referred to as learn on miss and hit policy.

However, this policy can be inefficient since it may learn the same valid block multiple times.

Furthermore, to learn the valid blocks in a cache block may require multiple block accesses, with

some CCD potential lost in the intervening time.

Another method is to learn on a cache miss the missed valid block content and heuristically

learn other valid blocks in the missed block. We refer to this policy as learn-all-on-miss. An

example heuristic is to build an additional valid block using the remaining instructions in the

block after the missed valid block, and treat the next conditional branch to be encountered as

taken.

Henceforth, unless indicated otherwise, the learn-all-on-miss policy is used for learning the

missed blocks and an additional valid block, as described above. The importance of the learn

strategy on CCD for valid blocks is investigated in Section 4.6.

4.1.3 Which Sequences are Duplicated

Two valid blocks are considered duplicates if each instruction in a block is bit-wise identical in

the exact order with its corresponding instruction in the other block. Nonetheless, the duplication

37

criteria can be relaxed for direct (conditional or unconditional) control transfer instructions by al-

lowing differences in their immediate offset or target fields to increase duplication frequency. This

technique is known in code compaction as target abstraction [59]. Section 4.5 discusses, in de-

tail, how using a table that stores small target differences between otherwise identical sequences,

facilitates more duplication while maintaining correctness. We note that other abstraction transfor-

mations, such as register and constant abstraction [59], can be applied to increase the duplication

frequency. However, in this work we focus mainly on duplication detection. For the experimental

results, unless stated otherwise, it is assumed that CCD employs target abstraction.

4.2 Code Redundancy Characterization

In this section, we characterize the frequency of duplicated sequences at the granularity of

32-byte blocks (8 instructions) and valid sequences (maximum of 4 instructions) during dynamic

execution. The 32-byte blocks are 32 byte aligned, while the valid sequences are built dynamically

as explained in Section 4.1.1.

The Figure 5 shows the number of unique blocks, at the granularity of 32 byte blocks, needed

to cover a certain amount of dynamic execution when identified by their block tag, TAG, and by

their unique content, CONTENT. First, the results show that very few benchmarks have redun-

dancy at the granularity of a whole block. This is expected due to misalignment of code sequences

as discussed in Section 4.1.1.

Another interesting observation is that many benchmarks need less than 500 of 32-byte blocks

for their execution. A 16KB cache contains 512 of 32-byte blocks. That means detecting and

eliminating redundancy for these benchmarks will not make much difference for a cache equal or

bigger than 16KB unless of course there are many set conflicts between those blocks.

38

Execution Coverage:

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

GZIP VPR GCC MCF CRAFTY PARSER EON PERLBMK GAP VORTEX BZIP2 TWOLF

a) SPECINT 2000

N
u

m
b

e
r
 o

f
U

n
iq

u
e
 B

lo
c
k
s

80% 85% 90% 95% 100%

Execution Coverage:

0

500

1000

1500

2000

2500

3000

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

WUPWISE SWIM MGRID APPLU MESA GALGEL ART EQUAKE FACEREC AMMP LUCAS FMA3D SIXTRACK APSI

b) SPECFP 2000

N
u

m
b

e
r
 o

f
U

n
iq

u
e
 B

lo
c
k
s

80% 85% 90% 95% 100%

Execution Coverage:

0

500

1000

1500

2000

2500

3000

3500

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

Q1F Q2F Q3F Q4F Q5F Q6F Q7A Q8A Q9A Q10F Q11A Q12A Q13A Q14A Q15F Q16F Q17F

c) TPC-H

N
u

m
b

e
r
 o

f
U

n
iq

u
e
 B

lo
c
k
s

80% 85% 90% 95% 100%

Figure 5: Execution coverage of unique blocks for the a) SPECINT 2000, b) SPECFP 2000 and
c) TPC-H benchmarks

39

Execution Coverage:

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

GZIP VPR GCC MCF CRAFTY PARSER EON PERLBMK GAP VORTEX BZIP2 TWOLF

a) SPECINT 2000

N
u

m
b

e
r
 o

f
U

n
iq

u
e
 V

a
li
d

 S
e
q

u
e
n

c
e
s

80% 85% 90% 95% 100%

Execution Coverage:

0

1000

2000

3000

4000

5000

6000

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

WUPWISE SWIM MGRID APPLU MESA GALGEL ART EQUAKE FACEREC AMMP LUCAS FMA3D SIXTRACK APSI

b) SPECFP 2000

N
u

m
b

e
r
 o

f
U

n
iq

u
e
 V

a
li
d

 S
e
q

u
e
n

c
e
s

80% 85% 90% 95% 100%

Execution Coverage:

0

1000

2000

3000

4000

5000

6000

7000

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

Q1F Q2F Q3F Q4F Q5F Q6F Q7A Q8A Q9A Q10F Q11A Q12A Q13A Q14A Q15F Q16F Q17F

c) TPC-H

N
u

m
b

e
r
 o

f
U

n
iq

u
e
 V

a
li
d

 S
e
q

u
e
n

c
e
s

80% 85% 90% 95% 100%

Figure 6: Execution coverage of unique valid blocks for the a) SPECINT 2000, b) SPECFP 2000
and c) TPC-H benchmarks

40

Execution Coverage:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

CRAFTY EON PERLBMK FMA3D Q1F Q2F Q3F Q4F Q5F Q7A Q8A Q9A Q10F Q16F Q17F

P
e
r
c
e
n

ta
g

e
 o

f
U

n
iq

u
e
 V

a
li
d

 S
e
q

u
e
n

c
e
s

80% 85% 90% 95% 100%

Figure 7: Execution coverage breakdown of unique valid blocks in percentages for a selected
subset of benchmarks

Figure 6 shows the number of unique blocks, at the granularity of valid sequences (maximum

of 4 instructions), needed to cover a certain amount of dynamic execution. Compared to Figure 5

the results indicate that there is more potential when identifying the redundancy at the granularity

of valid sequences than cache blocks. Figure 7 shows the execution breakdown in percentages

for few selected benchmarks that have a significant amount of cache pressure. The unique valid

sequences identified by their CONTENT are normalized to the total unique valid sequences iden-

tified by the sequence TAG. The results clearly show that by removing redundancy, the number of

unique valid sequences required for execution is reduced by up to 20% for many benchmarks. For

example, the results for Q9A show that we only need 80% of the total unique valid sequences to

cover 100% of the execution when we identify them by their CONTENT. Also for the same bench-

mark, we observe that 50% of the unique valid sequences identified by their TAG are needed to

cover 95% of its execution. On the other hand, if we identify the sequences by their CONTENT

then only 38% of the total unique valid sequences are required indicating that a significant amount

of pressure will be alleviated.

41

4.3 Limits of Cache-Content-Duplication

The previous section investigated the redundancy during a program’s execution. In this section

we establish the CCD limits for an instruction cache, a basic block cache, and a trace cache

using a functional simulator. The results are obtained assuming oracle CCD detection: complete

knowledge of all blocks in a cache and ability to detect any possible duplication of a missed block

with a block already in the cache. The oracle CCD detection uses the default policies, presented

in Section 4.1, for detecting and learning CCD. The CCD is determined by checking on each miss

if the missed block content is identical with a block already in the cache. This is referred to as a

secondary-hit.

4.3.1 CCD in Instruction Caches for Entire Blocks and Valid Blocks

Figure 8 shows the breakdown of Accesses per 1K instructions with an 8-way, 32B (8 in-

structions) block, instruction cache for various cache sizes when considering duplication of entire

blocks. The graph also shows the CCD rate, secondary-hits/total misses, using a label on each

bar. The results are split into three graphs, (a) SPECINT 2000, (b) SPECFP 2000, and (c) TPC-H

benchmarks.

The results show that CCD for entire instruction cache blocks is a rare phenomenon, usually

0-1% of the misses are for duplicated blocks. As it was discussed in Section 4.1 one of the

main reason for the low duplication rates is that instructions are placed in the instruction cache

based on their block address and duplicated sequences may not start at the same relative address

within different cache blocks. Furthermore, an instruction cache block may contain instructions

that never get executed, for example, instructions before a branch target or after an always taken

control flow instruction, and this may effectively lead to identical blocks to appear dissimilar.

42

(a)

1
%

1
%

1
%

1
%

0
%

0
%

0
%

0
% 1
%

1
%

2
%

2
%

0
%

0
%

0
%

0
%

0
%

1
%

0
%

0
%

3
%

4
%

5
%

5
%

4
%

9
%

2
9
%

3
%

1
%

1
%

2
%

5
%

1
1
%

9
%

5
%

5
%

1
%

3
%

4
%

5
%

1
%

1
%

0
%

0
%

1
5
%

6
%

6
%

4
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Misses Secondary hits

(b)

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

1
%

1
%

1
%

1
%

0
%

0
%

0
%

0
%

1
%

1
%

0
%

0
%

0
%

0
%

0
%

0
%

1
%

1
%

3
%

2
% 0

%
0
%

0
%

0
%

0
%

1
%

6
%

1
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

wupwise swim mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi

Misses Secondary hits

(c)

1
%

2
%

8
%

1
%

0
%

1
%

1
%

2
%

0
%

1
%

1
%

4
%

0
%

1
%

2
%

2
%

0
%

1
%

2
%

1
%

0
%

0
%

0
%

0
%

0
%

1
%

1
%

3
%

0
%

0
%

0
%

0
%

0
%

1
%

1
%

2
%

1
%

1
%

3
%

9
% 0
%

0
%

0
%

0
%

0
%

1
%

1
%

2
% 0
%

0
%

0
%

0
%

0
%

1
%

0
%

1
%

0
%

2
%

9
%

1
%

0
%

2
%

1
%

1
%

0
%

1
%

1
%

2
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

Q1F Q2F Q3F Q4F Q5F Q6F Q7a Q8a Q9a Q10F Q11a Q12a Q13a Q14a Q15F Q16F Q17F

Misses Secondary hits

Figure 8: Accesses per 1K instructions. CCD for an 8-way, 8 inst. per block, instruction cache,
for entire blocks a) SPECINT 2000, b) SPECFP 2000, c) TPC-H

43

(a)

1
4
%

1
5
%

1
3
%

1
3
%

8
%

8
%

9
%

9
% 2
1
%

2
3
%

2
8
%

2
7
%

5
%

6
%

5
%

5
%

6
%

1
0
%

1
3
%

1
1
%

2
1
%

2
2
%

3
0
%

3
2
%

1
4
%

1
8
%

2
9
%

1
4
%

1
3
%

1
6
%

1
7
%

1
8
%

2
7
%

2
2
%

1
7
%

1
7
%

1
4
%

2
0
%

2
2
%

2
5
%

1
0
%

1
1
%

1
1
%

1
1
%

2
6
%

1
6
%

1
7
%

1
4
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Misses Secondary hits

(b)

2
3
%

9
%

8
%

8
%

4
%

3
%

4
%

4
%

7
%

6
%

3
%

4
%

0
%

0
%

2
%

2
%

5
%

6
%

9
%

9
%

1
%

1
%

1
%

1
%

1
4
%

7
%

7
%

7
%

3
%

3
%

3
%

3
%

9
%

1
2
%

1
3
%

1
3
%

8
%

8
%

6
%

6
%

5
%

5
%

5
%

5
%

1
1
%

1
3
%

1
7
%

1
9
% 0
%

0
%

0
%

1
%

1
%

3
%

1
4
%

3
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

wupwise swim mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi

Misses Secondary hits

(c)

1
4
%

1
6
%

2
4
%

1
6
%

1
3
%

1
9
%

2
0
%

2
4
%

1
5
%

1
7
%

2
3
%

3
1
%

1
6
%

1
9
%

2
1
%

2
4
%

1
5
%

1
7
%

2
2
%

2
7
%

1
6
%

1
9
%

1
0
%

1
6
%

1
5
%

1
7
%

2
2
%

2
6
%

1
5
%

1
6
%

1
2
%

1
2
%

1
4
%

1
7
%

1
9
%

2
0
%

1
2
%

1
6
%

2
1
%

3
3
%

1
7
%

5
%

5
%

5
%

1
4
%

1
9
%

2
1
%

2
9
%

1
7
%

5
%

5
%

5
%

1
6
%

1
8
%

1
0
%

1
5
%

1
6
%

1
7
%

1
7
%

1
6
%

1
4
%

2
3
%

1
8
%

1
9
%

1
4
%

1
5
%

2
1
%

2
3
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

Q1F Q2F Q3F Q4F Q5F Q6F Q7a Q8a Q9a Q10F Q11a Q12a Q13a Q14a Q15F Q16F Q17F

Misses Secondary hits

Figure 9: Accesses per 1K instructions. CCD for an 8-way, 8 inst. per block, instruction cache,
for valid blocks a) SPECINT 2000, b) SPECFP 2000, c) TPC-H

44

In Section 4.1 it was suggested that one possible way to overcome the above limitations, and

increase CCD rate, is to consider the duplication for valid block.

Figure 9 presents the results for valid blocks. The data show that the CCD rates for valid

blocks are often above 15% and therefore more prominent than for entire cache blocks (Figure 8).

This increase supports the two claims of Section 4.1 that: (a) valid blocks are shorter than cache

block size and, therefore, more likely for two valid blocks to match, and (b) valid blocks starting

at a different position in two cache blocks can be detected as duplicates.

The general trend in Figure 9 is that with increasing cache size the amount of duplicate valid

misses decrease because larger caches have fewer misses, but the CCD rates increase. This sug-

gests that the relative importance of duplicates misses increases. This occurs because with a larger

cache, it is more likely for a missed valid block to have a duplicate in the cache.

Furthermore, the data show that SPECINT 2000 and TPC-H benchmarks have higher CCD

rates. This is mainly due to the higher misses per 1K of these benchmarks that offer more oppor-

tunity for duplication detection.

We have also examined the effects of varying associativity on CCD. The frequency and the

trends of CCD appear almost the same as with an 8-way cache. The small sensitivity of CCD

to associativity may indicate that CCD is not due to conflict misses that can be removed using a

victim cache [72]. Section 4.6 presents a more extensive analysis of the associativity effects and

compares the performance of an instruction cache with a victim cache against an instruction cache

that combines a victim cache and a CCD mechanism and reveals that victim caching and CCD are

orthogonal.

45

(a)

1
6

%
1

3
%

1
4

%
1

5
%

1
5

%
1

0
%

9
%

9
% 2

0
%

2
4

%
2

7
%

3
1

%

9
%

1
0

%
1

0
%

1
0

%

9
%

1
2

%
1

4
%

2
0

%

1
7

%
2

3
%

2
7

%
3

5
%

1
4

%
1

8
%

2
9

%
1

9
%

1
7

%
2

1
%

2
4

%
2

4
%

2
8

%
2

6
%

2
0

%
1

8
%

1
9

%
2

6
%

2
9

%
3

3
%

4
%

9
%

1
0

%
1

0
%

1
7

%
2

9
%

3
5

%
1

6
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Misses Secondary hits

(b)

2
0
%

3
3
%

1
1
%

1
1
%

1
%

7
%

5
%

5
%

0
%

6
%

4
%

3
%

0
%

0
%

0
%

1
%

3
%

4
%

6
%

9
%

1
%

1
%

1
%

1
%

8
%

1
9
%

8
%

8
%

3
%

3
%

3
%

3
%

5
%

1
2
%

1
8
%

1
8
%

2
%

8
%

1
0
%

7
%

3
%

4
%

4
%

4
%

1
4
%

1
7
%

1
9
%

1
4
%

0
%

1
%

2
%

1
%

2
%

4
%

5
%

6
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

wupwise swim mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi

Misses Secondary hits

(c)

1
9
%

2
3
%

2
2
%

2
7
%

1
8
%

2
2
%

2
5
%

2
4
%

1
8
%

2
1
%

2
5
%

1
6
%

1
8
%

2
1
%

2
4
%

2
3
%

1
7
%

2
1
%

2
4
%

2
0
%

1
7
%

2
0
%

2
5
%

1
8
%

1
8
%

2
1
%

2
5
%

2
2
%

1
8
%

2
0
%

1
3
%

1
5
%

1
8
%

2
1
%

2
3
%

2
3
%

1
7
%

2
1
%

2
4
%

2
8
%

1
4
%

1
0
%

1
0
%

1
0
%

1
8
%

2
0
%

2
4
%

2
1
%

1
4
%

1
0
%

1
0
%

1
0
%

1
7
%

1
8
%

2
0
%

1
7
%

1
7
%

2
1
%

2
6
%

1
9
%

1
9
%

2
4
%

3
2
%

2
2
%

1
8
%

2
0
%

2
3
%

2
9
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

Q1F Q2F Q3F Q4F Q5F Q6F Q7a Q8a Q9a Q10F Q11a Q12a Q13a Q14a Q15F Q16F Q17F

Misses Secondary hits

Figure 10: Accesses per 1K instructions. CCD for an 8-way, 4 inst. per block, basic block cache,
a) SPECINT 2000, b) SPECFP 2000, c) TPC-H

46

(a)

4
%

8
%

1
0
%

8
%

1
0
%

8
%

5
%

5
% 1

3
%

1
6
%

1
9
%

2
4
%

8
%

8
%

7
%

7
%

5
%

8
%

1
1
%

1
4
%

6
%

1
3
%

2
0
%

2
4
%

1
1
%

1
4
%

1
7
%

4
2
%

1
1
%

1
4
%

1
7
%

2
1
%

1
5
%

1
6
%

2
6
%

1
2
%

1
8
%

2
2
%

2
6
%

3
0
%

1
1
%

5
%

6
%

6
%

1
5
%

2
1
%

2
5
%

1
3
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Misses Secondary hits

(b)

1
5
%

1
9
%

1
1
%

1
0
%

0
%

5
%

3
%

3
%

0
%

0
%

3
%

2
%

0
%

0
%

0
%

1
%

3
%

5
%

5
%

6
%

1
%

1
%

1
%

1
%

7
%

1
6
%

8
%

8
%

1
%

1
%

1
%

2
% 2
%

7
%

1
3
%

1
3
%

0
%

4
%

4
%

4
%

2
%

2
%

2
%

2
%

8
%

1
1
%

1
3
%

9
%

0
%

0
%

0
%

0
%

1
%

2
%

3
%

4
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

wupwise swim mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi

Misses Secondary hits

(c)

8
%

1
3
%

2
0
%

2
3
%

7
%

1
0
%

1
4
%

1
8
%

8
%

1
2
%

1
5
%

2
2
%

9
%

1
2
%

1
5
%

2
1
%

8
%

1
0
%

1
4
%

2
1
%

9
%

1
2
%

1
1
%

2
3
%

8
%

1
2
%

1
4
%

2
1
%

6
%

1
1
%

1
2
%

8
%

8
%

1
1
%

1
4
%

1
7
%

8
%

1
1
%

1
5
%

2
0
%

1
0
%

3
%

3
%

3
%

9
%

1
2
%

1
4
%

2
0
%

1
0
%

3
%

3
%

3
%

9
%

1
2
%

1
3
%

1
6
%

9
%

1
3
%

1
9
%

3
2
%

8
%

1
3
%

1
6
%

1
8
%

8
%

1
2
%

1
6
%

2
0
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

Q1F Q2F Q3F Q4F Q5F Q6F Q7a Q8a Q9a Q10F Q11a Q12a Q13a Q14a Q15F Q16F Q17F

Misses Secondary hits

Figure 11: Accesses per 1K instructions. CCD for an 8-way, 8 inst. per block, basic block cache,
a) SPECINT 2000, b) SPECFP 2000, c) TPC-H

47

4.3.2 CCD for Basic-Block Caches

Figure 10 presents the breakdown of Accesses per 1K instructions for an 8-way, 16B (4 in-

structions) block, basic-block cache. The data show clearly that across all benchmarks CCD is

more prevalent with a basic-block cache as compared to an instruction cache (Figure 9). The re-

sults also show that the duplication rate for several cases is above 20%. The trend with increasing

cache size is higher CCD rates.

The increased occurrence of CCD for a basic block cache is because smaller and aligned se-

quences are checked for duplication. Also, on a miss we only fetch one basic block. Consequently,

basic block caches have higher miss counts (compare total Misses in Figure 9 and Figure 10) and

thus more opportunity for missed blocks to be duplicates. For the same reason the SPECINT 2000

and TPC-H benchmarks have higher CCD rates due to more Misses per 1K instructions.

With bigger block size, Figure 11, the frequency of CCD remains at the same levels. This

mainly occurs because the typical basic-block size is 4-5 instructions. This suggests that, for a

basic-block cache, larger block size may result in block fragmentation and higher miss rates. This

was confirmed by experimental data that show, for equal size basic-block caches, larger block

usually meant a higher miss rate.

We have also examined the effects of varying associativity and the CCD trends were very

similar with the 8-way basic-block cache. This reinforces the hypothesis that CCD can not be

eliminated with a victim cache.

4.3.3 CCD for Trace Caches

The high frequency of CCD for basic-block caches suggests the possibility of CCD in trace

caches since each trace contains one or more dynamically consecutive basic blocks. Figure 12

presents the breakdown of Accesses per 1K instructions for an 8-way trace cache with 32B (8

48

(a)

2
2
%

1
9
%

1
9
%

1
5
%

1
5
%

1
3
%

1
2
%

1
2
%

1
0
%

1
3
%

1
7
%

1
9
%

2
3
%

9
%

1
0
%

1
0
%

3
%

7
%

1
4
%

2
2
%

2
3
%

1
7
%

2
0
%

2
5
%

9
%

1
4
%

1
9
%

6
5
%

7
%

1
0
%

1
3
%

1
5
%

2
2
%

2
9
%

2
7
%

1
4
%

9
%

1
2
%

1
6
%

1
9
%

3
6
%

1
4
%

1
5
%

1
4
%

1
8
%

3
1
%

3
4
%

1
7
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Misses Secondary hits

(b)

2
9
%

4
0
%

1
3
%

1
3
%

1
%

3
%

5
%

5
%

0
%

2
%

4
%

4
%

0
%

0
%

1
%

1
%

5
%

2
0
%

1
2
%

7
%

6
%

6
%

6
%

6
%

8
%

2
1
%

9
%

9
%

2
%

2
%

4
%

2
%

2
%

1
0
%

1
2
%

1
2
%

6
%

4
%

5
%

5
%

3
%

3
%

3
%

3
%

7
%

9
%

1
4
%

1
1
%

1
%

1
%

0
%

1
%

3
%

4
%

7
%

2
6
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

wupwise swim mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi

Misses Secondary hits

(c)

6
%

9
%

1
3
%

1
0
%

6
%

7
%

1
3
%

1
4
%

6
%

8
%

1
4
%

1
8
%

6
%

8
%

1
3
%

1
6
%

6
%

9
%

1
3
%

1
5
%

5
%

4
%

1
0
%

2
%

7
%

9
%

1
4
%

1
6
%

5
%

6
%

4
%

6
%

6
%

9
%

1
1
%

1
3
%

6
%

9
%

1
4
%

2
1
% 0
%

3
%

3
%

3
%

5
%

5
%

1
3
%

1
6
% 0

%
3
%

3
%

3
%

5
%

3
%

8
%

1
6
%

5
%

5
%

1
5
%

8
%

6
%

9
%

2
1
%

1
2
%

5
%

9
%

1
3
%

1
4
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

8
K

B
1
6
K

B
3
2
K

B
6
4
K

B

Q1F Q2F Q3F Q4F Q5F Q6F Q7a Q8a Q9a Q10F Q11a Q12a Q13a Q14a Q15F Q16F Q17F

Misses Secondary hits

Figure 12: Accesses per 1K instructions. CCD for an 8-way, 8 inst. per block, trace cache, a)
SPECINT 2000, b) SPECFP 2000, c) TPC-H

49

(a)

2
2

%
1

3
%

1
4

%
1
1

%

1
0

%
1

7
%

5
%

5
% 3
%

4
%

5
%

7
%

3
%

6
%

4
%

4
%

1
%

3
%

8
%

1
2

%

4
%

7
%

8
%

1
0

%

5
%

7
%

7
%

0
%

4
%

5
%

8
%

8
% 2
8

%
1
1

%
1

6
%

8
% 2

%
3

%
4

%
6

%

2
8

%
8

%
9

%
9

%

1
2

%
1

7
%

2
7

%
6

%

0

20

40

60

80

100

120

140

160

180

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

gzip00 vpr00 gcc00 mcf00 crafty00 parser00 eon00 perlbmk00 gap00 vortex00 bzip200 twolf00

Misses Secondary hits

(b)

1
8

%
1

%
7

%
7

%

1
%

2
%

4
%

4
%

0
%

1
%

1
%

3
%

0
%

0
%

1
%

1
%

3
%

7
%

9
%

5
%

2
%

7
%

7
%

7
%

7
%

1
1

%
7

%
7

% 0
%

2
%

3
%

3
% 1
%

1
1

%
9

%
9

%

1
%

8
%

4
%

4
%

3
%

3
%

3
%

3
%

2
%

3
%

5
%

4
% 3

%
2

%
0

%
1

%

2
%

3
%

3
%

0
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

wupwise00 swim00 mgrid00 applu00 mesa00 galgel00 art00 equake00facerec00 ammp00 lucas00 fma3d00 sixtrack00 apsi00

Misses Secondary hits

(c)

4
%

5
%

1
0

%
1

5
%

3
%

4
%

3
%

5
%

2
%

3
%

4
%

6
%

4
%

3
%

4
%

7
%

2
%

3
%

4
%

5
%

4
%

2
%

2
%

0
%

2
%

3
%

4
%

5
%

2
%

3
%

0
%

1
%

2
%

3
%

3
%

5
%

2
%

3
%

5
%

8
%

0
%

0
%

0
%

0
%

3
%

2
%

4
%

5
%

0
%

0
%

0
%

0
%

5
%

2
%

2
%

1
%

5
%

2
%

7
%

1
2

%

3
%

5
%

1
0

%
5

%

1
%

3
%

2
%

4
%

0

20

40

60

80

100

120

140

160

180

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q1F Q2F Q3F Q4F Q5F Q6F Q7a Q8a Q9a Q10F Q11a Q12a Q13a Q14a Q15F Q16F Q17F

Misses Secondary hits

Figure 13: Accesses per 1K instructions. CCD for an 8-way, 16 inst. per block, trace cache, a)
SPECINT 2000, b) SPECFP 2000, c) TPC-H

50

instructions) block sizes. The data show CCD to exist in most benchmarks and often with rates

above 15%. Its frequency is comparable to CCD for valid blocks in an instruction cache (Figure

9) but lower than a basic-block cache (Figure 10). The CCD for traces with sixteen instructions,

Figure 13, is less since longer sequences are more difficult to match, but still significant. The CCD

behavior was found to be insensitive to the degree of associativity of a trace-cache.

4.3.4 Overall Observations

Overall, the experimental results in this section suggest that CCD exists across benchmarks,

for different cache types and configurations. The data indicate that with increasing cache size the

relative importance of CCD also increases. The behavior across benchmarks varies, with higher

rates for TPC-H benchmarks and lower for SPECFP 2000 benchmarks.

We believe that the observed CCD rates provide a motivation to explore the development and

performance of mechanisms that can exploit CCD. The focus of the remaining chapter is on the

CCD for regular instruction caches, for valid blocks, because these are the most widely used

instruction caches in computing systems.

4.4 CCD Applications: DAC and UCC

This section describes two possible memory hierarchy enhancements based on CCD that can

reduce cache latency, and cache miss rates.

Cache latency can be reduced through the detection of misses to blocks with a duplicate in the

cache and by fetching the block from the cache instead of reading it from lower in the memory

hierarchy. We refer to such cache as the Duplicate-Aware-Cache (DAC). Therefore, a DAC can

reduce the miss penalty of a duplicated miss down to a cache hit. Because the latency of a du-

plicated miss is likely small, henceforth, we refer to it as a secondary hit (primary hits are those

51

that hit directly in the cache). All accesses that are neither primary nor secondary hits are misses

that need to be serviced from a lower level cache. A DAC cache, when compared to an otherwise

identical regular cache, is expected to have as many primary hits as the hits of the regular cache,

but have some of the regular cache misses converted to secondary hits. Therefore, in the presence

of CCD a DAC can only improve performance. Another benefit of DAC is a reduction in the traffic

to lower levels of memory hierarchy because the missed block can be read directly from the L1

Cache and inserted to the correct set. Note that for DAC, in the case of CCD for valid blocks there

is no traffic reduction because the entire block is always fetched on a miss. Overall, the amount of

improvement from DAC mainly depends on the number of the regular cache misses it converts to

secondary hits.

CCD can also be used to reduce misses by detecting misses to duplicated blocks and allowing

only blocks with unique content to enter a cache. We refer to such cache as the Unique-Content-

Cache (UCC). A UCC, when compared to an otherwise identical regular cache of same size, is

expected to convert some hits of the regular cache to secondary hits and misses, but also have a

large number of misses converted to primary and secondary hits. The performance of a UCC will

be superior over a conventional cache if the savings due to the conversion of misses to primary

and secondary hits outweigh the penalty of having some primary hits turned into secondary hits

or misses.

Next we investigate experimentally the performance limits of DAC and UCC.

4.4.1 Limits of the Cache-Content-Duplication

An indication of the performance potential of a DAC, over a regular cache, is given by the

fraction of misses that have a duplicate in the cache. These results are shown in Figure 9 for an

instruction cache for valid blocks.

52

1
0

%
1

7
%

2
8

%
1

9
%

1
4

%
4

3
%

1
0

0
%

8
%

1
1

%
1

8
%

3
2

%
4

6
%

9
%

1
5

%
3

2
%

2
9

%

1
1

%
4

5
%

4
4

%
8

%

1
7

%
3

0
%

2
9

%
3

9
%

1
1

%
2

1
%

4
0

%
7

2
%

2
7

%
2

0
%

3
2

%
5

7
%

1
6

%
2

1
%

4
0

%
6

3
%

1
1

%
2

1
%

3
5

%
5

9
%

1
6

%
4

7
%

7
%

7
%

1
3

%
2

2
%

2
2

%
3

7
%

1
0

%
1

8
%

3
0

%
5

7
%

1
7

%
7

9
%

3
5

%
2

8
%

1
4

%
2

0
%

4
5

%
4

8
%

0

20

40

60

80

100

120

8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4 8
1

6
3

2
6

4

CRAFTY EON PERLBMK FMA3D Q1F Q2F Q3F Q4F Q5F Q7A Q8A Q9A Q10F Q16F Q17F

A
c

c
e

s
s

e
s

 p
e

r
1

K
 i

n
s

tr
u

c
ti

o
n

s

Misses Secondary hits Primary converted to Secondary

Figure 14: Misses and Secondary hits per 1K instructions breakdown and CCD rates for a UCC
8-way, 8 instructions per block, instruction cache, for valid blocks

To establish the potential of a UCC cache over a regular cache we performed an oracle study

with the same assumptions as in Section 4.3. The UCC cache is modeled as a regular cache unless

there is a miss that has a duplicate block in the cache, i.e. a secondary hit. When this occurs,

the duplicate content is used without fetching the missed block from the lower levels of memory

hierarchy and without inserting it in the cache.

Figure 14 shows the breakdown of accesses per 1K instructions for a UCC-instruction cache

for valid blocks. The graphs show, for comparison purposes, the secondary hits that were ini-

tially primary hits, for the respective regular cache, labeled as “Primary converted to Secondary”.

The graphs also include the numeric values for the CCD-rates that correspond to baseline misses

converted to secondary hits (without considering the “Primary converted to Secondary”).

A comparison of Figures 9 and 14 reveals that for most benchmarks and cache configurations

the CCD rates for UCC caches are higher than their corresponding DAC caches. For example, for

a 16KB cache in Figure 14 crafty has 17% CCD rate where its corresponding rate for DAC is 10%

(Figure 9). The reason for this increase, is that UCC avoids the insertion of duplicate content in

the UCC cache and eliminates capacity and may be conflict misses. This reduces the total number

of misses by more than the duplicate misses of DAC.

53

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

15 20 25 30 15 20 25 30 15 20 25 30 15 20 25 30 15 20 25 30 15 20 25 30

DAC-0 DAC-1 DAC-2 UCC-0 UCC-1 UCC-2

N
o

r
m

a
li

z
e
d

 I
P

C

Maximum Minimum Average

Figure 15: Maximum, minimum and average of the normalized IPC performance of all bench-
marks for DAC and UCC for valid blocks. Results are shown for 15, 20, 25 and 30 cycles L2
latencies and 0, 1 and 2 cycles secondary hit latencies

However, the data also show that a UCC cache can have fewer primary hits than a regular

cache. For example, for a 16KB cache in Figure 14, crafty has 3.7 access per 1K instructions

that were converted from primary hits to secondary hits. Therefore, only 3.5 out of the 7.2 sec-

ondary hits per 1K instructions correspond to cache misses converted to secondary hits. The above

suggests that a UCC cache, unlike DAC, sometimes may not improve the performance because a

decrease in primary hits can offset the benefits of CCD. So, to compare the performance potential

of DAC and UCC a study for an out-of-order processor is performed.

4.4.2 Performance Potential of CCD

The Figure 15 shows the performance potential of DAC and UCC in terms of normalized

IPC for 16KB DAC and UCC instruction caches over a 16KB regular instruction cache. Note

that in these experiments we assume an oracle CCD detection under the same assumptions as in

Sections 4.3 and 4.4.1.

54

Results are presented for secondary hit latencies of 0, 1, and 2 cycles (denoted in the graph

as DAC-0, DAC-1, and DAC-2, or UCC-0, UCC-1, and UCC-2 respectively) and for various L2

cache latencies (15, 20, 25, and 30 cycles). The various secondary hit latencies are aimed to

reveal how critical is to quickly detect duplication after a miss. The different L2 cache latencies

are useful to examine the importance of CCD with increasing latency to lower levels of memory

hierarchy. All other processor parameters are as in Table 2. The middle point in each line shows the

average IPC improvement of all benchmarks while the top and bottom point show the maximum

and minimum IPC improvement for each configuration.

The data show both DAC and UCC to have performance potential up to 10% and 36% respec-

tively. The analysis indicates that the TPC-H benchmarks with the highest CCD rates, see Figures

9 and 14, are also the ones with the largest potential while most of the SPEC2000 benchmarks do

not benefit from CCD because they have very few misses.

The potential improves with increasing L2 cache latency for both DAC and UCC. The DAC

performance is rather insensitive to secondary hit latency, however, for UCC the effects of sec-

ondary hit latency can degrade performance. For example with UCC-2 latency and 15 cycles L2

latency, gap suffers a performance degradation of 2% compared to the baseline. The secondary hit

latency effects are reduced as the L2 latency increases. As shown for the same benchmark, for 30

cycles L2 latency, the performance degradation is reduced to 1%. For UCC-0 and UCC-1 there is

no performance degradation.

The lower UCC performance for 2 cycles secondary hit latency suggests that the performance

gains due to the miss reduction of UCC are outweighed by the penalty for having some primary

hits converted to secondary hits. Another observation is that, although the limits of CCD rates

for DAC and UCC are very similar, as shown in Figures 9 and 14, the results in Figure 15 show

that UCC is much better in many configurations. This occurs because in the DAC limit study we

55

assumed no latency for fetching a block from a lower level in the memory hierarchy and thus in

for two consecutive accesses to the same missed block (for different valid blocks), the first would

be a secondary hit and the second would be a primary hit. But in a realistic scenario, with a fetch

delay, it is possible to have a secondary hit and the next access to the same block to cause a miss

because the block is not yet fetched from the L2 cache.

A zero cycle secondary hit latency is possible, but may require more pervasive changes in

the processor front-end. This is discussed more extensively in Section 4.5.8. The single cycle

secondary hit latency can be achieved by accessing the CCD mechanism and cache in parallel. By

the end of the tag array access, assuming 1 cycle, the CCD mechanism will provide an alternative

tag-index to access the cache again in case of a miss. Finally, for serially accessing the CCD

mechanism after a cache miss a 2 cycle secondary hit latency is required. The first cycle is spend on

a tag array access to discover the cache miss, and the second cycle to access the CCD mechanism

and provide an alternative tag-index.

Overall, the CCD performance potential results are encouraging and thus in the next section

we propose and evaluate CATCH, a hardware mechanism that can dynamically detect CCD for

DAC and UCC caches.

4.5 CATCH: A Method for Dynamically Detecting CCD

A hardware implementation of a DAC or a UCC instruction cache requires a mechanism for

detecting and remembering duplicate relations. Specifically, this mechanism, given the starting PC

and mask of a valid block that caused a cache miss, should return whether there is a duplicate in the

cache and the starting PC of the duplicated block. This section presents a method for dynamically

detecting CCD for instruction caches. We will refer to this mechanism as CATCH. Recall that

56

 
































 








 

 





















 



Figure 16: The CATCH flow for a Cache miss, DR miss and HDD hit

valid blocks in instruction caches are identified with their starting PC and a bit mask provided by

the branch predictor (see Section 4.1).

The microarchitecture of a cache with a CATCH is shown in Figure 16. It includes the Hashed-

Duplicate-Detection table (HDD), the Block Compare Unit (BCU) and the Duplicate-Relation ta-

ble (DR). The functionality of the different components and their updating policies are the subject

of this section.

4.5.1 Hashed-Duplicate-Detection table

The detection of CCD requires a mechanism that, given the content of a block, it provides a

starting PC and a mask for a candidate duplicate-block currently in the cache.

The Hashed-Duplicate-Detection table (HDD) provides this functionality. Each entry in the

HDD contains a hash-code, which encodes the content of a block, and the corresponding starting

PC and mask of the valid block. The use of a hash-code reduces the cost and complexity of

detecting duplication but may lead to unnecessary tests for duplication. However, we found that a

57

 










  






































  


  






Figure 17: The CATCH flow for a Cache miss, DR hit, Cache hit

simple folding of the valid block content to 16 bits provides very accurate encoding (often 99.9%

accurate).

The HDD is indexed using a hash of the content of a missed block after it is fetched from a

lower level of the memory hierarchy. For better performance this hash can be different from the

one used for producing the hash-code for a block.

When a missed block’s hash-code and the hash-code in a valid HDD entry match, we may

have content duplication. Here, the cache is accessed using the starting PC found in the HDD to

determine whether the two valid blocks are indeed duplicates. The Block Compare Unit (BCU)

performs the test for duplication. If the BCU indicates that the blocks are duplicates then an entry

is created in the DR. Figure 16 illustrates the sequence of steps in the case of a cache miss that has

a duplicate in the cache but not an entry in DR. This process is similar for DAC and UCC.

58

4.5.2 The Block Compare Unit

When two blocks are signaled by the HDD as possible duplicates, their contents are compared

using the Block-Compare Unit (BCU) to detect whether there is indeed duplication. The compare

function used in the BCU can be a simple bit-wise comparison of the instructions in the two

blocks. BCU optimizations that use more advanced compare functions to tolerate differences in

the targets of branches are considered and discussed in Section 4.5.6.

4.5.3 Duplicate-Relation table

The Duplicate-Relation table (DR) contains relations between duplicated blocks detected by

CATCH. An entry in the DR is created when a block with a cache miss is fetched from a lower

level cache and is found to be a duplicate with a block already in the cache using the HDD table

and BCU unit.

Each DR entry contains a starting PC and a mask of a missed valid block and the starting PC

of its duplicate valid block. The use of a PC and a mask is sufficient to prevent false duplicate

relations. Once a duplicated relation is established it is assumed to be always correct (in the case

of self-modifying code or page remapping the DR may need to be flushed to ensure correctness).

DR can be either virtually or physically tagged. A virtually tagged DR can be used in com-

bination with a virtually tagged cache or by keeping virtual tags in the HDD. A virtually tagged

DR in combination with a physically tagged cache may add an extra penalty for translating the

tag using the Instruction Translation Look-aside buffer (ITLB) each time we access the cache for

a secondary hit (secondary hit is a cache hit to a duplicate sequence using CATCH). On the other

hand, using a physically tagged DR will eliminate this overhead but the DR may need to be flushed

each time we have a page remapping. However, page remapping is a very rare phenomenon. For

our experiments, we used a physically tagged DR with a physically tagged cache.

59

On a cache miss, the DR is accessed with the starting PC and mask of a missed block. When

there is a DR hit and the duplicate PC hits in the cache, a secondary hit occurs. In the case of a

DAC, the content of the missed valid block will be read and a request in a lower level cache for the

entire missed block will be initiated in parallel. For a UCC, only the content of the duplicate-block

will be read and no miss will be requested from a lower level of the memory hierarchy. Figure

17 illustrates the sequence of steps in the case of a cache miss that has an entry in the DR and a

duplicate in the cache.

4.5.4 Allocating and Updating an HDD and a DR entry

An HDD entry is allocated when a block is both a cache miss and an HDD miss. There are

two different scenarios for allocating an HDD entry:

1. Cache miss, DR miss, HDD miss:

A valid block is a miss in the cache and no entry in the DR matches its starting PC and

mask. The block is fetched from a lower level of memory hierarchy, its content’s hash-code

is calculated and then HDD is accessed with this hash-code. On a miss a new HDD entry is

created.

2. Cache miss, DR hit, Cache miss, HDD miss:

Same as above unless there is a DR hit that leads to a cache access and misses because the

duplicate block was evicted. If we miss in the HDD then an entry is allocated and points to

the fetched block in the cache.

There are also two cases for updating an HDD entry and allocating or updating a DR entry:

1. Cache miss, DR miss, HDD hit:

A block is a miss in the cache and the DR. The block is fetched from a lower level in the

60

memory hierarchy and its hash-code is calculated. The HDD is accessed with the hash-

code. If we hit in the HDD then the cache is accessed with the duplicate-PC. The two block

contents are compared and if they match, a DR entry is created with the missed starting PC

and mask, and the duplicate-PC pointed by the HDD. Also, the HDD entry is updated to

point to the fetched block in the cache (the implications of not-updating the HDD in this

case are discussed in Sections 4.5.6). When the content of the missed block and the one

pointed by the HDD do not match in the BCU, we have a case of a false hash-code match.

This was found to occur very rarely for hash-codes of 16 bits. When this happens, the HDD

entry will be updated to point to the missed block.

2. Cache miss, DR hit, Cache miss, HDD hit:

Same as above except: (a) there is a DR hit that leads to a cache access that does not hit,

and (b) if the HDD points to a truly duplicate block then the DR entry will be updated with

the duplicate starting PC pointed by the HDD.

4.5.5 The use of CATCH in DAC and UCC

A DAC and a UCC can use the CATCH, as described above, to detect a miss for a duplicated

block and read the missed block directly from the cache, as long as the block is in the cache.

However, there is a key difference in how CATCH is used for a DAC and a UCC. In a DAC,

when accessing the HDD, the block will be first inserted in the cache and then it will be checked

for duplication because there is a risk to evict its duplicate from the cache and this will result in

an invalidation of the HDD entry. On the other hand, for a UCC the block is first checked for

duplication and only if the HDD cannot detect any duplication will the block be inserted in the

cache.

61

4.5.6 Performance Optimizations

This section describes two types of performance optimizations for CATCH. The first optimiza-

tion is to tolerate simple differences between blocks by using a more advanced compare function

in the BCU. The keep offset optimization aims to increase content-duplication by masking out,

from the compare process in BCU, the offsets and targets of conditional and unconditional di-

rect branches, and keeping in the DR the offsets and targets of each duplicate block. This aims

to convert blocks that contain exactly the same computation into duplicates. This is effectively a

hardware implementation of the target abstraction discussed in Section 4.1.3. Two possible caveats

of this optimization are the extra cost per DR entry, and that secondary cache reads may need to

combine information from the cache and the DR which may make fetching more complicated.

The first is considered for the total size of the mechanism calculated in Section 4.5.7 while the

second can be accommodated in the valid block masking logic (Figure 4).

Other examples of possible BCU optimizations are to augment the compare function to rear-

range source operands of commutative operations and reorder data independent instructions in a

block to facilitate content duplication [24]. These and other transformations to be discovered may

help uncover even more duplication, but this is to be considered in future work.

The second performance optimization is to filter the updates in the HDD and DR tables by

avoiding the insertion of entries that are unlikely to have a significant payoff. A successful im-

plementation of updating filtering can be conducive in reducing the table sizes and/or improve

their performance. CATCH employs a simple but effective filtering scheme proposed by Behar et

al. [73]. The filtering is accomplished by allowing a table to be updated every n attempts. This

policy works because it can prevent rare events from entering the tables, whereas persistently

occurring events will eventually make it into the table. For an extended discussion on how this

62

method works we refer the interested reader to [73]. Based on simulation results for various fil-

tering strategies it was found that the best was to filter only the updates of the HDD and the filter

value should be four, i.e. updating the HDD every fourth attempt. Although the DR is not filtered

directly, by updating the HDD less frequently, the updates to the DR are indirectly reduced.

The significance of the keep offset and the filtering optimization is investigated in Section 4.6.

4.5.7 Cost Reduction Optimizations

This Section describes several optimizations to reduce the amount of state required by the

HDD and DR caches. A 16KB, 8-way, 8 instructions per block instruction cache with four in-

structions maximum valid block length is assumed.

Before computing the cost for a DR entry, recall that a DR entry represents logically two full

tag-indices. For the Alpha instruction set architecture [65] used in this work, the first tag-index

contains 30 bits (28 bits for the address of the first instruction of the missed sequence and 2 bits

for the mask, which is the number of valid instructions in the sequence), and the second tag-index

contains 28 bits for the address of the first instruction of the duplicate sequence. The second

tag-index does not require a mask because it must be the same with its duplicate sequence for a

duplicate relation to exist. The non-optimized cost of a DR entry is therefore:

(2 ∗ 28 + 2− log2(numberofsetsinDR)) bits

which is the sum of the two addresses and the length of sequence minus the index of DR.

After some cursory analysis it was observed that usually the 9 leading bits of the starting PC

of the missed and duplicate valid block are the same. This reduces the cost of a DR entry by 9 bits

if only the entries that satisfy this criterion are inserted into the table.

When the keep offset optimization is employed, the DR should keep a maximum of four direct

targets. To reduce the number of bits required by the offsets and direct targets, extra insertion

63

criterion can be used. Specifically, duplicated relations are inserted when the following are true:

(a) valid blocks have at most one control flow instruction and (b) the upper 10 bits of direct targets

must be the same with valid block’s starting address. Note that for the ISA used in this study target

offsets for conditional branches are 16 bits and direct targets are 21 bits. With these criterions in

place, the extra cost of the keep offset optimization is 11 bits for each DR entry, for one offset or

one target.

Therefore for the DR, the per-entry cost with cost optimizations is:

(28 + 19 + 2− log2(numberofsetsinDR)) + 11 bits.

An HDD entry contains a hash-code, the PC and the mask of the duplicate block. For the

limit study we assumed a 32-bit hash-code but further analysis indicates that a 16-bit hash-code

causes false-hash-matches very rarely. So, in Section 4.6 we consider the performance with a 16-

bit hash-code. Furthermore, we can use the hash-code used for tag-matching the valid blocks to

index the HDD. This will reduce the HDD entry by log2(number of sets of the HDD) bits. Also,

the criterion used in DR (the 9 most significant bits of the two tag-indices must be the same) can

be used here also. That means we only keep the 21 least significant bits in the HDD and combine

them with the 9 most significant bits of the missed valid block to create the index-tag and access

the cache.

Therefore for the HDD, the per-entry cost with cost optimization is:

16 + 19 + 2− log2(numberofsetsinHDD) bits.

Finally the replacement policy for HDD and DR is assumed to be tree based pseudo LRU [74]

that requires N-1 bits per set, where N is the associativity of the structure. In Section 4.6, we

compare the performance with and without the cost optimizations.

64

4.5.8 Pipelining Issues

To incorporate a CATCH in a pipeline successfully, we have to consider timing issues. Some

of these issues are discussed below.

The latency overhead for a duplicated hit is the total time required to access the DR with the

missed block address plus the latency for a cache access to read the duplicated block. The DR

latency component can be hidden if we access in parallel the cache and the DR so that as soon as

a miss is detected we access the cache with the duplicated-PC.

A method that can provide zero duplicated hit latency is to maintain two program counters

(PC) in a processor. The sequence-PC is used for control flow sequencing, and the fetch-PC is

used for accessing the cache for fetching instructions. When a program starts the two PCs contain

the same address. As long as a program has no duplication the two PCs will point to the same

address. In the case of CCD, the sequence-PC should sequence as if there was no duplication

but the fetch-PC should be made to point to the duplicate location. This can be accomplished

by integrating the function of the DR in the BTB table. The BTB is normally used to store and

predict targets of taken branches. To accommodate their new functionality, BTB entries should

be extended to contain a duplicated-PC field aside from the target of a branch. When this field is

not valid, the fetch-PC takes the address of the sequence-PC. However, when a predicted taken

branch has a valid duplicated-PC the sequence-PC will take the normal branch target from the

BTB, but the fetch-PC will be updated with the duplicated-PC. A duplicated-PC is inserted in the

BTB when the instruction sequence at the target of a taken branch is detected to be duplicated

with another sequence starting at the duplicated-PC. The detection can be accomplished using an

HDD as discussed earlier in Section 4.5.

65

The above qualitative discussion suggests that a zero cycle detection mechanism may be fea-

sible but its implementation details need to be considered further in future work.

One other important concern is the CATCH update latency. After a cache miss the newly

fetched valid block must be checked for duplication. This means that the HDD must be accessed

and if a possible duplicate exists, it must be compared using BCU and update the HDD and DR

accordingly. A possible implementation of the mechanism can use a temporary buffer to keep the

missed valid block and proceed with the updating process during the next cache miss. The L2 or

main memory miss latency will provide enough time to compare the blocks and update the DR

and HDD. In this work, we assume optimistically that the updating of HDD or DR can be done in

a single cycle in parallel with the testing and updating process.

4.6 Performance Evaluation of CATCH

In this Section we evaluate the performance of the CATCH mechanism to detect CCD. First,

we determine the performance of CATCH with unbounded DR and HDD tables. Then, we in-

troduce various constraints to the size, associativity, and information per entry, to establish how

much of the oracle performance (Section 4.4) it can be captured by a more feasible to implement

hardware configuration of CATCH. The analysis is focused on the performance of a 16KB instruc-

tion cache, for valid blocks, that is 8-way, 8 instructions per block, with a single cycle secondary

hit latency in addition to the L1 hit latency and 20 cycles L2 cache latency. In order to make the

figures more readable, we show results only for the 15 benchmarks with the higher Misses per 1K

that offer more opportunity for performance improvement. We also include the average for the

remaining 28 benchmarks (average-other) and the average of all 43 benchmarks (average-all). For

the 28 benchmarks not shown, we verify that the worst case degradation is 0.1% for the TWOLF

benchmark.

66

4.6.1 CATCH Performance for DAC and UCC Caches

Figure 18 shows the normalized performance potential captured by DAC and UCC with an

oracle CCD detection (same as in Figure 15) and the normalized performance potential captured

by DAC and UCC using the CATCH.

Overall, from the data is evident that CATCH can capture 84% of the potential limit of DAC

and more than 91% of the potential limit of UCC on average. This suggests that the CATCH

design is very efficient.

The lower CATCH potential is due to the optimism in the oracle study that allowed serving

a miss from the duplicate block the first time a relation is detected. In a real scheme this is not

possible since the relation needs first to be detected and inserted in the DR and only afterwards may

be useful for a secondary hit. Nonetheless, the data show that UCC suffers a smaller degradation

because UCC can still benefit from the first detection of a relation by not inserting the duplicate

block in the cache.

One interesting observation from Figure 18 is that for a benchmark, Q16F, the UCC perfor-

mance of CATCH is slightly higher than the oracle UCC results. This happens due to the “failure”

of a real HDD to maintain the hashed content of all valid blocks in the cache. This results in

duplicated content to be inserted in the cache. The data show this duplication to be beneficial to

performance.

The cause of this behavior, is that with an oracle UCC no content duplication is possible and a

given block content may be mapped to sets where the block is repeatedly evicted due to conflicts.

On the other hand, a UCC with CATCH may “allow” multiple concurrent mappings of a block-

content in the cache. If one of these mappings is to a set with fewer conflict misses, then all the

duplicates pointing to that block may have better performance compared to the oracle UCC. This

67

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

C
R
A
FT

Y
EO

N

FM
A
3D

PE
R
LB

M
K

Q
1F

Q
2F

Q
3F

Q
4F

Q
5F

Q
7A

Q
8A

Q
9A

Q
10

F

Q
16

F

Q
17

F

AV
ER

A
G
E

AV
ER

A
G
E-

O
TH

ER

AV
ER

A
G
E-

A
LL

N
o

r
m

a
li
z
e
d

 I
P

C

DAC-1 CCD Limit DAC-1 CATCH Limit UCC-1 CCD Limit UCC-1 CATCH Limit

Figure 18: Performance potential captured by oracle detection (limit) and CATCH for DAC and
UCC (16KB instruction cache, 20 cycles L2 cache latency)

phenomenon is analyzed later where its effects are more prominent when the size of the CATCH

is reduced further.

For the remainder of Section 4.6 we focus on optimizing the performance of the UCC instruc-

tion cache due to its higher performance potential compared to DAC.

4.6.2 CATCH Performance

The previous section presented the performance of CATCH with unbounded DR and HDD ta-

bles. This section will discuss the performance implications when using a CATCH with small size,

set-associative DR and HDD tables. Some experiments will also help uncover the significance of

the various performance and cost optimizations.

Figure 19 shows the performance of CATCH compared to a limit study (CCD Limit) with

oracle CCD detection. “CATCH Limit” corresponds to a CATCH implementation with unbounded

DR and HDD tables. A design space exploration analysis (APPENDIX A), for various number of

entries and associativities, suggests that a 4-way 128 entries DR and an 8-way 128 entries HDD

represent a good performing CATCH configuration. This configuration (3.05KB CATCH) can

provide an average IPC improvement of 7.5% for the 15 selected benchmarks, and 3% over all 43

68

benchmarks, which corresponds to 50% of the performance potential of a UCC with oracle CCD

detection (Figure 19). Note that this CATCH configuration has 3.05KB state cost and employs all

the performance optimizations but none of the cost optimizations.

To reduce the state cost of CATCH we applied the various cost optimizations discussed in

Section 4.5.7. This lead to a reduction in CATCH cost to 1.38KB, with negligible performance

degradation for few benchmarks, less than 1%, but with an improvement of 0.4% overall and

1.2% over the 15 selected benchmarks as shown in Figure 19. The 1.38KB CATCH can provide

8.7% improvement for the 15 selected benchmarks, and 3.4% over all 43 benchmarks, which

corresponds to 58% of the performance of UCC with an oracle CCD detection.

Figure 19 also quantifies the significance of the performance optimizations, discussed earlier

in Section 4.5.6, on the 1.38KB CATCH. The results, for the 15 selected benchmarks, show that

without filtering (1.38KB CATCH no filter) the performance degrades by 1% on average, without

learning an additional valid block on a miss (1.38KB CATCH learn on miss) the degradation is 2%

on average and without the target abstraction (1.38KB CATCH no keep offset) the performance

benefits are reduced by 1.5%.

An interesting observation is that, sometimes, the smaller 1.38KB CATCH provides better

performance than the 3.05KB CATCH. For example, benchmark Q16F shows an increase of 4%

with smaller CATCH. Analyzing the benchmark further reveals a reduction in secondary hits due

to duplicated blocks that enter the cache. This seemingly undesirable behavior can benefit some-

times performance. Particularly, some of these blocks also contain non-duplicated valid sequences

that are referenced in the near future and become cache hits. This suggests that an adaptive fil-

tering mechanism may benefit performance further by exploiting the above phenomenon more

effectively. This represents a possible direction for future work.

69

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

C
R
A
FT

Y
EO

N

FM
A
3D

PE
R
LB

M
K

Q
1F

Q
2F

Q
3F

Q
4F

Q
5F

Q
7A

Q
8A

Q
9A

Q
10

F

Q
16

F

Q
17

F

AV
ER

A
G
E

AV
ER

A
G
E-

O
TH

ER

AV
ER

A
G
E-

A
LL

N
o

r
m

a
li
z
e
d

 I
P

C

UCC-1 CCD Limit

UCC-1 CATCH Limit

UCC-1 3.05KB CATCH

UCC-1 1.38KB CATCH

UCC-1 1.38KB CATCH no filter

UCC-1 1.38KB CATCH learn on miss

UCC-1 1.38KB CATCH no keep offset

Figure 19: Effects of applying different policies on CATCH performance

4.6.3 Effects of Associativity

The functional simulations showed that the CCD rates are insensitive to associativity and the

miss rates were slightly affected. Figure 20 shows the normalized IPC of each baseline cache to

the same cache with the addition of CATCH, for example for the 2-way bar the results are for a 2-

way cache using CATCH and the baseline is a 2-way cache without CATCH. The results indicate

that on average the performance improvement of CATCH is not affected by the associativity. It is

interesting that the average for the low miss rate benchmarks, average-other, shows a performance

degradation as the associativity increases. This happens because higher associativity means less

cache misses and lower potential for the CATCH to improve.

Yet, there are some cases, like benchmark Q16F, where increasing the associativity improves

CATCH performance. We analyzed this behavior and found two possible scenarios that the asso-

ciativity affects the performance of CATCH.

First, due to the CATCH algorithm, on every secondary hit access the LRU of the duplicated

block is updated. In the case of a very hot duplicated block, its LRU will be updated constantly and

effectively remains in the MRU position. This can reduce the associativity and the performance

potential of CATCH.

70

1

1.05

1.1

1.15

1.2

1.25

1.3

C
R
A
F
T
Y

E
O

N

F
M

A
3
D

P
E
R
L
B
M

K

Q
1
F

Q
2
F

Q
3
F

Q
4
F

Q
5
F

Q
7
A

Q
8
A

Q
9
A

Q
1
0
F

Q
1
6
F

Q
1
7
F

A
V
E
R
A
G

E

A
V
E
R
A
G

E
-O

T
H

E
R

A
V
E
R
A
G

E
-A

L
L

C
R
A
F
T
Y

E
O

N

F
M

A
3
D

P
E
R
L
B
M

K

Q
1
F

Q
2
F

Q
3
F

Q
4
F

Q
5
F

Q
7
A

Q
8
A

Q
9
A

Q
1
0
F

Q
1
6
F

Q
1
7
F

A
V
E
R
A
G

E

A
V
E
R
A
G

E
-O

T
H

E
R

A
V
E
R
A
G

E
-A

L
L

CATCH Limit CATCH 1.38KB

N
o

r
m

a
li
z
e
d

 I
P

C

1-way 2-way 4-way 8-way

Figure 20: CATCH with various cache associativities

Second, we observed that some duplicated blocks have large distance between their accesses.

In the case of high miss rate benchmarks, a shallow LRU stack will maintain the duplicated block

enough time in the cache to be accessed by the DR on a secondary hit. Deeper LRU will favor

the block with secondary hits to remain longer in the cache without affecting significantly the

performance of the cache.

The above observations suggest that a balance must be kept between the duplicated blocks

allowed in the cache and the associativity of the cache. From our experiments it appears that an

8-way associative cache can solve this problem most of the times and filtering techniques, like the

one presented in Section 4.5.6, can almost eliminate the problem.

4.6.4 Effects of Cache Size

Section 4.3 showed that the CCD rates increase as the cache size increases because there is

more opportunity to find duplicated blocks when you have more blocks to compare. Figure 21

shows the normalized IPC of each baseline cache to the same cache with the addition of CATCH,

for example for the 8KB bar the results are for an 8KB cache using CATCH and the baseline is an

8KB cache without CATCH. The results indicate that on average the performance improvement of

71

1

1.05

1.1

1.15

1.2

1.25

1.3

C
R
A
F
T
Y

E
O

N

F
M

A
3
D

P
E
R
L
B
M

K

Q
1
F

Q
2
F

Q
3
F

Q
4
F

Q
5
F

Q
7
A

Q
8
A

Q
9
A

Q
1
0
F

Q
1
6
F

Q
1
7
F

A
V
E
R
A
G

E

A
V
E
R
A
G

E
-O

T
H

E
R

A
V
E
R
A
G

E
-A

L
L

C
R
A
F
T
Y

E
O

N

F
M

A
3
D

P
E
R
L
B
M

K

Q
1
F

Q
2
F

Q
3
F

Q
4
F

Q
5
F

Q
7
A

Q
8
A

Q
9
A

Q
1
0
F

Q
1
6
F

Q
1
7
F

A
V
E
R
A
G

E

A
V
E
R
A
G

E
-O

T
H

E
R

A
V
E
R
A
G

E
-A

L
L

CATCH Limit CATCH 1.38KB

N
o

r
m

a
li
z
e
d

 I
P

C

8KB 16KB 32KB

Figure 21: CATCH with various cache sizes

CATCH is reduced as the cache size increases. This is due to the low miss rate that is completely

eliminated with a cache bigger than 16KB for most benchmarks. However, for the few high miss

rate benchmarks, we can see that the CATCH performs better with a 16KB cache compared to an

8KB but for most of the time a 32KB eliminates all misses and thus any room for improvement.

4.6.5 CATCH vs Victim Cache

An alternative mechanism to reduce cache misses is the victim cache [7]. A victim cache

aims to reduce cache misses, due to conflicts in a set, by keeping a fully associative structure and

maintaining victim blocks there until they are evicted or needed again from the cache. Figure 22

shows the performance improvement of a regular cache using an 8-entry victim cache, the CATCH

with 1.38KB cost, and a combination of the two. When combined, the victim cache is accessed

first and the CATCH is used only in case of a victim cache miss.

The data show that for three benchmarks, Q16F, Q8A and Q2F, victim cache is better than the

CATCH whereas the CATCH is superior for the others. However, the most important observation

is that the performance gain from the combination of CATCH and victim cache is additive. This

72

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

C
R
A
FT

Y
EO

N

FM
A
3D

PE
R
LB

M
K

Q
1F

Q
2F

Q
3F

Q
4F

Q
5F

Q
7A

Q
8A

Q
9A

Q
10

F

Q
16

F

Q
17

F

AV
ER

A
G
E

AV
ER

A
G
E-

O
TH

ER

AV
ER

A
G
E-

A
LL

N
o

r
m

a
li
z
e
d

 I
P

C

CATCH 1.38KB Victim Cache 8 entries Combination

Figure 22: CATCH and 8 entry Victim Cache

indicates that CATCH captures misses that are not conflict misses only in the same set but also

across sets.

4.6.6 Effects of Prefetching

Prefetching is another technique to reduce cache misses and improve performance. We have

investigated the performance improvement of a simple next-line prefetcher with and without the

CATCH. The next-line prefetcher is applied at all cache levels and it was verified that it does not

degrade the performance when prefetching data blocks. Figure 23 shows the normalized IPC of the

baseline with CATCH, with next-line prefetching and when applying both techniques. The results

show that prefetching can significantly improve the performance of a cache but again, as with

the victim cache, the performance improvement is additive for CATCH. Furthermore, there is one

benchmark, Q16F, that prefetching cannot improve its performance while CATCH can increase

its IPC by 25%. This suggests that there are cases where a simple prefetcher cannot predict the

program behavior but the redundancy still exists in the cache and can be eliminated using CATCH.

73

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

C
R
AF

TY
EO

N

FM
A3

D

PE
R
LB

M
K

Q
1F

Q
2F

Q
3F

Q
4F

Q
5F

Q
7A

Q
8A

Q
9A

Q
10

F

Q
16

F

Q
17

F

AV
ER

AG
E

AV
ER

AG
E-

O
TH

ER

AV
ER

AG
E-

AL
L

N
o

r
m

a
li
z
e
d

 I
P

C

CATCH 1.38KB Next line prefetching Combination

Figure 23: CATCH with next-line prefetching

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

C
R
A
FT

Y
EO

N

FM
A
3D

PE
R
LB

M
K

Q
1F

Q
2F

Q
3F

Q
4F

Q
5F

Q
7A

Q
8A

Q
9A

Q
10

F

Q
16

F

Q
17

F

AV
ER

A
G
E

AV
ER

A
G
E-

O
TH

ER

AV
ER

A
G
E-

A
LL

N
o

r
m

a
li
z
e
d

 I
P

C

CATCH 1.38KB 18KB cache Combination

Figure 24: CATCH compared to an 18KB cache

4.6.7 Increasing Cache Size

Another design tradeoff is to consider investing the extra space required by CATCH to increase

the cache size. For example 16KB cache + 1.38KB CATCH can roughly correspond to an 18KB

cache which has the same design specifications as the 16KB cache + 1 extra way. Figure 24 shows

the normalized IPC of the baseline with CATCH, the 9-way 18KB cache and a combination of

both the 18KB cache and CATCH. The results indicate that a cache with 2KB extra way provides

higher performance than the 1.38KB CATCH. However, it is worth mentioning that even with the

extra space there is still room for improvement using CATCH. This is indicated by the extra 7%

74

Table 6: Energy consumption per access of 16KB 8-way and CATCH

Structure Dynamic Energy per access(nJ) Percentage of Cache energy
Cache 16KB 8-way 1.09001 100%
HDD 0.52KB 8-way 0.00479044 0.44%
DR 0.86KB 4-way 0.00380342 0.35%

Block Compare Unit 0.00135553 0.12%

on average improvement that can be achieved using a combination of the 18KB cache and the

1.38KB CATCH compared to the 18KB cache alone.

4.6.8 CATCH Energy Consumption

Table 6 shows the dynamic energy per access, obtained using CACTI [64] of the three struc-

tures used to implement 1.38KB CATCH. This is compared with the energy of the 16KB 8-way

cache used for the performance evaluation. The results were taken using the exact same array

configuration and feature size for all the structures excepts of the number of banks which for HDD

and DR where only one bank and for the cache we used four banks.

The table shows that the energy consumption of the HDD corresponds to 0.44% of the cache

energy per access while the DR consumption corresponds to 0.35%. The energy consumption of

the Block Compare Unit, that compares a maximum of 128 bits, 4 instructions, corresponds to

0.12% of the energy that it is consumed during a cache access.

It’s worth noting that the energy consumed by HDD and DR is not proportional to their size as

compared to the Cache energy per access. The reason is that Instruction L1 caches are accessed in

parallel mode to be fast. That means both the tag and data array are accessed and all the content

of a set is read. Although we use the fast mode access for DR and HDD, the content read out as

compare to a cache access is much smaller. For example, for HDD we will read 8x16bits from the

tag and 8x28 bits from the data array while for the cache we need to read 8x28 bits for the tag and

8x256bits for the data array (all the blocks are read).

75

Table 7: Cache and CATCH events and units accessed

Event Units accessed
Cache Hit Cache, DR

Cache Miss - DR Miss Cache, DR, L2
Cache Miss - DR Hit - Cache Hit Cache, DR, Cache

Cache Miss - DR Hit - Cache Miss Cache, DR, L2
HDD Hit - Cache Hit HDD, Cache, BCU

HDD Hit - Cache Miss HDD, Cache
HDD Miss HDD

Using these energy numbers we developed a first order model to measure the energy delay for

all benchmarks with and without CATCH. The following facts were taken into consideration for

modeling the CATCH energy:

1. DR table is access on every cache access

2. On a DR hit followed by a cache miss then an extra cache access energy is charged

3. HDD is accessed on every cache miss

4. On an HDD hit an extra energy cache access energy is charged

5. Block Compare Unit is only used on an HDD hit followed by a cache hit

Also, the model takes into consideration the L2 cache access energy for every cache miss and

the static energy of Instruction L1 cache and CATCH. Finally, we assume that IL1 cache consumes

about 15% [75] and the L2 cache about 30% [76] from the total processors power consumption.

Table 7 shows all the possible cache and CATCH events and the corresponding units that are

accessed on each event.

Figure 25 shows the normalized energy delay product of the simulated processor when using

CATCH. The results indicate that for the benchmarks that have performance improvement using

CATCH, the energy delay product is also improved. On the other hand for some benchmarks, like

APPLU that does not have any performance improvement, the energy delay product is slightly

76

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

G
Z
IP

0
0

V
P
R
0
0

G
C
C
0
0

M
C
F
0
0

C
R
A
F
T
Y
0
0

P
A
R
S
E
R
0
0

E
O

N
0
0

P
E
R
L
B
M

K
0
0

G
A
P
0
0

V
O

R
T
E
X
0
0

B
Z
IP

2
0
0

T
W

O
L
F
0
0

W
U

P
W

IS
E
0
0

S
W

IM
0
0

M
G

R
ID

0
0

A
P
P
L
U

0
0

M
E
S
A
0
0

G
A
L
G

E
L
0
0

A
R
T
0
0

E
Q

U
A
K
E
0
0

F
A
C
E
R
E
C
0
0

A
M

M
P
0
0

L
U

C
A
S
0
0

F
M

A
3
D

0
0

S
IX

T
R
A
C
K
0
0

A
P
S
I0

0

Q
1
F

Q
2
F

Q
3
F

Q
4
F

Q
5
F

Q
6
F

Q
7
A

Q
8
A

Q
9
A

Q
1
0
F

Q
1
1
A

Q
1
2
A

Q
1
3
A

Q
1
4
A

Q
1
5
F

Q
1
6
F

Q
1
7
F

A
ll
 b

e
n
c
h
s

N
o

r
m

a
li

z
e
d

 E
n

e
r
g

y
 D

e
la

y

16KB Cache + 1.38KB CATCH

Figure 25: Normalized Energy Delay product when using a 1.38KB CATCH

increased due to CATCH. Overall the results show that the energy overheads of CATCH are very

low, and in total we increase the energy delay product by less than 0.04%.

4.7 Chapter Summary

This chapter introduces the notion of CCD for instruction caches and proposes CATCH, a

hardware mechanism for dynamically detecting CCD. It also evaluates the performance of CATCH

for two cache architectures that exploit CCD: the Duplicate-Aware-Cache and the Unique-Content-

Cache.

We report on the performance of the proposed mechanism with oracle and realistic constraints

and investigate the significance of various performance and cost optimizations. Experimental

results for a processor with a 16KB, 8-way, 8 instructions per block instruction cache show that a

CATCH with 1.38KB cost usually captures 58% on average of the CCD idealized potential.

77

Experimental results comparing CATCH with victim cache show that CATCH can capture

misses that are not due to conflicts in the same set. Thus, the performance gain of the two mecha-

nisms is additive.

Chapter 5

Extrinsic and Intrinsic Text Cloning

In this chapter we identify Text Cloning as a potential inefficiency in the cache hierarchy of

modern multi-core processors. Text Cloning occurs when a processor is storing at any levels

of its cache hierarchy the same text multiple times. Text cloning can be wasteful to performance,

especially for SMT cores, because processes compete for cache space to store the same instruction

blocks simultaneously. There are several causes of text cloning and we divide them into Extrinsic

and Intrinsic.

Extrinsic Text Cloning can happen when a user, many users, or middleware, copy a binary

and concurrently execute the multiple copies on the same processor. The Operating System cannot

detect that these binaries are identical and will map them, during execution, in different physical

address space, therefore, creating unnecessary pressure at all cache levels. Such a scenario is

very common in Grid Computing job flow where the binary of each submitted job is copied in a

temporary directory, a sandbox, with all its input and data.

78

79

Intrinsic Text Cloning can happen when an instruction cache is Virtually Indexed/Virtually

Tagged and the process identifier (PID) is included in the tag. A simultaneous multithreaded pro-

cessor , that uses such cache, will map the text of concurrent processes of the same binary to dif-

ferent instruction cache space due to their distinct process identifier. A Virtually Indexed/Virtually

Tagged instruction cache is found in the Intel’s hyperthreaded (SMT) Netburst microarchitecture

[77].

We identify and explain the causes of Text Cloning both, Extrinsic and Intrinsic, and demon-

strate experimentally, on real and simulated SMT hardware, the significant performance implica-

tions of Text Cloning. We also discuss ways to mitigate the effects of Text Cloning, and we show

the potential of CATCH [Chapter 4] to identify and eliminate it.

5.1 Text Cloning: Causes, Implications and Remedies

This section introduces Extrinsic and Intrinsic Text Cloning through discussion about when it

can occur, how much it hurts performance and possible methods to avoid it.

5.1.1 Extrinsic Text Cloning

Extrinsic Text Cloning (ETC) can happen due to the user and software practices that result in

the execution of multiple copies of the same binary on the same processor. The Operating System

is unable to understand that these binaries are clones and will map them in different physical

address spaces. Consequently, each process is associated to a different text segment and will

eventually create duplication in the shared caches of the processor.

The ETC is common within Grid Computing Systems [78] due to Grid’s distributed file sys-

tem and the middle-ware design. Particularly, typical Grid job flow requires the binary of each

submitted job to be copied in a temporary directory, a sandbox, with all its input and data. In the

80

case that two or more jobs that use the same binary, are submitted to the same multicore or SMT

computing node the middle-ware, or even the OS in the Grid computing node itself, is unaware of

this duplication.

Another emerging case of ETC is due to virtualized cloud computing where multiple users can

run local copies of the same applications that happen to execute on the same physical processor

[79].

Furthermore, ETC can happen when an application contains self-modifying code routines.

When a process, that shares its physical address space with other processes of the same application,

self modifies its code then the memory page that contains the modified code has to be copied in

different address. This will result to duplicated blocks that were contained in the copied memory

page but remain unaffected from the code self-modifying routine [80].

Finally, a common habit among users is to keep their own copies of same applications in their

home directories. This might lead in ETC when two users are logged in the same machine and run

the same application, each using their own copy.

5.1.2 Intrinsic Text Cloning

Intrinsic Text Cloning (ITC) is specific to VIVT instruction caches. A VIVT cache uses the

Virtual Address to tag match a block. In the case of a shared VIVT cache, the tag also contains the

PID of the process to avoid homonym problems. However, each instance of the application will

have different PID and this will create synonyms [81] in the instruction cache. ITC is equivalent

to the occurrence of synonyms in an instruction cache.

VIVT caches are used for L1 Instruction caches to have lower access latency and lower energy

per access by avoiding ITLB translations on every cache access. Cloning in IL1 caches only occurs

when the tag of the Virtually Tagged (VT) caches includes also the PID. Single thread cores do

81

not require keeping the process ID in the tag unless they want to avoid cache flashing after each

context switch. For an SMT processor, on the other hand, the PID is essential in the tag of a VT

cache because multiple threads coexist in the cache at the same time.

The ITC can happen either when we run multiple copies of the same binary or multiple in-

stances of the same binary. On the first scenario, the reasons are the same as those discussed in

Section 5.1.1. The second scenario, multiple instances of the same binary, is very common when

running the same application with different inputs, or using applications that by default create a

different process for each instance due to lack of multithreading support or other programming

reasons. For example, versions of Microsoft Excel and Internet Explorer create a distinct instance

each time they are invoked.

Another possible cause of ITC is the service daemons running on servers. Not all these appli-

cations are multithread, and create a different process each time a user request the service. A very

common category of services that spawn multiple processes is the kernel services.

5.1.3 How Important is ETC and ITC

This Section uses two real processors with 2-way SMT cores, the Intel Pentium 4 (P4) [82]

with VIVT 12KB Trace Cache and the Intel i7 [83] with a VIPT 32KB IL1 cache to measure

the performance impact of Text Cloning in IL1 cache. We used a synthetic benchmark (see AP-

PENDIX B) that exercises the instruction cache by executing a large basic block of calculations

for different basic block sizes. The benchmark has minimal data requirements, only few initial

capacity misses, effectively no-conditional branches, and several random indirect unconditional

branches to measure only the impact of the instruction references on performance.

We measure the implications of ETC and ITC by performing two experiments for each pro-

cessor. First, two instances of the same binary are executed in parallel. The OS is aware that both

82

processes refer to the same binary, and it will load the text only once in the physical address space

but it will create two different virtual address spaces, one for each process. This causes ITC only

in the P4 with VIVT caches since the address mapping of the threads in the i7 VIPT cache will

be the same. For the second experiment, two copies of the same binary are run again in parallel

for the SMT execution. This causes the two processes to be mapped in different physical address

spaces and hence differently virtual address spaces. This manifests into Text Cloning both for P4

and i7 caches in all levels of the cache hierarchy.

For both experiments, the two processes are forced to run on the same logical core using the

taskset command. In this way the two processes will be executed in parallel using one SMT core

and share the same IL1 cache.

5.1.3.1 Intel Pentium 4 with a VIVT IL1

Figure 26 shows the results for the Intel P4. The y-axis of the figure shows the SMT speedup

compared to running the two processes back to back. The x-axis shows the static instruction foot-

print of each process. For the VIVT IL1 cache of P4, running either copies or multiple instances

of the same binary does not make any difference. In both cases the two processes will be mapped

in different virtual address spaces. The evidence for ETC (two copies) and ITC (same binary) are

supported by the behavior from 1KB to 12KB instruction footprint. For this sizes the single thread

will fit perfectly on the IL1 cache while the SMT executions will suffer with cache misses after

the 6KB instruction footprint. In the figure, we can clearly see that the speedup of SMT for both

experiments is dropping once the instruction footprint exceeds the 6KB from 80% down to 55%

for 12KB.

83

100%

110%

120%

130%

140%

150%

160%

170%

180%

190%

1KB 2KB 4KB 6KB 8KB 12KB 16KB 20KB 24KB 32KB 40KB 48KB 64KB

Instruction Footprint

S
M

T
 S

p
e
e
d

u
p

2 instances of the same binary

2 copies of the same binary

Figure 26: Intrinsic and Extrinsic Text Cloning on Intel Pentium 4

5.1.3.2 Intel i7 with a VIPT IL1

Figure 27 shows the effects of running concurrently the same binary and two copies of the

binary on an i7. The trends for i7 are clearly different as compared to P4. Specifically, comparing

the two bars in Figure 27 we observe that when running two different copies of the same binary

the SMT speedup is reduced when we go beyond the 16KB instruction footprint because now the

combined workload of the two copies occupies 32KB in total which barely fits the i7 32KB IL1

cache. This is clearly due to ETC. On the other hand, the runs with the same binary experience no

Text Cloning, as opposed to P4. Specifically, with the 16KB instruction footprint the instructions

of both processes are mapped in the same physical space and hence are mapped only once in the

VIPT IL1 cache of i7. Comparing Figures 26 and 27 we clearly see that ETC can affect both cores

while ITC affects only Pentium 4 that uses a VIVT IL1 cache.

Furthermore we have evaluated the effects of ETC using a real application, the SMTSIM

simulator with the SPEC2000 benchmarks as inputs. Figure 28 shows the effects of running

concurrently two clones of SMTSIM simulator with the same input on an i7. The bottom bar shows

the total execution time when there is no cloning, while the top bar indicates the extra overhead

84

100%

110%

120%

130%

140%

150%

160%

170%

180%

190%

1KB 2KB 4KB 6KB 8KB 12KB 16KB 20KB 24KB 32KB 40KB 48KB 64KB

Instruction Footprint

S
M

T
 S

p
e
e
d

u
p

2 instances of the same binary

2 copies of the same binary

Figure 27: Intrinsic and Extrinsic Text Cloning on Intel i7

6%

4%
6%

6%

1%

11%

2%

2%

1%

4%

6%

5%
3%

8%

3%

9%
9%

5%

3%
5%

4%

4%
2%

3%

10%

0

500

1000

1500

2000

2500

3000

3500

am
m

p

ap
pl
u

ap
si ar

t

bz
ip
2

cr
af

ty
eo

n

eq
ua

ke

fa
ce

re
c

fm
a3

d
ga

p
gc

c
gz

ip

lu
ca

s
m

cf

m
es

a

m
gr

id

pa
rs

er

pe
rlb

m
k

si
xt
ra

ck

sw
im

tw
ol
f

vo
rte

x
vp

r

w
up

w
is
e

SMTSIM Input

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
) Cloning ovehead

Execution time

Figure 28: Extrinsic Text Cloning overhead on Intel i7

when ETC is introduced due to cloning. The results show that ETC can increase execution time

by up to 11% and most of the times more than 5%.

5.1.4 How to Eliminate ETC and ITC

ETC can be avoided if the OS is enhanced with the ability to detect copies of the same bi-

nary and map them at the same physical address space, similar to what linux does with Kernel

SamePage Merging [41, 42]. This however can cause security problems since someone can ex-

ploit this to inject harmful code in applications that are commonly used among many users.

85

Another possible solution is to enable the hardware to detect this duplication with hints from

the OS or in real time to completely avoid user intervention. At this low level, the detection of

cloned text can be more efficient and more secure. Two such mechanisms that have already been

proposed are the one in [84] and CATCH in Chapter 4 that with certain modifications can be

applied to ETC.

Mohamood et al. [84] proposed a mechanism to detect DLL sharing between different threads

that use the same DLLs. The proposed mechanism is based on both VIVT and VIPT caches

that are aware of DLL sharing using a bit in the ITLB table that is set with aid of the Operating

System. The mechanism described can be used to prevent text cloning but we believe that a

simpler mechanism may be sufficient because the granularity of duplication is much bigger in the

Text Cloning scenario.

Also this thesis, proposes CATCH, a mechanism that dynamically detects and eliminates du-

plicated instruction sequences, valid blocks, from the IL1 cache. CATCH is also a candicate to

eliminate ETC.

ITC can be avoided by using a VIPT IL1 cache. The VIPT cache requires an access to the ITLB

on very cache access to translate the Virtual to Physical address. This costs energy for accessing

the ITLB, but also performance because although the Indexing in a VIPT can be done with Virtual

address this is not enough to hide the ITLB access and tag matching. This extra translation might

increase more than a cycle the IL1 cache access latency. Previous SMT processors, like Intel

Pentium 4, kept the L1 Instruction Cache to be VIVT but modern processors, like Intel i7, have a

Virtually Indexed/Physically Tagged (VIPT) cache with the extra overhead of the ITLB translation

on every IL1 cache access. Therefore, the particular instruction cache configuration may depend

on power and performance trade-offs.

86

Since ITC is the equivalent for synonyms in an instruction cache there has been a lot of work

to improve performance or reduce they energy of virtually tagged caches [85, 86].

Also two possible hardware mechanisms for the ITC problem that can detect and eliminate

Cache-Content-Duplication dynamically are [84] and CATCH [Chapter 4] which can help to elim-

inate both ETC and ITC.

5.2 Grid Computing Systems

In this section we will explain in detail how and where Extrinsic Text Cloning manifests in

Grid Computing Systems and specifically in EGEE project [87].

5.2.1 Grid Architecture

Figure 29 shows the basic components of EGEE grid system that uses the gLite middleware

to submit, schedule, execute and manage users’ jobs. The figure shows that this grid computing

systems is composed from four basic elements, (a) the User Interface (UI), (b) the Workload

Management System (WMS), (c) the Computing Element (CE) and (d) the Worker Node (WN)

[88].

The UI provides the tools for the user to submit or cancel his job and to retrieve the output

result of the submitted job. Once a job is submitted from a UI it arrives to a WMS. The WMS

is responsible for the load balancing of the whole grid infrastructure by keeping records of the

balance in each cluster and which clusters are available for execution. Once the WMS chooses

the cluster to submit a job it sends the job description in a WMS wrapper script to the appropriate

CE of the cluster. The CE is responsible for keeping track of the workload in its own cluster

and submits jobs to different WNs that belong to the cluster. Finally the WN is running a job

resource manager, for EGEE is Torque/PBS, which executes the WMS job wrapper script that

87

Figure 29: gLite job submission chain
(http://web.infn.it/gLiteWMS/index.php/techdoc/howtosandguides)

88

setups, downloads and uploads the job’s sandbox, executes the job, logs the output and finally

cleans up once the job is done.

5.2.2 Extrinsic Text Cloning in Grid

ETC is caused by the very last stage of the grid job flow, at the WN, where the WMS job

wrapper creates a different sandbox for each job. This prevents multiple jobs that run on the same

worker node, multicore or SMT, to share their binaries but also provides secure execution of the

job. The architecture of grid is built to provide abstraction in each level, but also security for the

users to run their job without interfering with each other [78].

This approach provides little or no opportunity to the middleware to optimize job submission

and execution to share binaries because there is a high risk of compromising security. For example,

even if the WMS component is smart enough to group jobs together that use the same binary and

submit them to the same CE it would still need to run in different sandboxes to prevent interference

between jobs’ inputs and outputs and even malicious activity from other users that may try to

exploit this hole.

Accordingly to eliminate ETC in grid computing either the OS running on the worker node or

hardware support or a co-design of the two is essential.

For example, a service in the OS that compares the new binaries for execution with the binaries

already running can be used. This can be done using a table that keeps a content id (e.g. the CRC

code) of the text of all running binaries. When a new binary starts executing, its content id is

compared with all the running ones and if there is a match the texts are compared for validation.

If two texts are identical they can be mapped at the same physical address space. In case of

self-modifying code the OS must be aware to split merged texts into different physical address

spaces. This technique will require no hardware modifications but requires for the OS to do all the

89

comparisons and monitoring for self-modifying code or other possibly malicious actions from the

users.

Another approach is to have a hardware mechanism detecting text cloning. The granularity

of duplication can be chosen statically for each set of binaries or it can change dynamically. For

example, only a relation between the PIDs needs to be recorded for two identical binaries. On the

other hand, if two binaries are very similar but not identical, for example, an open source simulator

that is slightly modified by each user, detection at the granularity of pages or cache blocks is more

appropriate. By reducing the detection granularity, the duplication opportunity increases but the

number of relations to be recorded increases also. Smaller granularity also provides duplication

detection across very different applications and even within the same binary. Furthermore, detect-

ing self-modifying code and invalidating relations is easier in hardware because it can monitor the

instructions that write the text segment.

A possible efficient design can be the combination of software and hardware. For example, a

co-design where an OS software mechanism provides hints, for the relations and the text cloning

granularity, to the hardware mechanism that will validate, create, and detect the duplicate relations.

The OS has a broader view of the processes running and can detect if two texts are identical,

similar, or very different. This can help the hardware mechanism to adapt the granularity to detect

text duplication. Finally, the hardware can detect self-modifying code and invalidate any relations

that become invalid.

Provided that Text Cloning is a frequent phenomenon, future work should evaluate and engi-

neer all these options to determine how to best to detect and eliminate it.

90

5.3 Evaluation Using Simulation

For simulation evaluation of the effects of text cloning we consider only the scenario where

multiple copies of the same binary are executed using a VIPT IL1 cache of an SMT core, which

corresponds to Extrinsic Text Cloning (ETC).

To evaluate the performance we have used the SMTSIM simulator [63] with a selection of 7

benchmarks of the SPEC2000 suite. The 7 benchmarks selected were 3 with a large instruction

workload, fmad3d, crafty and perl, 2 with a medium instruction workload eon and vortex, and

2 with a small instruction workload load, ammp and lucas. This benchmark selection is done

to show the potential performance of ETC for different cases of instruction cache pressure. The

benchmarks simulation regions, inputs, and compilation and the processor’s configuration are

described in Chapter 3. Adittionally, when two instances of the same application are executing

simultaneously there is a 500 million instructions shift region. The shift region is the difference

in dynamic instructions between the two copies of the binary that are executed simultaneously

to avoid overlapping program phases. For these shift regions we have verified that there is no

overlapping between the simulated regions of the two copies.

5.3.1 Results

Figure 30 shows the Weighted Speedup [89] normalized to the first bar, which is the per-

formance of 2 instances of the same binary running on an SMT processor. For the experiments

in Figure 30 all applications are running synchronized, that means they are executing exactly

the same program phase. The results show that the performance degradation due to ETC, when

running 2 copies of the same binary, is up to 60% for crafty and more than 20% for the other

benchmarks. For lucas and ammp that have very little pressure on the instruction cache ETC does

not affect the performance.

91

40%

60%

80%

100%

fm
a3

d0
0.

fm
a3

d0
0

cr
af
ty
00

.c
ra

ft
y0

0

pe
rl
bm

k0
0.

pe
rl
bm

k0
0

eo
n0

0.
eo

n0
0

vo
rt
ex

00
.v
or

te
x0

0

am
m
p0

0.
am

m
p0

0

lu
ca

s0
0.

lu
ca

s0
0

av
er

ag
e

2 instances of the same binary 2 copies of the same binary 2 copies of the same binary + CATCH

Figure 30: Weighted SpeedUp. Detecting and eliminating ETC with overlapping program phases

40%

60%

80%

100%

fm
a3

d0
0.

fm
a3

d0
0

cr
af
ty
00

.c
ra

ft
y0

0

pe
rl
bm

k0
0.

pe
rl
bm

k0
0

eo
n0

0.
eo

n0
0

vo
rt
ex

00
.v
or

te
x0

0

am
m
p0

0.
am

m
p0

0

lu
ca

s0
0.

lu
ca

s0
0

av
er

ag
e

2 instances of the same binary 2 copies of the same binary 2 copies of the same binary + CATCH

Figure 31: Weighted SpeedUp. Detecting and eliminating ETC with 500 million instructions shift
in program phase

Figure 31 shows a more common scenario where the two applications running simultaneously

are in different program phase, 500 million instructions shift, in their execution. We have verified

that none of the applications are overlapping with their copy during the execution. The results

show that the performance degradation is a little less, mainly because by executing a different

phase we can avoid some conflict misses. Still the bigger instruction footprint due to ETC can

cause 55% slowdown for eon and crafty and about 20% for the other benchmarks. The ammp and

lucas are again not affected by ETC due to the very small instruction cache workload.

92

These results suggest that the use of a hardware mechanism, OS support or a combination of

the two will be useful to eliminate the performance degradation due to text cloning. We chose

CATCH [Chapter 4] to show how a hardware mechanism can be used to recover performance loss

due to Text Cloning.

Figure 30 shows how CATCH can reduce the overhead of cloning. The third bar shows the

performance when two copies of the same binary are executing and CATCH is used to detect and

eliminate cloning. We can see that when using CATCH the performance degradation is reduced

to 0.07% on average. There is even one case, for vortex, that the performance of CATCH is

even better compared to the run where we have executed the same binary twice. This is because

CATCH detects duplication not only across different binaries, but also within the same binary and

thus improving the performance of the single thread execution.

The results in Figure 31 are similar to 30 but this time we can see that CATCH eliminates

completely the cloning overheads on average. We would like to note again that CATCH is not for

free and each duplication detection is penalized with one extra cycle that corresponds to an extra

cache access for the duplicated block. The CATCH mechanism is described in detail in Chapter 4.

We have used CATCH as a case study to show how a hardware mechanism can be applied to

eliminate ETC. The results indicate that an Operating System mechanism or a hardware mech-

anism that is aware of text cloning can be very useful to improve the performance of modern

platforms that suffer from ETC, such as the Grid Computing and Cloud Computing Systems .

5.4 Chapter Summary

This chapter analyzes the effects of Extrinsic and Intrinsic Text Cloning (ETC) in caches.

Extrinsic text cloning can occur when a binary is copied and executed concurrently multiple times,

for example in Grid Computing Systems. In that case the OS is unaware of the Text Cloning and

93

two or more copies of the same binary will be mapped in different physical addresses. Intrinsic

Text Cloning (ITC) can occur in the case of Virtually Index/Virtually Tagged caches where the

same text segment is mapped in different virtual address spaces.

We evaluate the effects of ETC and ITC, using two SMT Intel processors, P4 and i7 with a

synthetic benchmark. The results indicate that the slowdown in execution due to Text Cloning is

significant and a mechanism for detecting and eliminating this overhead can be important.

Simulation based evaluation has shown that the performance overheads of ETC can be com-

pletely eliminated using CATCH to detect duplication between instruction sequences. Overall, the

analysis suggests the importance of OS and architectural support to eliminate Text Cloning.

Chapter 6

CCD for Data

While Chapters 4 and 5 focused on duplication for instruction, this Chapter will focus on

duplication for data. Similar to instructions, by removing redundant data from caches we can

increase the effective cache size using mechanisms that will detect and exploit the data duplication.

Potential applications of such mechanisms can be to increase the performance by fitting more data

in the same space or to reduce the energy by switching off parts of the data array.

In the rest of this Chapter we will characterize the CCD for data caches, investigate the ef-

fects of dirty blocks and zero runs and and evaluate its potential and trade offs for various block

granularities.

6.1 Data Redundancy Characterization

In this Section we will characterize the redundancy for data blocks during dynamic execution.

The results do not include the TPC-H benchmarks in this characterization because they have very

small data footprint and do not provide any significant information.

In Figure 32 we present the absolute number of unique blocks (32byte) needed to cover the

specific amounts of dynamic execution when they are identified by their block tag, TAG, and by

94

95

Execution Coverage:

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

GZIP VPR GCC MCF CRAFTY PARSER EON PERLBMK GAP VORTEX BZIP2

a) SPECINT 2000

N
u

m
b

e
r
 o

f
U

n
iq

u
e
 B

lo
c
k
s

80% 85% 90% 95% 100%

Execution Coverage:

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

WUPWISE SWIM MGRID APPLU MESA GALGEL ART EQUAKE FACEREC AMMP LUCAS FMA3D SIXTRACK APSI

b) SPECFP 2000

N
u

m
b

e
r
 o

f
U

n
iq

u
e
 B

lo
c
k
s

80% 85% 90% 95% 100%

Figure 32: Execution coverage of unique blocks for the a) SPECINT 2000 and b) SPECFP 2000

their unique content, CONTENT. As it appears from the results there are few benchmarks, like

MCF, GAP, EQUAKE and LUCAS, with a significant reduction in their unique blocks required

when are identified by their CONTENT as opposed to be identified by their TAG. On the other

hand we can see several benchmarks that are not actually affected by this phenomenon either

because they have very small data footprint, like EON and AMMP for example, or because they

have many unique blocks, like APPLU.

Figure 33 presents a normalized execution breakdown of the previous results. The unique

blocks identified by their CONTENT are normalized to the total unique blocks identified by the

TAG. It is clear that by removing the duplicated blocks the space required for execution is reduced

in most of the cases by more than 20% for the SPECINT benchmarks and more than 40% for the

96

Execution Coverage:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

GZIP VPR GCC MCF CRAFTY PARSER EON PERLBMK GAP VORTEX BZIP2

P
e
r
c
e
n

ta
g

e
 o

f
U

n
iq

u
e
 B

lo
c
k
s

80% 85% 90% 95% 100%

a) SPECINT 2000

Execution Coverage:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

T
A
G

C
O
N
T
E
N
T

WUPWISE SWIM MGRID APPLU MESA GALGEL ART EQUAKE FACEREC AMMP LUCAS FMA3D SIXTRACK APSI

P
e
r
c
e
n

ta
g

e
 o

f
U

n
iq

u
e
 B

lo
c
k
s

80% 85% 90% 95% 100%

b) SPECFP 2000

Figure 33: Execution coverage breakdown of unique blocks in percentages for the a) SPECINT
2000 and b) SPECFP 2000

SPECFP benchmarks. For one instance, for apsi benchmark, we can see that the unique blocks

required, when identified by their CONTENT, are less than 1%. Of course this benchmark has

very few unique blocks but anyhow it’s an indication for the potential improvement which we will

analyze further, later in this chapter.

Overall the results are encouraging and it seems that duplication in data is also common for

many benchmarks.

6.2 Data Duplication Detection

Previous work focus on detecting duplication on data caches is based on frequent patterns,

single words, or only zero runs of multiple words, up to a whole block. We noticed that all

97

approaches had a common challenge, the dirty blocks. Dirty blocks oppose a difficult problem for

compression. Blocks that have been previously compressed and fit into a certain cache space now

when they are written, and their required size changes, might not fit in their allocated physical

space anymore. This will result in more complicated logic to handle this situation.

To overcome this difficulty, previous work proposed to write the dirty, uncompressed, block

into a new location. Others that use correlations between many addresses to a single content

[47, 51] propose to duplicate the whole dirty block and reinsert it in the cache in another location.

Since this problem appears to be a common among almost all works, we decided to investigate

more the effects of compressing the dirty blocks in the cache.

Another very important aspect of compression is the choice of the content to compress. Some

[53, 54] have noticed that is better just to compress only zero runs instead of various patterns since

it makes the compression logic much simpler. This factor will be also investigated further in the

following sections.

6.2.1 Compressing Dirty Blocks

Figure 34 shows the compression rate of a benchmark, LUCAS from SPEC2000 suite, for

various cache sizes, 8, 16, 32, and 64KB. The granularity that we detect duplication in this figure

is for whole blocks, 64byte, and each bar in the figure is the average of 40 snapshots, 10 million

instructions each snapshot. The cache is warmed-up for 100 million instructions to avoid any cold

effects. We will use LUCAS benchmark only as a first example to introduce the reader to our

graph’s layout and legend. This type of graph will be used regularly through the rest of this thesis.

The y-axis shows the percentage of required cache size if we remove CCD. For example, the

first bar that says “LUCAS ALL 8KB” shows that for lucas we only need about 12% of the total

cache for an 8KB cache if we remove all duplication. The next 3 bars, 16KB, 32KB, and 64KB

98

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

L
U

C
A

S
 A

L
L

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

L
U

C
A

S
 C

L
E

A
N

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

L
U

C
A

S
 A

L
L

 -
 N

O
 Z

E
R

O
S

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

L
U

C
A

S
 C

L
E

A
N

 -
 N

O
 Z

E
R

O
S

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

L
U

C
A

S
 A

L
L

 I
N

 O
N

E
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

Figure 34: Normalized cache size required after CCD elimination at the granularity of 64byte
blocks for benchmark LUCAS

show the cache size required after compression for respective cache sizes. All bars are normalized

to their corresponding cache. That means the 10% in the “LUCAS ALL 64KB” indicates that

LUCAS will require only 6.4KB of the cache size when running on a system with a 64KB cache.

This corresponds to 90% compression rate.

The results in the first group of bars, in Figure 34, indicate that with bigger cache we have

more compression potential. As mentioned in Chapter 4 this happens because with bigger cache

we have more blocks available and thus the possibility of finding a duplicate block is bigger.

Furthermore, the second group of bars in Figure 34, “LUCAS CLEAN” shows the compres-

sion potential of LUCAS if we compress only the clean blocks in the cache. We can see that when

compressing only the clean blocks we can achieve an average compression of 50% for LUCAS.

This suggests that the dirty blocks might be important to be compressed, and we will investigate

this further in Section 6.3.

99

6.2.2 Compressing Zero Blocks

Figure 34 also shows the effects of compressing the zero blocks in the cache for benchmark

LUCAS. The third group of bars in this figure, “LUCAS ALL - NO ZEROS”, shows with stripped

bars, DirtyNoCompZero and CleanNoCompZero, the extra space that is required if we compress

all the blocks except the ones that are all zeros. The results, compared to the first group of bars,

shows an increase of about 75-80% in the required cache size when not compressing zero blocks,

leaving only a 10-15% compression rate for the rest of the blocks. This suggests that zero blocks

are a big contribution to compression for some benchmarks and it is reasonable to look it up for

all benchmarks.

Finally, the fourth group in Figure 34 shows only the compression for clean blocks but without

including the zero blocks and the last group combines all four previous groups into one showing

the required cache size for:

• CleanComp: compressed clean blocks,

• DirtyComp: compressed dirty blocks,

• DirtyNoComp: extra space required by decompressing all dirty blocks except the ones that

contain all zeros,

• DirtyNoCompZero: extra space required by decompressing dirty blocks that contain all

zeros and

• CleanNoCompZero: extra space required by decompressing clean blocks that contain all

zeros.

This annotation will be used from now on to show the results for all benchmarks in the next

sections.

100

6.3 The Effects of Duplication Granularity for Data Caches

In instruction caches we identified the basic blocks and the valid sequences as an efficient

granularity for detecting CCD but in data caches there is no equivalent to valid sequences so the

problem of alignment stills exists. For the rest of this section, we will attempt o measure the

effects of duplication when considering different granularities at the block level and smaller block

segments.

6.3.1 Granularity at the Block Level

Figure 35 shows the results of compression potential of a data cache for several cache sizes

from 8KB to 64KB and at the granularity of a whole block, 64byte.

We have already seen, in Section 6.2, that LUCAS can achieve high compression rates, up to

90%, for almost all caches. Unfortunately, things are not so good for the rest of the benchmarks

as shown in Figure 35. Most of the benchmarks have 0-5% compression rate, especially in small

cache sizes, and a small subset of benchmarks has more than 10% compression rate. These bench-

marks are GCC, VORTEX and BZIP from SPECINT and all benchmarks from SPECFP except

WUPWISE, SWIM, APPLU and MESA. There are no benchmarks from TPC-H suite that have

more than 10% compression when eliminating CCD at the block level.

The above observations suggest that the performance potential for CCD on whole cache blocks

is very low and only in few benchmarks. Even for the four best benchmarks where the compression

rate is more than 50%, GCC, LUCAS, FMA3D and APSI, we can see that most of the potential is

due to zero blocks except for FMA3D.

101

2

13

20

13

2

14

20

13

2

15

20

13

2

16

20

13

2

17

20

13

2

18

20

13

2

19

20

13

2

20

20

13

2

21

20

13

2

22

20

13

2

23

20

13

2

24

20

13

2

25

20

13

0

0.2

0.4

0.6

0.8

1

1.2

G
Z

IP
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

V
P

R
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

G
C

C
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
C

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

C
R

A
F

T
Y

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

P
A

R
S

E
R

1
6

K
B

3
2

K
B

6
4

K
B

E
O

N
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

P
E

R
L

B
M

K

1
6

K
B

3
2

K
B

6
4

K
B

G
A

P
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

V
O

R
T

E
X

1
6

K
B

3
2

K
B

6
4

K
B

B
Z

IP
2

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

T
W

O
L

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) SPECINT 2000

0

0.2

0.4

0.6

0.8

1

1.2

W
U

P
W

IS
E

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

S
W

IM
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
G

R
ID

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

A
P

P
L

U
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
E

S
A

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

G
A

L
G

E
L

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

A
R

T
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

E
Q

U
A

K
E

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

F
A

C
E

R
E

C
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

A
M

M
P

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

L
U

C
A

S
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

F
M

A
3

D
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

S
IX

T
R

A
C

K
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

A
P

S
I

8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) SPECFP 2000

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
2

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
3

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
4

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
5

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
6

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
7

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
8

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
9

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
1

0
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1
1

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
1

2
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

3
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

4
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

5
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

6
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

7
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) TPC-H

Figure 35: Normalized cache size required after CCD elimination at the granularity of 64byte
blocks, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H)

102

6.3.2 Granularity at Various Block Segments

To overcome the limitation of the whole block, we considered approximating the valid se-

quences of instruction caches using smaller segments of the block instead. Each segment is cache

block aligned at the original 64byte cache block. For example, for the 32byte segments each cache

block is split into two 32byte segments, the 16byte segments splits the 64byte block to 4 segments

and so on.

Figures 36, 37, 38 and 39 show the compression rates that can be achieved when splitting the

cache block into 32, 16, 8, and 4byte segments. The trend is that with smaller segment size the

compression potential is higher. Comparing Figure 36 and 37 with 35 we can see that the com-

pression rates are more significant with more than 20% for all the benchmarks as the duplication

granularity gets smaller.

Reducing the duplication granularity even further to 8byte and 4byte segments (Figures 38

and 39) the benefits seem to increase even more with up to 60% compression rates in many bench-

marks.

6.4 Chapter Summary

The results in this Chapter indicate that there is a significant improvement as the segment size

reduces but also shown that a significant amount of compression is achieved due to dirty blocks

and zero runs in L1 data caches.

Compression ratios, for 16byte data segments, are usually around 20% with up to 50% for

some benchmarks when compressing only clean blocks. When compressing also dirty blocks the

compression can be up to 95% for one benchmark (GCC). Also the contribution of zero blocks

appears to be more than 50% of the compression in most cases.

103

2

13

20

13

2

14

20

13

2

15

20

13

2

16

20

13

2

17

20

13

2

18

20

13

2

19

20

13

2

20

20

13

2

21

20

13

2

22

20

13

2

23

20

13

2

24

20

13

2

25

20

13

0

0.2

0.4

0.6

0.8

1

1.2

G
Z

IP
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

V
P

R
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

G
C

C
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
C

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

C
R

A
F

T
Y

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

P
A

R
S

E
R

1
6

K
B

3
2

K
B

6
4

K
B

E
O

N
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

P
E

R
L

B
M

K

1
6

K
B

3
2

K
B

6
4

K
B

G
A

P
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

V
O

R
T

E
X

1
6

K
B

3
2

K
B

6
4

K
B

B
Z

IP
2

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

T
W

O
L

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) SPECINT 2000

0

0.2

0.4

0.6

0.8

1

1.2

W
U

P
W

IS
E

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

S
W

IM
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
G

R
ID

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

A
P

P
L

U
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
E

S
A

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

G
A

L
G

E
L

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

A
R

T
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

E
Q

U
A

K
E

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

F
A

C
E

R
E

C
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

A
M

M
P

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

L
U

C
A

S
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

F
M

A
3

D
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

S
IX

T
R

A
C

K
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

A
P

S
I

8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) SPECFP 2000

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
2

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
3

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
4

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
5

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
6

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
7

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
8

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
9

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
1

0
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1
1

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
1

2
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

3
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

4
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

5
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

6
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

7
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) TPC-H

Figure 36: Normalized cache size required after CCD elimination at the granularity of 32byte
segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H)

104

2

13

20

13

2

14

20

13

2

15

20

13

2

16

20

13

2

17

20

13

2

18

20

13

2

19

20

13

2

20

20

13

2

21

20

13

2

22

20

13

2

23

20

13

2

24

20

13

2

25

20

13

0

0.2

0.4

0.6

0.8

1

1.2

G
Z

IP
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

V
P

R
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

G
C

C
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
C

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

C
R

A
F

T
Y

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

P
A

R
S

E
R

1
6

K
B

3
2

K
B

6
4

K
B

E
O

N
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

P
E

R
L

B
M

K

1
6

K
B

3
2

K
B

6
4

K
B

G
A

P
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

V
O

R
T

E
X

1
6

K
B

3
2

K
B

6
4

K
B

B
Z

IP
2

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

T
W

O
L

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) SPECINT 2000

0

0.2

0.4

0.6

0.8

1

1.2

W
U

P
W

IS
E

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

S
W

IM
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
G

R
ID

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

A
P

P
L

U
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
E

S
A

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

G
A

L
G

E
L

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

A
R

T
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

E
Q

U
A

K
E

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

F
A

C
E

R
E

C
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

A
M

M
P

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

L
U

C
A

S
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

F
M

A
3

D
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

S
IX

T
R

A
C

K
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

A
P

S
I

8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) SPECFP 2000

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
2

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
3

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
4

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
5

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
6

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
7

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
8

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
9

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
1

0
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1
1

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
1

2
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

3
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

4
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

5
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

6
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

7
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) TPC-H

Figure 37: Normalized cache size required after CCD elimination at the granularity of 16byte
segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H)

105

2

13

20

13

2

14

20

13

2

15

20

13

2

16

20

13

2

17

20

13

2

18

20

13

2

19

20

13

2

20

20

13

2

21

20

13

2

22

20

13

2

23

20

13

2

24

20

13

2

25

20

13

0

0.2

0.4

0.6

0.8

1

1.2

G
Z

IP
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

V
P

R
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

G
C

C
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
C

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

C
R

A
F

T
Y

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

P
A

R
S

E
R

1
6

K
B

3
2

K
B

6
4

K
B

E
O

N
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

P
E

R
L

B
M

K

1
6

K
B

3
2

K
B

6
4

K
B

G
A

P
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

V
O

R
T

E
X

1
6

K
B

3
2

K
B

6
4

K
B

B
Z

IP
2

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

T
W

O
L

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) SPECINT 2000

0

0.2

0.4

0.6

0.8

1

1.2

W
U

P
W

IS
E

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

S
W

IM
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
G

R
ID

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

A
P

P
L

U
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
E

S
A

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

G
A

L
G

E
L

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

A
R

T
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

E
Q

U
A

K
E

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

F
A

C
E

R
E

C
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

A
M

M
P

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

L
U

C
A

S
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

F
M

A
3

D
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

S
IX

T
R

A
C

K
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

A
P

S
I

8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) SPECFP 2000

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
2

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
3

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
4

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
5

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
6

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
7

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
8

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
9

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
1

0
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1
1

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
1

2
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

3
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

4
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

5
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

6
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

7
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) TPC-H

Figure 38: Normalized cache size required after CCD elimination at the granularity of 8byte
segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H)

106

2

13

20

13

2

14

20

13

2

15

20

13

2

16

20

13

2

17

20

13

2

18

20

13

2

19

20

13

2

20

20

13

2

21

20

13

2

22

20

13

2

23

20

13

2

24

20

13

2

25

20

13

0

0.2

0.4

0.6

0.8

1

1.2

G
Z

IP
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

V
P

R
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

G
C

C
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
C

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

C
R

A
F

T
Y

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

P
A

R
S

E
R

1
6

K
B

3
2

K
B

6
4

K
B

E
O

N
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

P
E

R
L

B
M

K

1
6

K
B

3
2

K
B

6
4

K
B

G
A

P
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

V
O

R
T

E
X

1
6

K
B

3
2

K
B

6
4

K
B

B
Z

IP
2

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

T
W

O
L

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) SPECINT 2000

0

0.2

0.4

0.6

0.8

1

1.2

W
U

P
W

IS
E

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

S
W

IM
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
G

R
ID

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

A
P

P
L

U
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

M
E

S
A

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

G
A

L
G

E
L

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

A
R

T
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

E
Q

U
A

K
E

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

F
A

C
E

R
E

C
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

A
M

M
P

 8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

L
U

C
A

S
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

F
M

A
3

D
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

S
IX

T
R

A
C

K
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

A
P

S
I

8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) SPECFP 2000

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
2

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
3

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
4

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
5

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
6

F
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
7

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
8

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
9

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
1

0
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1
1

A
 8

K
B

1
6

K
B

3
2

K
B

6
4

K
B

Q
1

2
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

3
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

4
A

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

5
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

6
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

Q
1

7
F

 8
K

B
1

6
K

B
3

2
K

B
6

4
K

B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) TPC-H

Figure 39: Normalized cache size required after CCD elimination at the granularity of 4byte
segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H)

107

The dirty blocks are difficult to handle during compression, as shown in previous work, and

especially when a dynamic detection mechanism is used, like the one proposed in the thesis. The

main problem with CATCH, or with any similar mechanism, is that when a block is overwritten in

the cache all dynamic duplication relations pointing to that block need to be invalidated. Especially

for CATCH, since there are no backward pointers, in case of a write in the cache the whole DR

table needs to be flushed. L1 data caches are very sensitive to latencies and flushing will increase

the average latency which they cannot afford.

The data cache is written very frequently so flushing the DR will be inefficient. We have

considered various techniques to do selective invalidation. Initial cost analysis indicates that using

either backward points or link lists to be able to invalidate specific relations in the DR is not worth

it because it increases the cost of the mechanism. We believe that a dynamic detection mechanism

will not be efficient for dirty blocks, and they should not be considered for compression.

Furthermore, we have seen from Figures 35-39 that a large amount of zeros in the cache, with

many of them for dirty blocks, contribute up to 50% to the total compression rate. The zero runs

have been handled well in the DL1 cache with previously proposed mechanisms.

Finally, the accesses in a DL1 cache are very critical and cannot be hidden by already buffered

data like the fetch queue in instruction caches. Any compression mechanism in DL1 will add

significant overhead during decompression unless the compressed data are directly accessed like

in [45].

Taking into consideration all the above limitations, we believe that a dynamic duplication

detection mechanism will be inappropriate for the DL1 cache due to very frequent writes, zero

runs, and significant overhead for CCD detection on a secondary hit.

Chapter 7

CCD for Last Level Caches

With wide use of the SMT and Chip Multiprocessors, the need for efficient Last Level Caches

(LLCs) has become paramount. The main challenges of large LLCs are to maintain a reasonable

latency and energy consumption. A recent study [76] have shown that modern CMPs spend about

30% of their power to LLC and the biggest percentage of it is due to static leakage.

This chapter investigates the potential of CCD in LLCs, for both single and multiprogram

workloads to achieve both goals, reducing the latency and energy consumption.

Furthermore, we assume that CCD will be easier to exploit on LLCs, as compared to L1 Data

Caches, based on the following observations:

• The higher levels of memory hierarchy work as a filter where most of the writes are hidden

by the first level caches and only the last write-backs are visible to the LLCs. This will

result in less frequent writes per block in the LLCs, and thus giving more opportunity for

compression on clean blocks

• We also assume that the zero blocks will be less frequent in an LLCs since most of the zero

runs are caused during the initialization and they are later written with non-zero values

108

109

• LLCs can be used for multiprogram workloads on multicores. This will give us the chance

to exploit CCD for caches with more pressure.

7.1 Single Program Workloads

First we will investigate the CCD potential in an LLC for single program workloads. The con-

figuration that will be used is described in Table 3 for various LLC cache sizes and the benchmarks

are all applications from SPEC2000 and TPC-H suite.

We have to note that we also detect CCD in the instruction blocks contained in LLCs, but these

blocks are treated same as data blocks since CCD at unified caches is agnostic of block type.

Figures 40 to 44 show the results of CCD in an LLC cache for various block segments for

the cache sizes from 1MB up to 16MB. We refer the reader to Section 6.2.1 where there is a brief

explanation of the graphs’ annotations. The results indicate that both dirty blocks and zero runs are

considerably less as compared to the results for the L1 data cache. More specifically, comparing

Figure 42 with Figure 37 we can see that most of the dirty blocks have been converted to clean and

the percentage of zero 16byte segments in the LLC cache has been reduced. The most affected

benchmark is GCC where we can see that in the DL1 almost 50% on average of the cache during

the whole execution contains dirty blocks, while in the LLC the corresponding amount is down to

24% at most for the 8MB cache. Also, the percentage of zero blocks for GCC has been reduced

from 95% of the cache to just 22%. Another example is the LUCAS benchmarks in which all dirty

blocks have been completely eliminated, although the percentage of zeros remained the same.

The trend is that with the block segment size increasing the compression potential is decreas-

ing, as expected, but it’s noteworthy to say that the zero runs are also decreasing with higher rates

than the total compression potential. This indicates that zero runs are maybe useful when detecting

110

2

13

20

13

2

14

20

13

2

15

20

13

2

16

20

13

2

17

20

13

2

18

20

13

2

19

20

13

2

20

20

13

2

21

20

13

2

22

20

13

2

23

20

13

2

24

20

13

2

25

20

13

0

0.2

0.4

0.6

0.8

1

1.2

G
Z

IP
 2

M
B

4
M

B

8
M

B

1
6

M
B

V
P

R
 2

M
B

4
M

B

8
M

B

1
6

M
B

G
C

C
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
C

F
 2

M
B

4
M

B

8
M

B

1
6

M
B

C
R

A
F

T
Y

 2
M

B

4
M

B

8
M

B

1
6

M
B

P
A

R
S

E
R

4
M

B

8
M

B

1
6

M
B

E
O

N
 2

M
B

4
M

B

8
M

B

1
6

M
B

P
E

R
L

B
M

K

4
M

B

8
M

B

1
6

M
B

G
A

P
 2

M
B

4
M

B

8
M

B

1
6

M
B

V
O

R
T

E
X

4
M

B

8
M

B

1
6

M
B

B
Z

IP
2

 2
M

B

4
M

B

8
M

B

1
6

M
B

T
W

O
L

F
 2

M
B

4
M

B

8
M

B

1
6

M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) SPECINT 2000

0

0.2

0.4

0.6

0.8

1

1.2

W
U

P
W

IS
E

 2
M

B

4
M

B

8
M

B

1
6

M
B

S
W

IM
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
G

R
ID

 2
M

B

4
M

B

8
M

B

1
6

M
B

A
P

P
L

U
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
E

S
A

 2
M

B

4
M

B

8
M

B

1
6

M
B

G
A

L
G

E
L

 2
M

B

4
M

B

8
M

B

1
6

M
B

A
R

T
 2

M
B

4
M

B

8
M

B

1
6

M
B

E
Q

U
A

K
E

 2
M

B

4
M

B

8
M

B

1
6

M
B

F
A

C
E

R
E

C
 2

M
B

4
M

B

8
M

B

1
6

M
B

A
M

M
P

 2
M

B

4
M

B

8
M

B

1
6

M
B

L
U

C
A

S
 2

M
B

4
M

B

8
M

B

1
6

M
B

F
M

A
3

D
 2

M
B

4
M

B

8
M

B

1
6

M
B

S
IX

T
R

A
C

K
 2

M
B

4
M

B

8
M

B

1
6

M
B

A
P

S
I

2
M

B

4
M

B

8
M

B

1
6

M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) SPECFP 2000

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
2

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
3

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
4

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
5

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
6

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
7

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
8

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
9

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
1

0
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1
1

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
1

2
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

3
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

4
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

5
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

6
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

7
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) TPC-H

Figure 40: Normalized cache size required after CCD elimination at the granularity of 64byte
blocks, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H)

duplication at the granularity of 4byte or 8byte segments but for 16byte segment size and larger

their contributions is reduced substantially.

Also detecting duplication at very small granularities like 4 and 8byte segments means more

complicated logic to compose the blocks and more hardware to keep the relations since each

segment requires a pointer in its tag to maintain the relation.

111

2

13

20

13

2

14

20

13

2

15

20

13

2

16

20

13

2

17

20

13

2

18

20

13

2

19

20

13

2

20

20

13

2

21

20

13

2

22

20

13

2

23

20

13

2

24

20

13

2

25

20

13

0

0.2

0.4

0.6

0.8

1

1.2

G
Z

IP
 2

M
B

4
M

B

8
M

B

1
6

M
B

V
P

R
 2

M
B

4
M

B

8
M

B

1
6

M
B

G
C

C
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
C

F
 2

M
B

4
M

B

8
M

B

1
6

M
B

C
R

A
F

T
Y

 2
M

B

4
M

B

8
M

B

1
6

M
B

P
A

R
S

E
R

4
M

B

8
M

B

1
6

M
B

E
O

N
 2

M
B

4
M

B

8
M

B

1
6

M
B

P
E

R
L

B
M

K

4
M

B

8
M

B

1
6

M
B

G
A

P
 2

M
B

4
M

B

8
M

B

1
6

M
B

V
O

R
T

E
X

4
M

B

8
M

B

1
6

M
B

B
Z

IP
2

 2
M

B

4
M

B

8
M

B

1
6

M
B

T
W

O
L

F
 2

M
B

4
M

B

8
M

B

1
6

M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) SPECINT 2000

0

0.2

0.4

0.6

0.8

1

1.2

W
U

P
W

IS
E

 2
M

B

4
M

B

8
M

B

1
6

M
B

S
W

IM
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
G

R
ID

 2
M

B

4
M

B

8
M

B

1
6

M
B

A
P

P
L

U
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
E

S
A

 2
M

B

4
M

B

8
M

B

1
6

M
B

G
A

L
G

E
L

 2
M

B

4
M

B

8
M

B

1
6

M
B

A
R

T
 2

M
B

4
M

B

8
M

B

1
6

M
B

E
Q

U
A

K
E

 2
M

B

4
M

B

8
M

B

1
6

M
B

F
A

C
E

R
E

C
 2

M
B

4
M

B

8
M

B

1
6

M
B

A
M

M
P

 2
M

B

4
M

B

8
M

B

1
6

M
B

L
U

C
A

S
 2

M
B

4
M

B

8
M

B

1
6

M
B

F
M

A
3

D
 2

M
B

4
M

B

8
M

B

1
6

M
B

S
IX

T
R

A
C

K
 2

M
B

4
M

B

8
M

B

1
6

M
B

A
P

S
I

2
M

B

4
M

B

8
M

B

1
6

M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) SPECFP 2000

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
2

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
3

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
4

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
5

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
6

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
7

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
8

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
9

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
1

0
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1
1

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
1

2
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

3
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

4
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

5
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

6
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

7
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) TPC-H

Figure 41: Normalized cache size required after CCD elimination at the granularity of 32byte
segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H)

For these reasons, we will consider only the duplication for 16byte segments that appear to

be more promising regarding both the potential but also the complexity to detect and maintain the

duplication at this granularity.

7.2 Multi Program Workloads

Next we will investigate the frequency of CCD in LLCs for multi program workloads for a

2-core Chip Multiprocessor.

112

2

13

20

13

2

14

20

13

2

15

20

13

2

16

20

13

2

17

20

13

2

18

20

13

2

19

20

13

2

20

20

13

2

21

20

13

2

22

20

13

2

23

20

13

2

24

20

13

2

25

20

13

0

0.2

0.4

0.6

0.8

1

1.2

G
Z

IP
 2

M
B

4
M

B

8
M

B

1
6

M
B

V
P

R
 2

M
B

4
M

B

8
M

B

1
6

M
B

G
C

C
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
C

F
 2

M
B

4
M

B

8
M

B

1
6

M
B

C
R

A
F

T
Y

 2
M

B

4
M

B

8
M

B

1
6

M
B

P
A

R
S

E
R

4
M

B

8
M

B

1
6

M
B

E
O

N
 2

M
B

4
M

B

8
M

B

1
6

M
B

P
E

R
L

B
M

K

4
M

B

8
M

B

1
6

M
B

G
A

P
 2

M
B

4
M

B

8
M

B

1
6

M
B

V
O

R
T

E
X

4
M

B

8
M

B

1
6

M
B

B
Z

IP
2

 2
M

B

4
M

B

8
M

B

1
6

M
B

T
W

O
L

F
 2

M
B

4
M

B

8
M

B

1
6

M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) SPECINT 2000

0

0.2

0.4

0.6

0.8

1

1.2

W
U

P
W

IS
E

 2
M

B

4
M

B

8
M

B

1
6

M
B

S
W

IM
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
G

R
ID

 2
M

B

4
M

B

8
M

B

1
6

M
B

A
P

P
L

U
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
E

S
A

 2
M

B

4
M

B

8
M

B

1
6

M
B

G
A

L
G

E
L

 2
M

B

4
M

B

8
M

B

1
6

M
B

A
R

T
 2

M
B

4
M

B

8
M

B

1
6

M
B

E
Q

U
A

K
E

 2
M

B

4
M

B

8
M

B

1
6

M
B

F
A

C
E

R
E

C
 2

M
B

4
M

B

8
M

B

1
6

M
B

A
M

M
P

 2
M

B

4
M

B

8
M

B

1
6

M
B

L
U

C
A

S
 2

M
B

4
M

B

8
M

B

1
6

M
B

F
M

A
3

D
 2

M
B

4
M

B

8
M

B

1
6

M
B

S
IX

T
R

A
C

K
 2

M
B

4
M

B

8
M

B

1
6

M
B

A
P

S
I

2
M

B

4
M

B

8
M

B

1
6

M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) SPECFP 2000

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
2

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
3

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
4

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
5

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
6

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
7

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
8

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
9

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
1

0
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1
1

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
1

2
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

3
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

4
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

5
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

6
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

7
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) TPC-H

Figure 42: Normalized cache size required after CCD elimination at the granularity of 16byte
segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H)

Recalling the limit study results of Figure 2, also shown here as Figure 45, we can see that all

TPC-H benchmarks have no potential to improve their performance with any LLC cache optimiza-

tion. Furthermore, from the same figure, we observe that SPEC2000 benchmarks can be classified

to 3 categories, low, medium and high, based on their LLC improvement potential. Figure 46 adds

more information by providing the LLC Misses Per 1K instructions for several cache size for all

SPEC2000 benchmarks.

113

2

13

20

13

2

14

20

13

2

15

20

13

2

16

20

13

2

17

20

13

2

18

20

13

2

19

20

13

2

20

20

13

2

21

20

13

2

22

20

13

2

23

20

13

2

24

20

13

2

25

20

13

0

0.2

0.4

0.6

0.8

1

1.2

G
Z

IP
 2

M
B

4
M

B

8
M

B

1
6

M
B

V
P

R
 2

M
B

4
M

B

8
M

B

1
6

M
B

G
C

C
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
C

F
 2

M
B

4
M

B

8
M

B

1
6

M
B

C
R

A
F

T
Y

 2
M

B

4
M

B

8
M

B

1
6

M
B

P
A

R
S

E
R

4
M

B

8
M

B

1
6

M
B

E
O

N
 2

M
B

4
M

B

8
M

B

1
6

M
B

P
E

R
L

B
M

K

4
M

B

8
M

B

1
6

M
B

G
A

P
 2

M
B

4
M

B

8
M

B

1
6

M
B

V
O

R
T

E
X

4
M

B

8
M

B

1
6

M
B

B
Z

IP
2

 2
M

B

4
M

B

8
M

B

1
6

M
B

T
W

O
L

F
 2

M
B

4
M

B

8
M

B

1
6

M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) SPECINT 2000

0

0.2

0.4

0.6

0.8

1

1.2

W
U

P
W

IS
E

 2
M

B

4
M

B

8
M

B

1
6

M
B

S
W

IM
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
G

R
ID

 2
M

B

4
M

B

8
M

B

1
6

M
B

A
P

P
L

U
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
E

S
A

 2
M

B

4
M

B

8
M

B

1
6

M
B

G
A

L
G

E
L

 2
M

B

4
M

B

8
M

B

1
6

M
B

A
R

T
 2

M
B

4
M

B

8
M

B

1
6

M
B

E
Q

U
A

K
E

 2
M

B

4
M

B

8
M

B

1
6

M
B

F
A

C
E

R
E

C
 2

M
B

4
M

B

8
M

B

1
6

M
B

A
M

M
P

 2
M

B

4
M

B

8
M

B

1
6

M
B

L
U

C
A

S
 2

M
B

4
M

B

8
M

B

1
6

M
B

F
M

A
3

D
 2

M
B

4
M

B

8
M

B

1
6

M
B

S
IX

T
R

A
C

K
 2

M
B

4
M

B

8
M

B

1
6

M
B

A
P

S
I

2
M

B

4
M

B

8
M

B

1
6

M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) SPECFP 2000

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
2

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
3

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
4

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
5

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
6

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
7

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
8

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
9

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
1

0
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1
1

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
1

2
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

3
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

4
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

5
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

6
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

7
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) TPC-H

Figure 43: Normalized cache size required after CCD elimination at the granularity of 8byte
segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H)

Based on the above observations we decided to use a smaller subset of the benchmarks for the

rest of our experiments. Table 8 shows our SPEC2000 benchmark classification based on these

figures. The benchmarks that do not appear in the table have almost no potential, and we will not

be using them for the rest of this Chapter. Benchmark MGRID, although it has high performance

potential due to its low IPC, it has much lower Misses Per 1K than the other benchmarks in that

category so we have decided to included it in the Medium category. Finally, benchmark SWIM

will not be used any further since we have decided to use only 4 benchmarks, from each category.

114

2

13

20

13

2

14

20

13

2

15

20

13

2

16

20

13

2

17

20

13

2

18

20

13

2

19

20

13

2

20

20

13

2

21

20

13

2

22

20

13

2

23

20

13

2

24

20

13

2

25

20

13

0

0.2

0.4

0.6

0.8

1

1.2

G
Z

IP
 2

M
B

4
M

B

8
M

B

1
6

M
B

V
P

R
 2

M
B

4
M

B

8
M

B

1
6

M
B

G
C

C
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
C

F
 2

M
B

4
M

B

8
M

B

1
6

M
B

C
R

A
F

T
Y

 2
M

B

4
M

B

8
M

B

1
6

M
B

P
A

R
S

E
R

4
M

B

8
M

B

1
6

M
B

E
O

N
 2

M
B

4
M

B

8
M

B

1
6

M
B

P
E

R
L

B
M

K

4
M

B

8
M

B

1
6

M
B

G
A

P
 2

M
B

4
M

B

8
M

B

1
6

M
B

V
O

R
T

E
X

4
M

B

8
M

B

1
6

M
B

B
Z

IP
2

 2
M

B

4
M

B

8
M

B

1
6

M
B

T
W

O
L

F
 2

M
B

4
M

B

8
M

B

1
6

M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) SPECINT 2000

0

0.2

0.4

0.6

0.8

1

1.2

W
U

P
W

IS
E

 2
M

B

4
M

B

8
M

B

1
6

M
B

S
W

IM
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
G

R
ID

 2
M

B

4
M

B

8
M

B

1
6

M
B

A
P

P
L

U
 2

M
B

4
M

B

8
M

B

1
6

M
B

M
E

S
A

 2
M

B

4
M

B

8
M

B

1
6

M
B

G
A

L
G

E
L

 2
M

B

4
M

B

8
M

B

1
6

M
B

A
R

T
 2

M
B

4
M

B

8
M

B

1
6

M
B

E
Q

U
A

K
E

 2
M

B

4
M

B

8
M

B

1
6

M
B

F
A

C
E

R
E

C
 2

M
B

4
M

B

8
M

B

1
6

M
B

A
M

M
P

 2
M

B

4
M

B

8
M

B

1
6

M
B

L
U

C
A

S
 2

M
B

4
M

B

8
M

B

1
6

M
B

F
M

A
3

D
 2

M
B

4
M

B

8
M

B

1
6

M
B

S
IX

T
R

A
C

K
 2

M
B

4
M

B

8
M

B

1
6

M
B

A
P

S
I

2
M

B

4
M

B

8
M

B

1
6

M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) SPECFP 2000

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
2

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
3

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
4

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
5

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
6

F
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
7

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
8

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
9

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
1

0
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1
1

A
 2

M
B

4
M

B
8

M
B

1
6

M
B

Q
1

2
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

3
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

4
A

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

5
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

6
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

Q
1

7
F

 2
M

B
4

M
B

8
M

B
1

6
M

B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) TPC-H

Figure 44: Normalized cache size required after CCD elimination at the granularity of 4byte
segments, a) SPECINT 2000, b) SPECFP 2000, c) TPC-H)

Table 8: Benchmark Classification based on their LLC cache pressure and performance potential

High Medium Low
MCF VPR GZIP

APPLU MGRID GCC
EQUAKE AMMP WUPWISE
LUCAS GAP FACEREC
SWIM

Figures 47 and 48 shows the results of CCD in a shared LLC cache for 16byte block segments

for various cache sizes from 1MB up to 16MB for all the combinations of the 12 selected bench-

marks. The first graph, Figure 47 shows all the combinations of High - High (6 combinations),

115

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

g
z
ip

0
0

v
p
r0

0

g
c
c
0
0

m
c
f0

0

c
ra

ft
y
0
0

p
a
rs

e
r0

0

e
o
n
0
0

p
e
rl
b
m

k
0
0

g
a
p
0
0

v
o
rt

e
x
0
0

b
z
ip

2
0
0

tw
o
lf
0
0

w
u
p
w

is
e
0
0

s
w

im
0
0

m
g
ri
d
0
0

a
p
p
lu

0
0

m
e
s
a
0
0

g
a
lg

e
l0

0

a
rt

0
0

e
q
u
a
k
e
0
0

fa
c
e
re

c
0
0

a
m

m
p
0
0

lu
c
a
s
0
0

fm
a
3
d
0
0

s
ix

tr
a
c
k
0
0

a
p
s
i0

0

Q
1
F

Q
2
F

Q
3
F

Q
4
F

Q
5
F

Q
6
F

Q
7
a

Q
8
a

Q
9
a

Q
1
0
F

Q
1
1
a

Q
1
2
a

Q
1
3
a

Q
1
4
a

Q
1
5
F

Q
1
6
F

Q
1
7
F

I
P

C
 S

p
e
e
d

u
p

Perfect IL1 Perfect DL1 Perfect L2

Figure 45: Performance improvement of an out-of-order processor with perfect cache (Same as
Figure 2)

0

10

20

30

40

50

60

70

80

gz
ip
00

vp
r0
0

gc
c0
0

m
cf
00

cr
af
ty
00

pa
rs
er
00

eo
n0
0

pe
rl
bm
k0
0

ga
p0
0

vo
rt
ex
00

bz
ip
20
0

tw
ol
f0
0

w
up
w
is
e0
0

sw
im
00

m
gr
id
00

ap
pl
u0
0

m
es
a0
0

ga
lg
el
00

ar
t0
0

eq
ua
ke
00

fa
ce
re
c0
0

am
m
p0
0

lu
ca
s0
0

fm
a3
d0
0

si
xt
ra
ck
00

ap
si
00

ge
om
ea
n

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1024MB

Figure 46: Misses Per 1K instructions for various LLC cache sizes)

Medium - Medium (6 combinations) and Low - Low (6 combinations) benchmarks. The results

show a severe reduction in dirty blocks, and especially the duplicated dirty blocks (DirtyNoComp).

Furthermore, the duplication to zero blocks appears to be only due to very few benchmarks, such

116

MCF.LUCAS 50 10 32768 2097152 2097152 2097152 829632 65155.6 39365.2 25048.8

MCF.EQUAKE 50 10 32768 2097152 2097152 2097152 1105599.2 93825.2 27392.4 5180.8

MCF.APPLU 50 10 32768 2097152 2097152 2097152 1105808.8 226164.8 42599.6 14408.4

APPLU.EQUAKE 50 10 32768 2097152 2097152 2097152 1174005.2 431668.4 9053.6 3417.2

APPLU.LUCAS 50 10 32768 2097152 2097152 2097152 782514.4 348929.2 6346.8 68164

EQUAKE.LUCAS 50 10 32768 2097152 2097152 2097152 750786 92932.4 10482.4 87474.8

VPR.MGRID 50 10 32768 2097152 2097152 2097152 1223110.4 628268.8 17637.6 96.8

VPR.AMMP 50 10 32768 2097152 2097152 2097152 1055758 628898.8 25885.6 1175.6

MGRID.AMMP 50 10 32768 2097152 2097152 2097152 1190104.8 377339.2 5706.4 973.6

VPR.GAP 50 10 32768 2097152 2097152 2097152 1014508 840952.4 59822.8 183.2

MGRID.GAP 50 10 32768 2097152 2097152 2097152 1217844 505299.6 19699.6 92

AMMP.GAP 50 10 32768 2097152 2097152 2097152 911495.2 314185.6 63176.4 2790

GCC.WUPWISE 50 10 32768 2097152 2097152 2097152 1586803.2 8720 17632.8 231746.4

FACEREC.GCC 50 10 32768 2074984 1953344 2097152 1501186 12904 18268 232039.2

FACEREC.GZIP 49 10 32768 2096544.82 2077696 2097152 1621613.95 150512 4215.79487 20707.6923

GZIP.WUPWISE 50 10 32768 2097152 2097152 2097152 1784079.6 145171.6 5557.6 21790.8

GZIP.GCC 50 10 32768 2097152 2097152 2097152 1039013.2 199233.2 24597.6 247426.8

FACEREC.WUPWISE 50 10 32768 2097152 2097152 2097152 2094857.2 2022.4 72.4 74.8

MCF.GAP 50 10 32768 2097152 2097152 2097152 1051368 59434.4 35974.8 14640.4

MGRID.LUCAS 50 10 32768 2097152 2097152 2097152 733328.4 179095.6 2277.2 69033.6

APPLU.GAP 50 10 32768 2097152 2097152 2097152 1254713.2 655986.4 23659.2 53.6

MCF.MGRID 49 10 32768 2097152 2097152 2097152 1137241.03 139538.872 3.22E+04 12258.8718

0

0.2

0.4

0.6

0.8

1

1.2

M
C
F
.L
U
C
A
S
2
M
B

4
M
B

8
M
B

1
6
M
B

M
C
F
.E
Q
U
A
K
E
2
M
B

4
M
B

8
M
B

1
6
M
B

M
C
F
.A
P
P
L
U
2
M
B

4
M
B

8
M
B

1
6
M
B

A
P
P
L
U
.E
Q
U
A
K
E
2
M

4
M
B

8
M
B

1
6
M
B

A
P
P
L
U
.L
U
C
A
S
2
M
B

4
M
B

8
M
B

1
6
M
B

E
Q
U
A
K
E
.L
U
C
A
S
2
M

4
M
B

8
M
B

1
6
M
B

V
P
R
.M
G
R
ID
2
M
B

4
M
B

8
M
B

1
6
M
B

V
P
R
.A
M
M
P
2
M
B

4
M
B

8
M
B

1
6
M
B

M
G
R
ID
.A
M
M
P
2
M
B

4
M
B

8
M
B

1
6
M
B

V
P
R
.G
A
P
2
M
B

4
M
B

8
M
B

1
6
M
B

M
G
R
ID
.G
A
P
2
M
B

4
M
B

8
M
B

1
6
M
B

A
M
M
P
.G
A
P
2
M
B

4
M
B

8
M
B

1
6
M
B

G
C
C
.W
U
P
W
IS
E
2
M
B

4
M
B

8
M
B

1
6
M
B

F
A
C
E
R
E
C
.G
C
C
2
M
B

4
M
B

8
M
B

1
6
M
B

F
A
C
E
R
E
C
.G
Z
IP
2
M
B

4
M
B

8
M
B

1
6
M
B

G
Z
IP
.W
U
P
W
IS
E
2
M
B

4
M
B

8
M
B

1
6
M
B

G
Z
IP
.G
C
C
2
M
B

4
M
B

8
M
B

1
6
M
B

F
A
C
E
R
E
C
.W
U
P
W
IS

4
M
B

8
M
B

1
6
M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

| (a) High - High pressure | (b) Medium - Medium pressure | (c) Low - Low pressure

|

Figure 47: Normalized cache size required after CCD elimination at the granularity of 16byte
segments for a) High - High, b) Medium - Medium and c) Low - Low pressure benchmark com-
binations

as LUCAS, GAP, and GZIP. This suggests we should also consider the duplication for non-zero

segments.

Figure 48 shows the results for the rest of the combinations of the 12 benchmarks. We can

see that one benchmark with high or medium pressure is enough to make the compression in

an LLC cache necessary. The results suggest again that the zero runs are only dominant for the

three benchmarks mentioned earlier, and a large amount of compression comes also from non-

zero segments for all other combinations. It is important to note that a mechanism tuned to detect

duplication regardless the block content will also detect zero segments.

Differentiating the dirty from the clean blocks and the zero from the nonzero at various gran-

ularities gives a better insight on how to build an efficient mechanism to detect and exploit this

type of duplication. As far as we know, this type of characterization has been published for the

first time for the L1 data and Last Level cache.

7.3 Exploiting CCD on Last Level Caches

The results in Section 7.1 suggest that there is more potential for LLC caches compared to L1

Data caches. Also, the high pressure by the multiprogram workloads suggested in Section 7.2 in

117

VPR.APPLU 50 10 32768 2097152 2097152 2097152 1257061.6 673868.4 20783.2 71.6

MCF.AMMP 50 10 32768 2097152 2097152 2097152 1081869.2 99418.8 18974 7482.4

MGRID.EQUAKE 50 10 32768 2097152 2097152 2097152 1225446 261915.6 1.19E+04 4611.2

AMMP.LUCAS 50 10 32768 2097152 2097152 2097152 591434 71730.8 19.6 132070.4

EQUAKE.GAP 50 10 32768 2097152 2097152 2097152 1089704 240808.8 17727.6 6727.6

APPLU.AMMP 50 10 32768 2097152 2097152 2097152 1180750.4 619592.4 13207.6 918.4

LUCAS.GAP 49 10 32768 2097152 2097152 2097152 400066.462 30043.4872 10416.8205 136790.154

VPR.LUCAS 50 10 32768 2097152 2097152 2097152 611566.8 277949.6 14445.6 78243.2

MGRID.APPLU 50 10 32768 2097152 2097152 2097152 1291505.2 573294 7273.2 34.4

EQUAKE.AMMP 49 10 32768 2097152 2097152 2097152 1127440.82 210871.795 1437.12821 2475.07692

VPR.EQUAKE 138 10 32768 2095777 2009152 2097152 1108121.63 419034 15672.5 1600

VPR.MCF 103 10 33709 2099868.9 2097152 2157376 1074934.88 222722.065 52624.3441 17084.043

EQUAKE.GZIP 50 10 32768 2097152 2097152 2097152 1065330.8 220332 4299.6 12749.2

EQUAKE.GCC 50 10 32768 2097152 2097152 2097152 890988.4 195100 18762 232594

EQUAKE.FACEREC 50 10 32768 2097152 2097152 2097152 1323317.6 157161.2 5654.4 5638.8

APPLU.WUPWISE 50 10 32768 2097152 2097152 2097152 1399307.2 580236.8 10354.8 13.2

LUCAS.GZIP 50 10 32768 2097152 2097152 2097152 375807.6 88013.2 1523.2 123670

FACEREC.LUCAS 50 10 32768 2097152 2097152 2097152 722446.4 1108.8 46.4 108011.2

MCF.GZIP 50 10 32768 2097152 2097152 2097152 1017626 117526 27266 21249.6

APPLU.FACEREC 50 10 32768 2097152 2097152 2097152 1432959.2 553730 10081.6 70

MCF.FACEREC 100 10 32768 2097152 2097152 2097152 1137649.6 75631.6444 32345.0667 12440.7111

LUCAS.GCC 50 10 32768 2097152 2097152 2097152 291649.6 4994.8 16103.6 318533.6

0

0.2

0.4

0.6

0.8

1

1.2

M
C
F
.G
A
P
2
M
B

4
M
B

8
M
B

1
6
M
B

M
G
R
ID
.L
U
C
A
S
2
M
B

4
M
B

8
M
B

1
6
M
B

A
P
P
L
U
.G
A
P
2
M
B

4
M
B

8
M
B

1
6
M
B

M
C
F
.M
G
R
ID
2
M
B

4
M
B

8
M
B

1
6
M
B

V
P
R
.A
P
P
L
U
2
M
B

4
M
B

8
M
B

1
6
M
B

M
C
F
.A
M
M
P
2
M
B

4
M
B

8
M
B

1
6
M
B

M
G
R
ID
.E
Q
U
A
K
E
2
M
B

4
M
B

8
M
B

1
6
M
B

A
M
M
P
.L
U
C
A
S
2
M
B

4
M
B

8
M
B

1
6
M
B

E
Q
U
A
K
E
.G
A
P
2
M
B

4
M
B

8
M
B

1
6
M
B

A
P
P
L
U
.A
M
M
P
2
M
B

4
M
B

8
M
B

1
6
M
B

L
U
C
A
S
.G
A
P
2
M
B

4
M
B

8
M
B

1
6
M
B

V
P
R
.L
U
C
A
S
2
M
B

4
M
B

8
M
B

1
6
M
B

M
G
R
ID
.A
P
P
L
U
2
M
B

4
M
B

8
M
B

1
6
M
B

E
Q
U
A
K
E
.A
M
M
P
2
M
B

4
M
B

8
M
B

1
6
M
B

V
P
R
.E
Q
U
A
K
E
2
M
B

4
M
B

8
M
B

1
6
M
B

V
P
R
.M
C
F
2
M
B

4
M
B

8
M
B

1
6
M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(a) High - Medium pressure

APPLU.GCC 50 10 32768 2097152 2097152 2097152 1010100 483130.4 24656.4 230357.2

EQUAKE.WUPWISE 50 10 32768 2097152 2097152 2097152 1293405.2 172049.2 1958.8 1939.2

APPLU.GZIP 50 10 32768 2097152 2097152 2097152 1219954 642916.8 13308 11999.2

LUCAS.WUPWISE 50 10 32768 2097152 2097152 2097152 646960 208.8 11.2 117447.2

MCF.WUPWISE 50 10 32768 2097152 2097152 2097152 1123591.2 48550.8 32392.4 5109.6

MCF.GCC 50 10 32768 2097152 2097152 2097152 871994 43918 35403.6 205044.8

AMMP.WUPWISE 50 10 32768 2097152 2097152 2097152 1528807.2 114350 64 1725.2

VPR.WUPWISE 50 10 32768 2097152 2097152 2097152 1361328.8 601484.8 36722.4 72.8

FACEREC.GAP 50 10 32768 2097152 2097152 2097152 1699475.2 171340.8 61456.4 278

GAP.GCC 50 10 32768 2097152 2097152 2097152 806030.8 305476.4 125347.6 224968

MGRID.GCC 50 10 32768 2097152 2097152 2097152 1017714.8 336708.8 18195.2 229590.4

GAP.WUPWISE 49 10 32768 2097152 2097152 2097152 1813417.85 120534.564 43780.5128 132.102564

VPR.GCC 50 10 32768 2097152 2097152 2097152 869639.2 617317.6 50920 221908

MGRID.GZIP 50 10 32768 2097152 2097152 2097152 1158510.8 552962 3462.8 17026.4

VPR.GZIP 50 10 32768 2097152 2097152 2097152 949851.6 883122.4 47898.4 17161.6

VPR.FACEREC 49 10 32768 2097152 2097152 2097152 1415611.9 554642.051 38152.6154 170.25641

MGRID.FACEREC 49 10 32768 2097152 2097152 2097152 1522281.85 313545.026 8059.48718 69.3333333

AMMP.GCC 49 10 32768 2033554.05 1676736 2097152 767645.128 139778.462 22157.5385 235261.128

FACEREC.AMMP 50 10 32768 2018083.2 1848832 2097152 1471368.4 118893.2 180.8 2900.4

MGRID.WUPWISE 50 10 32768 2097152 2097152 2097152 1472640.4 343699.6 7822.8 12

AMMP.GZIP 50 10 32768 2096934.4 2089792 2097152 875103.2 254544 7022 19746

GAP.GZIP 50 10 32768 2097152 2097152 2097152 844426.8 517885.2 128569.2 22308.8

0

0.2

0.4

0.6

0.8

1

1.2

E
Q
U
A
K
E
.G
Z
IP
2
M
B

4
M
B

8
M
B

1
6
M
B

E
Q
U
A
K
E
.G
C
C
2
M
B

4
M
B

8
M
B

1
6
M
B

E
Q
U
A
K
E
.F
A
C
E
R
E
C
2
M
B

4
M
B

8
M
B

1
6
M
B

A
P
P
L
U
.W
U
P
W
IS
E
2
M
B

4
M
B

8
M
B

1
6
M
B

L
U
C
A
S
.G
Z
IP
2
M
B

4
M
B

8
M
B

1
6
M
B

F
A
C
E
R
E
C
.L
U
C
A
S
2
M
B

4
M
B

8
M
B

1
6
M
B

M
C
F
.G
Z
IP
2
M
B

4
M
B

8
M
B

1
6
M
B

A
P
P
L
U
.F
A
C
E
R
E
C
2
M
B

4
M
B

8
M
B

1
6
M
B

M
C
F
.F
A
C
E
R
E
C
2
M
B

4
M
B

8
M
B

1
6
M
B

L
U
C
A
S
.G
C
C
2
M
B

4
M
B

8
M
B

1
6
M
B

A
P
P
L
U
.G
C
C
2
M
B

4
M
B

8
M
B

1
6
M
B

E
Q
U
A
K
E
.W
U
P
W
IS
E
2
M

4
M
B

8
M
B

1
6
M
B

A
P
P
L
U
.G
Z
IP
2
M
B

4
M
B

8
M
B

1
6
M
B

L
U
C
A
S
.W
U
P
W
IS
E
2
M
B

4
M
B

8
M
B

1
6
M
B

M
C
F
.W
U
P
W
IS
E
2
M
B

4
M
B

8
M
B

1
6
M
B

M
C
F
.G
C
C
2
M
B

4
M
B

8
M
B

1
6
M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(b) High - Low pressure

EQUAKE.EQUAKE 49 10 32768 2097152 2097152 2097152 553052.308 99149.1282 101251.692 2150.97436

APPLU.APPLU 50 10 32768 2097152 2097152 2097152 617963.2 365470.8 380298 42.4

LUCAS.LUCAS 50 10 32768 2097152 2097152 2097152 212615.2 20 24.8 186596.8

MCF.MCF 50 10 32768 2097152 2097152 2097152 515320 33967.2 102307.6 22434

VPR.VPR 150 10 32768 2091808.91 1758720 2097152 549803.314 405771.543 435468.686 105.142857

AMMP.AMMP 50 10 32768 1796243.2 1174272 2097152 398618.8 101410.4 102442.4 10928

GAP.GAP 50 10 32768 2097152 2097152 2097152 442566.4 253615.6 437637.2 475.2

MGRID.MGRID 50 10 32768 2097152 2097152 2097152 672290 209467.2 209492.8 19.2

GCC.GCC 50 10 32768 2074166.4 1920128 2097152 410283.2 11308.4 48206.8 455257.6

WUPWISE.WUPWISE 50 10 32768 2097152 2097152 2097152 1048504 192 192 0

FACEREC.FACEREC 50 10 29594 1859632 1805696 1894016 927636.4 1867.2 1995.2 134.4

GZIP.GZIP 49 10 32768 2097152 2097152 2097152 503338.256 192480.41 201501.538 45635.6923

64

10

0

0

0.2

0.4

0.6

0.8

1

1.2

A
M
M
P
.W
U
P
W
IS
E
2
M
B

4
M
B

8
M
B

1
6
M
B

V
P
R
.W
U
P
W
IS
E
2
M
B

4
M
B

8
M
B

1
6
M
B

F
A
C
E
R
E
C
.G
A
P
2
M
B

4
M
B

8
M
B

1
6
M
B

G
A
P
.G
C
C
2
M
B

4
M
B

8
M
B

1
6
M
B

M
G
R
ID
.G
C
C
2
M
B

4
M
B

8
M
B

1
6
M
B

G
A
P
.W
U
P
W
IS
E
2
M
B

4
M
B

8
M
B

1
6
M
B

V
P
R
.G
C
C
2
M
B

4
M
B

8
M
B

1
6
M
B

M
G
R
ID
.G
Z
IP
2
M
B

4
M
B

8
M
B

1
6
M
B

V
P
R
.G
Z
IP
2
M
B

4
M
B

8
M
B

1
6
M
B

V
P
R
.F
A
C
E
R
E
C
2
M
B

4
M
B

8
M
B

1
6
M
B

M
G
R
ID
.F
A
C
E
R
E
C
2
M
B

4
M
B

8
M
B

1
6
M
B

A
M
M
P
.G
C
C
2
M
B

4
M
B

8
M
B

1
6
M
B

F
A
C
E
R
E
C
.A
M
M
P
2
M
B

4
M
B

8
M
B

1
6
M
B

M
G
R
ID
.W
U
P
W
IS
E
2
M

4
M
B

8
M
B

1
6
M
B

A
M
M
P
.G
Z
IP
2
M
B

4
M
B

8
M
B

1
6
M
B

G
A
P
.G
Z
IP
2
M
B

4
M
B

8
M
B

1
6
M
B

CleanComp DirtyComp DirtyNoComp DirtyZeroNoComp CleanZeroNoComp

(c) Medium - Low pressure

Figure 48: Normalized cache size required after CCD elimination at the granularity of 16byte
segments for a) High - Medium, b) High - Low and c) Medium - Low pressure benchmark com-
binations

combination with the technology trends that lean toward multicores, suggest that it will be more

reasonable to investigate the potential of CCD based cache for these workloads.

From the previous results we observed that we have benchmarks that definitely need the extra

cache space, but we also have benchmarks that can afford much smaller caches. What we propose

is to find a way to decouple the tag array from the data array but at the same time to be able to

keep fewer data when possible with the same number of tags. This can happen if the data array

is compressed and multiple tags from the tag array are pointing to the same data in the data array.

118

Such a scenario will give the ability to switch off parts of the data array when it’s not used in order

to save energy or to have extra tags that can be enabled in the case of program footprints larger

than the baseline cache but highly compressible.

Furthermore, previous research indicates that the dirty blocks are hard to be handled in com-

press caches due to the need of unpredictable space requirements after a write. Also, our results

suggest that the contribution of dirty blocks in compression is significant, especially in Last Level

Caches. What we propose is to differentiate the dirty and the clean blocks in the compressed data

array to make the compression algorithm and cache designs simpler.

The next subsection will propose a new, CCD based, cache design called, Content Duplication

Aware (CDA) Cache, and explain in more detail the above assumptions. The aim of this new

design is to accommodate the large amount of duplicated relations and relieve high pressure from

Last Level Caches.

7.3.1 Content Duplication Aware (CDA) Caches

Figure 49 shows the proposed cache design for the CDA cache. In the figure the Tag and Data

array are now decoupled. The indexing and tag matching in the Tag array is done using the block

address while the indexing and matching in the Data array is done using the content of the block

for Content Based blocks and the block address for the Address Based blocks. These definitions

will be explained in more detail in the rest of this section.

The figure shows also all the necessary extensions in each array, Tag and Data:

• Tag array: we propose the use of pointers in each Tag to point to their appropriate data.

Each tag can have more than one pointer and this depends on the select segment size for

compression. For example, if the logical block size of the cache is 64bytes but the physical

segment size of the data array is 16bytes then each tag will need 4 pointers to the data array

119

to build one 64byte logical block. Next, we propose to have extra ways in the Tag array to

be able to accommodate more data when an application has a compressible data array and

also requires more tags. A more thorough analysis will be presented later in the limit study

explaining the benefits of the extra tags.

• Data array: we assume the availability of a link list, or a similar structure, for each seg-

ment that can keep all the backward pointers to the tags pointing to it. Initially, we assume

an infinite size of this list for the limit studies but we explain later several approaches to

approximate this solution and provide a feasible implementation. We will refer to this list

as Tag List. Aside from the Tag list we also require a single bit to differentiate between

Address Based (AB) blocks and Content Based (CB) blocks. We define as AB blocks each

segment that is correlated to a dirty tag in the tag array. An AB block can only be correlated

to a single tag from the tag array. All other blocks, the CB blocks, are correlated with clean

tags from the tag array and can have multiple pointers pointing to them. Finally, we propose

the use of a gated data array to allow switching off part of it when the application foot-

print is compressible and does not require any larger cache. This will enable to switch off

part of the cache to save both static and dynamic energy without affecting the performance

significantly.

7.3.2 Accessing and Updating a CDA Cache

This subsection will explain in detail each step in accessing and updating the CDA cache.

There are three main events that need to be analyzed, the Cache hit, the Cache miss, and the

Cache write.

120

 
 
 
 
 
 
 


 







 























































Figure 49: The functional componets of the proposed Content Duplication Aware Cache

• Cache hit: On a cache hit there are three steps to access the tag and the data. First, the Tag

Array is indexed and tag matched with the address of the block. Assuming we have a hit,

then the pointers are extracted and we use each pointer to retrieve the appropriate segment

of the logical cache block. Once all segments are gathered, the block is build and send up

to the higher level in the memory hierarchy. There is no possibility for a pointer miss in the

data array because as we will later explain we assume that if a segment is replaced from the

data array then we will invalidate all its correlated tags in the tag array.

• Cache miss: On a cache miss the requested block is fetched from lower in the memory

hierarchy as usually. Once the new block arrives in the CDA cache, the first step is to index

and insert its tag in the tag array with the missed address. We always do this first, such as

on tag replacement, the replaced tag might invalidate some or all of its segments in the data

array and thus creating more room for the new segments of the missed tag to be inserted.

In the case of a Valid Tag Replacement, if the block is dirty then it will be pointing to

AB segments and thus their content will be written back to the lower level, and all the

segments will be invalidated. If the block is clean then, for each segment, we need to index

121

the data array using the pointer to find the appropriate segment and we remove the tag from

each segment’s Tag List. If no other tag is pointing to that segment then we invalidate the

segment, and it will be sent to the tail of the LRU list to be replaced on the next insertion.

In the case of an Invalid Tag Replacement then we don’t have to do anything since all its

appropriate segments were either invalidated or had their Tag Lists updated.

So far the functionality of the CDA cache, as compared to a normal, remains the same with

the exception of the need to use the pointers for invalidating the segments or updating their

Tag Lists. Once the new tag is inserted in the tag array then we also have to add the new

data in the data array. As a first step the 64byte block is split into the appropriate number of

segments, depending on their size.

If their is a match and a Segment Hit we add the tag to the segment’s Tag List and we

update the pointer of the tag in the tag array. On the other hand, in the case of a Segment

miss, we need to insert the segment in the data array and update the pointer in tag array.

The insertion of a new segment in the data array will most probably cause the eviction of

another segment from the LRU list. If the replaced segment is valid then, using its Tag List,

we will track all the tags that point to this block and invalidated them. If any of these tags

is dirty then it needs to be written back also all the segments pointed by the invalidated tag,

both clean and dirty, need to be updated by removing the invalid tag from their Tag List. If

there is an invalid segment replacement there is no action need to be taken.

• Cache write: Finally we have the scenario of a cache write in the CDA cache over a clean

block already in the cache (assuming no write allocate policy). First, we need to index and

tag match the tag array with the address. Then we need to extract all the pointers to the

segments and copy all data into a new Address Based block in the data array. For each

122

Content Based segment we have to remove the tag from its Tag List and if no other tag is

pointing to that segment then we will also invalidate it and send it to the tail of the LRU list

to be replaced on the next insertion. In the case of a write on an already dirty block then we

only need to update the appropriate segments with the new content.

7.4 Initial Results of a CDA Cache

This section will show the performance potential of a CDA Cache. Our baseline is an 8MB

cache as described in Chapter 3. The extensions of the CDA cache will enable the baseline cache to

increase its number of ways per set up to 32 and to decrease the required space in the data down to

1MB (while keeping tag array, ways and sets, constant) for both single program and multiprogram

workloads. In this study, we assume an infinite size of tag list and the data array is fully associative

to avoid any conflicts due to the hash function of the content. These assumptions are made to define

the limits of a CDA cache and will be discussed later how they can be implemented.

7.4.1 Single Program Workloads

At first, we show the potential of single program workloads only for the subset selected in

Section 7.2. The benchmarks are sorted based on their cache pressure, as in Table 8, from high to

low pressure. Figure 50 shows the normalized performance of various cache sizes all normalized

to the 8MB cache. For the caches smaller than 8MB we reduce the number of sets and maintain

the 16-way set associativity while for caches larger than 8MB we increase the number of ways per

set to achieve higher capacity. This is done to be able to compare the baseline results later with

the CDA Cache design.

The results indicate that most of the benchmarks are affected by both increasing and decreasing

the cache size but there also few of them that are insensitive to these changes. This can happen

123

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

M
C
F

A
PP
LU

EQ
U
A
K
E

LU
C
A
S

V
PR

A
M
M
P

G
A
P

M
G
R
ID

G
C
C

G
Z
IP

FA
C
ER
EC

W
U
PW
IS
E

ge
om
ea
n

N
o

r
m

a
li
z
e
d

 I
P

C
 t

o
 8

M
B

 b
a
s
e
li
n

e

1MB 2MB 4MB 8MB 10MB 12MB 14MB 16MB

Figure 50: Normalized IPC speedup on the 8MB baseline for various cache sizes

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

M
C
F

A
PP

LU

EQ
U
A
K
E

LU
C
AS V

PR

A
M
M
P

G
A
P

M
G
R
ID

G
C
C

G
Z
IP

FA
C
ER

EC

W
U
PW

IS
E

ge
om

ea
n

N
o

r
m

a
li
z
e
d

 I
P

C
 t

o
 8

M
B

 b
a
s
e
li
n

e

+4ways +8ways +12ways +16ways +16ways Baseline1.43

~

Figure 51: Normalized IPC speedup on the 8MB baseline when increasing tag array

either because the benchmark has a very small footprint so it fits even in the smaller cache or

because the benchmark’s footprint is extremely large or has a streaming behavior and is causing

the same number of misses for all cache sizes. This observation can be validated using Figure

46 where the cache misses are shown for caches from 1MB up to 1024MB. We can clearly see,

comparing the two figures, that GAP for example is insensitive for all cache sizes, where LUCAS

needs at least 32MB cache for the miss reduction to be noticeable and up to 128MB to fully fit its

footprint.

124

Assuming a CDA cache, with 16byte segment size, as described in the previous section, Figure

51 presents the performance of this cache when increasing the number of available tags but keeping

the data array at 8MB and compressed. The results indicate that MCF, EQUAKE, and LUCAS

can benefit from the extra tags by improving their performance up to 13%. We have to note here

that this performance improvement of this scheme is limited by the tag array associativity. To be

exact, a CDA cache with +16 ways will have, in the best case, the same performance as a 32 way

16MB regular cache. The only difference is that the CDA cache will use only 8MB for the data

array.

Comparing the results with Figure 50 we can see that the CDA cache can achieve almost

the limit for MCF, 13% as opposed to 15% for a regular 32-way 16MB cache, and few other

benchmarks. On the other hand, we observe that CDA cache cannot improve the performance of

APPLU, although bigger regular cache can improve its performance by 43% with 32-ways and

16MB size. This behavior is explained with the results presented in Figure 42 where it is shown

that APPLU has very little compression potential, and thus the information provided by the extra

tags cannot be accommodated to the 8MB data array as opposed to MCF where from the same

figure it shows 40% compression and that means the 8MB data array can accommodate almost

twice the number of tags of the regular cache when compressed.

While increasing the Tag array is a way to achieve performance improvement, power gating

and switching off the data array is a way to improve the energy consumption. As we argue at the

beginning, some benchmarks need less cache because their data can be compressed to occupy less

space. Figure 52 presents CDA cache, when using compression and we can switch off parts of the

data array to save energy. The results show that for most of the benchmarks we can switch half

the cache without affecting their performance or by affecting it less that it would with a smaller

regular cache. For example, if we again look at MCF we can see that the regular 4MB cache

125

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

M
C
F

A
PP

LU

EQ
U
A
K
E

LU
C
AS V

PR

A
M
M
P

G
A
P

M
G
R
ID

G
C
C

G
Z
IP

FA
C
ER

EC

W
U
PW

IS
E

ge
om

ea
n

N
o

r
m

a
li

z
e
d

 I
P

C
 t

o
 8

M
B

 b
a
s
e
li

n
e

8MB Data 4MB Data 2MB Data 1MB Data 4MB Baseline

Figure 52: Normalized IPC speedup on the 8MB baseline when decreasing data array

from Figure 50 reduced the performance by more than 20% as compared to the 8MB baseline,

while the CDA cache, using a compressed 4MB data array, affects the performance by only 10%

as compared to the same baseline.

Overall the results indicate that the CDA cache is worth investigating more. Especially if the

CDA cache could dynamically decide to either switch off part of data array to save energy or to

switch on the extra ways to improve performance.

7.4.2 Multi Program Workloads

Figures 53 and 54 show the performance of all the multiprogram combinations of the 12

selected benchmarks. We observed that the multiprogram workloads are more sensitive to cache

reduction, as expected, compared to the single program workloads and thus giving us more room

for improvement

Figures 55 and 56 show the performance achieved by using the CDA cache and increasing

the number of ways for better performance. The results show that by increasing only the ways

and keeping the same data size, only a small number of benchmarks benefits. The potential is

126

MCF.APPLU 0.441 0.445 0.457 0.481 0.493 0.506 0.515 0.517 MCF.APPLU

APPLU.EQUAKE 0.605 0.605 0.608 0.621 0.623 0.626 0.639 0.643 APPLU.EQUAKE

APPLU.LUCAS 0.664 0.664 0.666 0.668 0.669 0.67 0.671 0.682 APPLU.LUCAS

EQUAKE.LUCAS 0.563 0.563 0.566 0.572 0.574 0.577 0.583 0.587 EQUAKE.LUCAS

VPR.MGRID 0.826 0.872 0.918 0.973 0.991 1 1.007 1.013 VPR.MGRID

VPR.AMMP 0.783 0.825 0.869 1.053 1.088 1.122 1.172 1.226 VPR.AMMP

MGRID.AMMP 0.9 0.938 0.956 1.111 1.13 1.14 1.145 1.149 MGRID.AMMP

VPR.GAP 0.927 0.964 1.015 1.055 1.064 1.07 1.078 1.086 VPR.GAP

MGRID.GAP 1.066 1.07 1.071 1.075 1.076 1.077 1.084 1.086 MGRID.GAP

AMMP.GAP 0.981 0.993 1.009 1.176 1.243 1.29 1.3 1.3 AMMP.GAP

GCC.WUPWISE 0.89 0.911 0.929 0.964 0.967 0.976 0.98 0.98 GCC.WUPWISE

FACEREC.GCC 0.697 0.762 0.801 0.895 0.903 1.023 1.031 1.035 FACEREC.GCC

FACEREC.GZIP 1.14 1.212 1.304 1.383 1.386 1.386 1.387 1.388 FACEREC.GZIP

GZIP.WUPWISE 1.284 1.289 1.303 1.313 1.314 1.317 1.318 1.318 GZIP.WUPWISE

GZIP.GCC 0.793 0.854 0.867 0.892 0.898 0.901 0.904 0.904 GZIP.GCC

FACEREC.WUPWISE 1.317 1.347 1.5 1.635 1.638 1.639 1.639 1.639 FACEREC.WUPWISE

MCF.GAP 0.692 0.701 0.715 0.746 0.758 0.762 0.764 0.767 MCF.GAP

MGRID.LUCAS 0.771 0.797 0.808 0.813 0.816 0.819 0.825 0.829 MGRID.LUCAS

APPLU.GAP 0.873 0.876 0.877 0.89 0.904 0.91 0.916 0.97 APPLU.GAP

MCF.MGRID 0.54 0.577 0.593 0.622 0.648 0.662 0.669 0.672 MCF.MGRID

0.6

0.7

0.8

0.9

1

1.1

1.2

MC
F.L
UC
AS

MC
F.E
QU
AK
E

MC
F.A
PP
LU

AP
PL
U.
EQ
UA
KE

AP
PL
U.
LU
CA
S

EQ
UA
KE
.LU
CA
S

VP
R.
MG
RI
D

VP
R.
AM
MP

MG
RI
D.
AM
MP

VP
R.
GA
P

MG
RI
D.
GA
P

AM
MP
.G
AP

GC
C.
W
UP
W
IS
E

FA
CE
RE
C.
GC
C

FA
CE
RE
C.
GZ
IP

GZ
IP.
W
UP
W
IS
E

GZ
IP.
GC
C

FA
CE
RE
C.
W
UP
W
IS
E

N
o

r
m

a
li
z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d 1MB 2MB 4MB 8MB 10MB 12MB 14MB 16MB

 | (a) High - High pressure | (b) Medium - Medium pressure | (c) Low - Low pressure

0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

M
C
F.
G
A
P

M
G
R
ID
.L
U
C
A
S

A
PP
LU
.G
A
P

M
C
F.
M
G
R
ID

V
PR
.A
PP
LU

M
C
F.
A
M
M
P

M
G
R
ID
.E
Q
U
A
K
E

A
M
M
P.
LU
C
A
S

EQ
U
A
K
E.
G
A
P

A
PP
LU
.A
M
M
P

LU
C
A
S
.G
A
P

V
PR
.L
U
C
A
S

M
G
R
ID
.A
PP
LU

EQ
U
A
K
E.
A
M
M
P

V
PR
.E
Q
U
A
K
E

V
PR
.M
C
F

N
o

r
m

a
li
z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d

1MB 2MB 4MB 8MB 10MB 12MB 14MB 16MB

(

Figure 53: Normalized IPC speedup on the 8MB baseline for various cache sizes for a) High -
High, b) Medium - Medium and c) Low - Low pressure benchmark combinations

VPR.APPLU 0.674 0.7 0.734 0.789 0.812 0.831 0.844 0.852 VPR.APPLU

MCF.AMMP 0.43 0.453 0.483 0.711 0.748 0.772 0.787 0.799 MCF.AMMP

MGRID.EQUAKE 0.714 0.751 0.755 0.765 0.768 0.787 0.793 0.797 MGRID.EQUAKE

AMMP.LUCAS 0.697 0.71 0.729 0.853 0.876 0.893 0.906 0.912 AMMP.LUCAS

EQUAKE.GAP 0.844 0.849 0.858 0.866 0.87 0.871 0.872 0.873 EQUAKE.GAP

APPLU.AMMP 0.723 0.741 0.766 0.886 0.916 0.935 0.952 0.967 APPLU.AMMP

LUCAS.GAP 0.913 0.915 0.917 0.918 0.918 0.919 0.92 0.92 LUCAS.GAP

VPR.LUCAS 0.652 0.674 0.701 0.753 0.775 0.791 0.8 0.806 VPR.LUCAS

MGRID.APPLU 0.79 0.823 0.833 0.838 0.842 0.861 0.866 0.873 MGRID.APPLU

EQUAKE.AMMP 0.636 0.658 0.674 0.812 0.839 0.857 0.864 0.867 EQUAKE.AMMP

VPR.EQUAKE 0.588 0.609 0.639 0.707 0.732 0.747 0.758 0.765 VPR.EQUAKE

VPR.MCF 0.413 0.434 0.474 0.558 0.593 0.613 0.627 0.638 VPR.MCF

EQUAKE.GZIP 0.861 0.875 0.897 0.908 0.913 0.914 0.915 0.916 EQUAKE.GZIP

EQUAKE.GCC 0.4 0.558 0.563 0.594 0.601 0.604 0.606 0.607 EQUAKE.GCC

EQUAKE.FACEREC 0.791 0.797 0.852 0.937 0.947 0.951 1.008 1.103 EQUAKE.FACEREC

APPLU.WUPWISE 1.028 1.037 1.041 1.042 1.047 1.057 1.064 1.083 APPLU.WUPWISE

LUCAS.GZIP 0.927 0.941 0.953 0.96 0.962 0.963 0.963 0.964 LUCAS.GZIP

FACEREC.LUCAS 0.845 0.848 0.914 0.971 0.982 0.988 0.989 1.086 FACEREC.LUCAS

MCF.GZIP 0.701 0.722 0.748 0.786 0.796 0.799 0.801 0.817 MCF.GZIP

APPLU.FACEREC 0.898 0.902 0.946 1.069 1.092 1.128 1.15 1.171 APPLU.FACEREC

MCF.FACEREC 0.557 0.566 0.64 0.703 0.736 0.749 0.789 0.955 MCF.FACEREC

LUCAS.GCC 0.456 0.613 0.616 0.637 0.647 0.65 0.652 0.653 LUCAS.GCC

APPLU.GCC 0.539 0.565 0.6 0.622 0.636 0.641 0.643 0.661 APPLU.GCC

EQUAKE.WUPWISE 0.973 0.981 0.989 1 1.005 1.009 1.012 1.024 EQUAKE.WUPWISE

APPLU.GZIP 0.892 0.909 0.918 0.942 0.95 0.955 0.962 1.037 APPLU.GZIP

LUCAS.WUPWISE 1.026 1.043 1.043 1.045 1.048 1.052 1.055 1.057 LUCAS.WUPWISE

MCF.WUPWISE 0.77 0.798 0.815 0.845 0.856 0.862 0.868 0.877 MCF.WUPWISE

MCF.GCC 0.369 0.492 0.519 0.568 0.588 0.6 0.608 0.615 MCF.GCC

AMMP.WUPWISE 1.208 1.228 1.24 1.383 1.4 1.426 1.48 1.506 AMMP.WUPWISE

VPR.WUPWISE 1.098 1.131 1.166 1.224 1.242 1.253 1.259 1.264 VPR.WUPWISE

FACEREC.GAP 1.109 1.162 1.242 1.345 1.347 1.348 1.349 1.35 FACEREC.GAP

GAP.GCC 0.782 0.84 0.856 0.875 0.875 0.878 0.878 0.879 GAP.GCC

MGRID.GCC 0.634 0.745 0.75 0.781 0.788 0.792 0.794 0.795 MGRID.GCC

GAP.WUPWISE 1.253 1.255 1.259 1.277 1.277 1.277 1.278 1.278 GAP.WUPWISE

VPR.GCC 0.49 0.614 0.665 0.74 0.756 0.767 0.775 0.782 VPR.GCC

MGRID.GZIP 1.084 1.102 1.112 1.128 1.129 1.13 1.13 1.131 MGRID.GZIP

VPR.GZIP 0.955 1 1.057 1.097 1.108 1.116 1.125 1.132 VPR.GZIP

VPR.FACEREC 0.961 1.006 1.108 1.236 1.289 1.329 1.346 1.355 VPR.FACEREC

MGRID.FACEREC 1.088 1.108 1.155 1.287 1.317 1.364 1.366 1.369 MGRID.FACEREC

AMMP.GCC 0.536 0.571 0.602 0.889 0.941 0.965 0.971 0.975 AMMP.GCC

FACEREC.AMMP 1.083 1.154 1.276 1.514 1.56 1.591 1.601 1.603 FACEREC.AMMP

MGRID.WUPWISE 1.225 1.233 1.237 1.252 1.264 1.276 1.281 1.283 MGRID.WUPWISE

AMMP.GZIP 1.012 1.027 1.051 1.255 1.298 1.318 1.323 1.328 AMMP.GZIP

GAP.GZIP 1.141 1.144 1.144 1.145 1.145 1.145 1.145 1.145 GAP.GZIP

EQUAKE.EQUAKE 0.498 0.498 0.506 0.517 0.52 0.525 0.529 0.542 EQUAKE.EQUAKE

APPLU.APPLU 0.602 0.603 0.604 0.611 0.612 0.613 0.62 0.655 APPLU.APPLU

LUCAS.LUCAS 0.66 0.66 0.66 0.662 0.666 0.664 0.667 0.664 LUCAS.LUCAS

MCF.MCF 0.218 0.237 0.263 0.306 0.331 0.363 0.395 0.416 MCF.MCF

VPR.VPR 0.691 0.74 0.826 0.922 0.958 0.98 0.997 1.011 VPR.VPR

AMMP.AMMP 0.879 0.917 0.965 1.009 1.186 1.284 1.355 1.411 AMMP.AMMP

GAP.GAP 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 GAP.GAP

MGRID.MGRID 0.936 1.008 1.012 1.022 1.037 1.039 1.042 1.043 MGRID.MGRID

GCC.GCC 0.463 0.694 0.721 0.747 0.748 0.762 0.764 0.764 GCC.GCC

WUPWISE.WUPWISE 1.458 1.458 1.459 1.498 1.512 1.513 1.513 1.513 WUPWISE.WUPWISE

FACEREC.FACEREC 1.19 1.247 1.361 1.704 1.783 1.783 1.783 1.783 FACEREC.FACEREC

GZIP.GZIP 1.173 1.174 1.174 1.174 1.174 1.174 1.174 1.174 GZIP.GZIP

geomean

0.6

0.7

0.8

0.9

1

1.1

1.2

M
C
F.
G
A
P

M
G
R
ID
.L
U
C
A
S

A
PP
LU
.G
A
P

M
C
F.
M
G
R
ID

V
PR
.A
PP
LU

M
C
F.
A
M
M
P

M
G
R
ID
.E
Q
U
A
K
E

A
M
M
P.
LU
C
A
S

EQ
U
A
K
E.
G
A
P

A
PP
LU
.A
M
M
P

LU
C
A
S.
G
A
P

V
PR
.L
U
C
A
S

M
G
R
ID
.A
PP
LU

EQ
U
A
K
E.
A
M
M
P

V
PR
.E
Q
U
A
K
E

V
PR
.M
C
F

N
o

r
m

a
li

z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d 1MB 2MB 4MB 8MB 10MB 12MB 14MB 16MB

(
(a) High - Medium pressure

0.6

0.8

1

1.2

1.4

EQ
U
A
K
E.
G
Z
IP

EQ
U
A
K
E.
G
C
C

EQ
U
A
K
E.
FA
C
ER
EC

A
PP
LU
.W
U
PW
IS
E

LU
C
A
S.
G
Z
IP

FA
C
ER
EC
.L
U
C
A
S

M
C
F.
G
Z
IP

A
PP
LU
.F
A
C
ER
EC

M
C
F.
FA
C
ER
EC

LU
C
A
S.
G
C
C

A
PP
LU
.G
C
C

EQ
U
A
K
E.
W
U
PW
IS
E

A
PP
LU
.G
Z
IP

LU
C
A
S.
W
U
PW
IS
E

M
C
F.
W
U
PW
IS
E

M
C
F.
G
C
C

N
o

r
m

a
li

z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d 1MB 2MB 4MB 8MB 10MB 12MB 14MB 16MB

(b) High - Low pressure

0.6

0.8

1

1.2

1.4

A
M
M
P.
W
U
PW
IS
E

V
PR
.W
U
PW
IS
E

FA
C
ER
EC
.G
A
P

G
A
P.
G
C
C

M
G
R
ID
.G
C
C

G
A
P.
W
U
PW
IS
E

V
PR
.G
C
C

M
G
R
ID
.G
Z
IP

V
PR
.G
Z
IP

V
PR
.F
A
C
ER
EC

M
G
R
ID
.F
A
C
ER
EC

A
M
M
P.
G
C
C

FA
C
ER
EC
.A
M
M
P

M
G
R
ID
.W
U
PW
IS
E

A
M
M
P.
G
Z
IP

G
A
P.
G
Z
IP

N
o

r
m

a
li

z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d 1MB 2MB 4MB 8MB 10MB 12MB 14MB 16MB

(c) Medium - Low pressure

0.6

0.8

1

1.2

1.4

EQ
U
A
K
E.
EQ
U
A
K
E

A
PP
LU
.A
PP
LU

LU
C
A
S.
LU
C
A
S

M
C
F.
M
C
F

V
PR
.V
PR

A
M
M
P.
A
M
M
P

G
A
P.
G
A
P

M
G
R
ID
.M
G
R
ID

G
C
C
.G
C
C

W
U
PW
IS
E.
W
U
PW
IS
E

FA
C
ER
EC
.F
A
C
ER
EC

G
Z
IP
.G
Z
IP

N
o

r
m

a
li

z
e
d

 I
P

C
 t

o
 8

M
B

 b
a
s
e
li

n
e1MB 2MB 4MB 8MB 10MB 12MB 14MB 16MB

Figure 54: Normalized IPC speedup on the 8MB baseline for various cache sizes for a) High -
Medium, b) High - Low and c) Medium - Low pressure benchmark combinations

127

MCF.APPLU 0.49 0.493 0.493 0.493

APPLU.EQUAKE 0.623 0.624 0.626 0.628

APPLU.LUCAS 0.669 0.669 0.67 0.671

EQUAKE.LUCAS 0.574 0.577 0.581 0.583

VPR.MGRID 0.987 0.99 0.99 0.99

VPR.AMMP 1.088 1.111 1.111 1.113

MGRID.AMMP 1.13 1.139 1.143 1.144

VPR.GAP 1.059 1.059 1.059 1.06

MGRID.GAP 1.075 1.076 1.076 1.077

AMMP.GAP 1.244 1.29 1.299 1.299

GCC.WUPWISE 0.966 0.966 0.966 0.966

FACEREC.GCC 0.899 0.909 0.908 0.908

FACEREC.GZIP 1.385 1.385 1.385 1.385

GZIP.WUPWISE 1.313 1.313 1.313 1.313

GZIP.GCC 0.897 0.897 0.898 0.897

FACEREC.WUPWISE 1.638 1.638 1.638 1.638

MCF.GAP 0.752 0.755 0.755 0.756

MGRID.LUCAS 0.815 0.816 0.818 0.819

APPLU.GAP 0.902 0.902 0.902 0.902

MCF.MGRID 0.645 0.652 0.653 0.653

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

MCF.L
UCAS

MCF.E
QUAKE

MCF.A
PP

LU

APP
LU

.E
QUAKE

APP
LU

.LU
CAS

EQUAKE.LU
CAS

VPR
.M

GRID

VPR
.A

MMP

MGRID
.A

MMP

VPR
.G

AP

MGRID
.G

AP

AMMP.G
AP

GCC.W
UPW

IS
E

FA
CEREC.G

CC

FA
CEREC.G

ZIP

GZIP.
W

UPW
IS

E

GZIP.
GCC

FA
CEREC.W

UPW
IS

E

N
o

r
m

a
li
z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d

u
p +4Ways +8Ways +12Ways +16Ways +16Ways Baseline

 | (a) High - High pressure | (b) Medium - Medium pressure | (c) Low - Low pressure

Figure 55: Normalized IPC speedup on the 8MB baseline when increasing tag array for a) High -
High, b) Medium - Medium and c) Low - Low pressure benchmark combinations

MCF.AMMP 0.748 0.771 0.786 0.793

MGRID.EQUAKE 0.768 0.774 0.784 0.786

AMMP.LUCAS 0.876 0.893 0.904 0.91

EQUAKE.GAP 0.87 0.871 0.872 0.872

APPLU.AMMP 0.902 0.908 0.909 0.909

LUCAS.GAP 0.919 0.92 0.921 0.922

VPR.LUCAS 0.773 0.785 0.791 0.792

MGRID.APPLU 0.839 0.841 0.843 0.843

EQUAKE.AMMP 0.839 0.857 0.864 0.865

VPR.EQUAKE 0.731 0.741 0.742 0.744

VPR.MCF 0.591 0.605 0.607 0.608

EQUAKE.GZIP 0.913 0.914 0.915 0.915

EQUAKE.GCC 0.601 0.603 0.604 0.605

EQUAKE.FACEREC 0.947 0.951 0.953 0.955

APPLU.WUPWISE 1.042 1.042 1.042 1.042

LUCAS.GZIP 0.962 0.963 0.964 0.965

FACEREC.LUCAS 0.981 0.988 0.99 0.993

MCF.GZIP 0.795 0.797 0.799 0.8

APPLU.FACEREC 1.084 1.084 1.084 1.084

MCF.FACEREC 0.736 0.749 0.756 0.759

LUCAS.GCC 0.646 0.648 0.648 0.649

APPLU.GCC 0.634 0.635 0.635 0.635

EQUAKE.WUPWISE 1.005 1.007 1.008 1.009

APPLU.GZIP 0.947 0.947 0.947 0.947

LUCAS.WUPWISE 1.046 1.05 1.051 1.053

MCF.WUPWISE 0.856 0.859 0.86 0.86

MCF.GCC 0.586 0.593 0.595 0.595

AMMP.WUPWISE 1.401 1.41 1.411 1.412

VPR.WUPWISE 1.234 1.235 1.236 1.236

FACEREC.GAP 1.347 1.347 1.347 1.347

GAP.GCC 0.875 0.876 0.876 0.876

MGRID.GCC 0.785 0.787 0.787 0.787

GAP.WUPWISE 1.277 1.277 1.277 1.277

VPR.GCC 0.751 0.752 0.752 0.752

MGRID.GZIP 1.128 1.129 1.129 1.129

VPR.GZIP 1.103 1.103 1.103 1.103

VPR.FACEREC 1.239 1.241 1.241 1.241

MGRID.FACEREC 1.291 1.292 1.292 1.292

AMMP.GCC 0.941 0.965 0.97 0.971

FACEREC.AMMP 1.56 1.591 1.601 1.603

MGRID.WUPWISE 1.255 1.254 1.255 1.255

AMMP.GZIP 1.298 1.316 1.317 1.318

GAP.GZIP 1.145 1.145 1.145 1.145

EQUAKE.EQUAKE 0.52 0.525 0.53 0.54

APPLU.APPLU 0.612 0.611 0.611 0.612

LUCAS.LUCAS 0.663 0.664 0.664 0.665

MCF.MCF 0.329 0.359 0.385 0.397

VPR.VPR 0.958 0.976 0.981 0.982

AMMP.AMMP 1.186 1.284 1.355 1.417

GAP.GAP 1.109 1.109 1.109 1.109

MGRID.MGRID 1.029 1.03 1.029 1.031

GCC.GCC 0.747 0.76 0.763 0.76

WUPWISE.WUPWISE 1.512 1.513 1.513 1.513

FACEREC.FACEREC 1.783 1.783 1.783 1.783

GZIP.GZIP 1.174 1.174 1.174 1.174

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

M
C
F.
G
A
P

M
G
R
ID

.L
U
C
A
S

A
PP

LU
.G

A
P

M
C
F.
M
G
R
ID

V
PR

.A
PP

LU

M
C
F.
A
M
M
P

M
G
R
ID

.E
Q
U
A
K
E

A
M
M
P.
LU

C
A
S

EQ
U
A
K
E.

G
A
P

A
PP

LU
.A

M
M
P

LU
C
A
S.

G
A
P

V
PR

.L
U
C
A
S

M
G
R
ID

.A
PP

LU

EQ
U
A
K
E.

A
M
M
P

V
PR

.E
Q
U
A
K
E

V
PR

.M
C
F

N
o

r
m

a
li
z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d

u
p +4Ways +8Ways +12Ways +16Ways +16Ways Baseline

(a) High - Medium pressure

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

EQ
U
A
K
E.

G
Z
IP

EQ
U
A
K
E.

G
C
C

EQ
U
A
K
E.

FA
C
ER

EC

A
PP

LU
.W

U
PW

IS
E

LU
C
A
S.

G
Z
IP

FA
C
ER

EC
.L
U
C
A
S

M
C
F.
G
Z
IP

A
PP

LU
.F
A
C
ER

EC

M
C
F.
FA

C
ER

EC

LU
C
A
S.

G
C
C

A
PP

LU
.G

C
C

EQ
U
A
K
E.

W
U
PW

IS
E

A
PP

LU
.G

Z
IP

LU
C
A
S.

W
U
PW

IS
E

M
C
F.
W
U
PW

IS
E

M
C
F.
G
C
C

N
o

r
m

a
li
z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d

u
p +4Ways +8Ways +12Ways +16Ways +16Ways Baseline

(b) High - Low pressure

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

A
M
M
P.
W
U
PW

IS
E

V
PR

.W
U
PW

IS
E

FA
C
ER

EC
.G

A
P

G
A
P.
G
C
C

M
G
R
ID

.G
C
C

G
A
P.
W
U
PW

IS
E

V
PR

.G
C
C

M
G
R
ID

.G
Z
IP

V
PR

.G
Z
IP

V
PR

.F
A
C
ER

EC

M
G
R
ID

.F
A
C
ER

EC

A
M
M
P.
G
C
C

FA
C
ER

EC
.A

M
M
P

M
G
R
ID

.W
U
PW

IS
E

A
M
M
P.
G
Z
IP

G
A
P.
G
Z
IP

N
o

r
m

a
li
z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d

u
p +4Ways +8Ways +12Ways +16Ways +16Ways Baseline

(c) Medium - Low pressure

Figure 56: Normalized IPC speedup on the 8MB baseline when decreasing data array for a) High
- Medium, b) High - Low and d) Medium - Low pressure benchmark combinations

128

MCF.EQUAKE 0.38 0.359 0.34 0.335

MCF.APPLU 0.481 0.464 0.447 0.442

APPLU.EQUAKE 0.621 0.611 0.606 0.605

APPLU.LUCAS 0.668 0.668 0.666 0.666

EQUAKE.LUCAS 0.572 0.569 0.565 0.565

VPR.MGRID 0.973 0.934 0.882 0.852

VPR.AMMP 1.053 1.019 0.907 0.81

MGRID.AMMP 1.111 1.091 1.029 0.946

VPR.GAP 1.055 1.023 0.971 0.932

MGRID.GAP 1.075 1.073 1.072 1.07

AMMP.GAP 1.176 1.167 1.116 1.049

GCC.WUPWISE 0.962 0.952 0.915 0.913

FACEREC.GCC 0.895 0.833 0.801 0.722

FACEREC.GZIP 1.383 1.359 1.319 1.14

GZIP.WUPWISE 1.313 1.306 1.289 1.285

GZIP.GCC 0.892 0.875 0.857 0.85

FACEREC.WUPWISE 1.635 1.603 1.326 1.318

MCF.GAP 0.746 0.721 0.705 0.696

MGRID.LUCAS 0.814 0.812 0.811 0.803

APPLU.GAP 0.891 0.878 0.876 0.873

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

MCF.L
UCAS

MCF.E
QUAKE

MCF.A
PP

LU

APP
LU

.E
QUAKE

APP
LU

.LU
CAS

EQUAKE.LU
CAS

VPR
.M

GRID

VPR
.A

MMP

MGRID
.A

MMP

VPR
.G

AP

MGRID
.G

AP

AMMP.G
AP

GCC.W
UPW

IS
E

FA
CEREC.G

CC

FA
CEREC.G

ZIP

GZIP.
W

UPW
IS

E

GZIP.
GCC

FA
CEREC.W

UPW
IS

E

N
o

r
m

a
li
z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d

u
p 8MB Data 4MB Data 2MB Data 1MB Data 4MB Baseline

 | (a) High - High pressure | (b) Medium - Medium pressure | (c) Low - Low pressure

Figure 57: Normalized IPC speedup on the 8MB baseline when decreasing data array for a) High
- High, b) Medium - Medium and c) Low - Low pressure benchmark combinations

VPR.APPLU 0.789 0.738 0.703 0.68

MCF.AMMP 0.711 0.686 0.578 0.451

MGRID.EQUAKE 0.765 0.76 0.754 0.742

AMMP.LUCAS 0.854 0.853 0.811 0.734

EQUAKE.GAP 0.866 0.861 0.852 0.846

APPLU.AMMP 0.886 0.867 0.799 0.741

LUCAS.GAP 0.918 0.918 0.918 0.917

VPR.LUCAS 0.753 0.737 0.696 0.663

MGRID.APPLU 0.838 0.837 0.829 0.806

EQUAKE.AMMP 0.812 0.808 0.75 0.66

VPR.EQUAKE 0.707 0.669 0.62 0.598

VPR.MCF 0.557 0.508 0.447 0.422

EQUAKE.GZIP 0.909 0.904 0.886 0.872

EQUAKE.GCC 0.594 0.576 0.561 0.559

EQUAKE.FACEREC 0.937 0.928 0.831 0.801

APPLU.WUPWISE 1.042 1.041 1.037 1.029

LUCAS.GZIP 0.96 0.96 0.955 0.946

FACEREC.LUCAS 0.971 0.934 0.93 0.859

MCF.GZIP 0.786 0.759 0.736 0.716

APPLU.FACEREC 1.069 1.002 0.903 0.899

MCF.FACEREC 0.703 0.661 0.626 0.586

LUCAS.GCC 0.637 0.63 0.625 0.623

APPLU.GCC 0.622 0.602 0.597 0.592

EQUAKE.WUPWISE 1 0.996 0.983 0.978

APPLU.GZIP 0.942 0.919 0.911 0.895

LUCAS.WUPWISE 1.045 1.045 1.046 1.046

MCF.WUPWISE 0.845 0.822 0.802 0.791

MCF.GCC 0.567 0.528 0.507 0.495

AMMP.WUPWISE 1.383 1.361 1.315 1.232

VPR.WUPWISE 1.224 1.173 1.135 1.102

FACEREC.GAP 1.346 1.273 1.25 1.109

GAP.GCC 0.875 0.869 0.843 0.839

MGRID.GCC 0.781 0.769 0.75 0.746

GAP.WUPWISE 1.277 1.255 1.255 1.255

VPR.GCC 0.74 0.679 0.622 0.587

MGRID.GZIP 1.128 1.116 1.109 1.097

VPR.GZIP 1.097 1.065 1.01 0.961

VPR.FACEREC 1.236 1.196 1.011 0.968

MGRID.FACEREC 1.287 1.249 1.113 1.106

AMMP.GCC 0.889 0.853 0.735 0.597

FACEREC.AMMP 1.514 1.491 1.195 1.11

MGRID.WUPWISE 1.252 1.24 1.237 1.231

AMMP.GZIP 1.255 1.241 1.159 1.085

GAP.GZIP 1.145 1.144 1.144 1.141

EQUAKE.EQUAKE 0.517 0.513 0.503 0.501

APPLU.APPLU 0.611 0.607 0.604 0.602

LUCAS.LUCAS 0.662 0.663 0.663 0.663

MCF.MCF 0.305 0.286 0.259 0.24

VPR.VPR 0.921 0.892 0.797 0.725

AMMP.AMMP 1.009 1.009 1.008 0.998

GAP.GAP 1.109 1.109 1.109 1.109

MGRID.MGRID 1.022 1.016 1.01 1.009

GCC.GCC 0.744 0.737 0.726 0.703

WUPWISE.WUPWISE 1.498 1.498 1.458 1.458

FACEREC.FACEREC 1.704 1.704 1.702 1.2

GZIP.GZIP 1.174 1.174 1.174 1.174

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

M
C
F.
G
A
P

M
G
R
ID

.L
U
C
A
S

A
PP

LU
.G

A
P

M
C
F.
M
G
R
ID

V
PR

.A
PP

LU

M
C
F.
A
M
M
P

M
G
R
ID

.E
Q
U
A
K
E

A
M
M
P.
LU

C
A
S

EQ
U
A
K
E.

G
A
P

A
PP

LU
.A

M
M
P

LU
C
A
S
.G

A
P

V
PR

.L
U
C
A
S

M
G
R
ID

.A
PP

LU

EQ
U
A
K
E.

A
M
M
P

V
PR

.E
Q
U
A
K
E

V
PR

.M
C
F

N
o

r
m

a
li

z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d

u
p 8MB Data 4MB Data 2MB Data 1MB Data 4MB Baseline

(a) High - Medium pressure

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

EQ
U
A
K
E.

G
Z
IP

EQ
U
A
K
E.

G
C
C

EQ
U
A
K
E.

FA
C
ER

EC

A
PP

LU
.W

U
PW

IS
E

LU
C
A
S
.G

Z
IP

FA
C
ER

EC
.L
U
C
A
S

M
C
F.
G
Z
IP

A
PP

LU
.F
A
C
ER

EC

M
C
F.
FA

C
ER

EC

LU
C
A
S
.G

C
C

A
PP

LU
.G

C
C

EQ
U
A
K
E.

W
U
PW

IS
E

A
PP

LU
.G

Z
IP

LU
C
A
S
.W

U
PW

IS
E

M
C
F.
W
U
PW

IS
E

M
C
F.
G
C
C

N
o

r
m

a
li

z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d

u
p 8MB Data 4MB Data 2MB Data 1MB Data 4MB Baseline

(b
(b) High - Low pressure

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

A
M
M
P.
W
U
PW

IS
E

V
PR

.W
U
PW

IS
E

FA
C
ER

EC
.G

A
P

G
A
P.
G
C
C

M
G
R
ID

.G
C
C

G
A
P.
W
U
PW

IS
E

V
PR

.G
C
C

M
G
R
ID

.G
Z
IP

V
PR

.G
Z
IP

V
PR

.F
A
C
ER

EC

M
G
R
ID

.F
A
C
ER

EC

A
M
M
P.
G
C
C

FA
C
ER

EC
.A

M
M
P

M
G
R
ID

.W
U
PW

IS
E

A
M
M
P.
G
Z
IP

G
A
P.
G
Z
IP

N
o

r
m

a
li

z
e
d

 W
e
ig

h
te

d
 S

p
e
e
d

u
p 8MB Data 4MB Data 2MB Data 1MB Data 4MB Baseline

(c

(c) Medium - Low pressure

Figure 58: Normalized IPC speedup on the 8MB baseline when decreasing data array for a) High
- Medium, b) High - Low and c) Medium - Low pressure benchmark combinations

129

at best at 12% for few benchmarks. As compared to the 16MB baseline cache we can see that

the performance potential of CDA is very limited in several cases but there is also a significant

number of benchmarks that the +8way CDA cache is a good tradeoff. For example, AMMM.GAP

from Figure 55 shows that the performance of a 16MB regular cache can be approximated with

an 8MB +8Ways CDA cache and can be match with +12Ways. Overall the results appear to be

encouraging.

Figures 57 and 58 show the performance achieved by using the CDA cache to reduce only the

data array and keeping the tag array the same size. By reducing the data array and keeping it in a

compressed form we can achieve very close to the original performance, and saving much of static

energy from the switched off banks. Comparing the baseline with the CDA results we count 56

benchmarks, out of 66 in total, with an IPC reduction of less than 5% for a 4MB data array. The

respective baseline counts only 35 benchmarks with a reduction less than 5% and the rest of them

show reductions by more than 15%. This indicates that the compressed design of the CDA cache

can handle more data in the 4MB data array than the baseline cache using the extra tags and thus

achieve less performance loss.

Overall the conclusion from this limit study is that using the CDA cache to improve perfor-

mance is hard to achieve for all benchmarks and can be beneficial for only a small subset of them.

On the other hand keeping the same tag array and gating the data array might have more potential

since it appears from the limits that the performance loss is very small. As compared to the single

program workload results, here CDA appears to have more potential due to more pressure in the

LLC cache. To investigate further this scenario we will measure the Energy Delay when reducing

the CDA cache’s data array as compared reducing the size of a regular cache.

130

7.5 CDA Cache Energy Delay Characterization

This section uses a first order energy model to estimate the performance gains of the CDA

cache when reducing the data array. We made the following assumptions based on CACTI analy-

sis:

1. We assume that 10% of the LLC’s total energy is consumed in the Tag array while 90% is

consumed in the Data array.

2. We assume that 90% of the energy consumed by the Tag array is due to leakage while 10%

is due to dynamic energy.

3. We assume that 90% of the energy consumed by the Data array is due to leakage while 10%

is due to dynamic energy.

Furthermore, based on [76], we assume that our cache has 1 bank per 1MB, so a total of 8

banks for our baseline cache, and the energy consumption of the LLC cache is 30% of the total

core energy.

Based on the above, we produce the Figure 59 where three lines indicate the effects on energy

when increasing the execution time, and decreasing the CDA cache data array compared to de-

creasing the size of a regular cache. The model assumes that from the total energy equation the

only parameter that is affected when reducing the data array is the static leakage consumed by the

data array while for the regular cache is both the tag and data array static leakage. Furthermore, as

we said before, we assume that the relation between the data array size and static leakage is linear.

That means when, we cut the data array in half, then the static leakage consumed by the data array

is also cut in half. Finally, the model assumes a 1% always better performance of the CDA cache

compared to a regular cache with the same size data array. This is done to give an estimation of

131

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Ex
ec

ut
io

n
Ti

m
e

In
cr

ea
se

Cache Size Reduction

4% Energy overhead

 2% Energy overhead

 0% Energy overhead

Figure 59: Energy profiling of increasing execution time and decreasing LLC data array

the Energy Delay improvement of the CDA cache assuming its performance will be always better

as compared to the regular cache due to the extra tags. In the case, where the performance of CDA

is equal to the regular cache then Energy Delay is lower since we always static leakage for the

extra tags.

What Figure 59 provides is the limits of the CDA cache based on the performance and cache

size reduction trade off assuming that the CDA cache has at least 1% better performance than

the regular cache. For example, it shows that by decreasing both CDA and a regular cache size

by 50% and increasing the execution time by up to 20% we have always better energy efficiency

using the CDA cache because the point is below the 0% Energy overhead line. Any point below

the 0% Energy overhead contour indicates that the decreasing only CDA cache data array saves

more energy than a decreasing a regular cache’s size by the same portion.

132

0

0.2

0.4

0.6

0.8

1

1.2

M
C
F.

L
U

C
A
S

M
C
F.

E
Q

U
A
K
E

M
C
F.

A
P
P
L
U

A
P
P
L
U

.E
Q

U
A
K
E

A
P
P
L
U

.L
U

C
A
S

E
Q

U
A
K
E
.L

U
C
A
S

V
P
R
.M

G
R
ID

V
P
R
.A

M
M

P
M

G
R
ID

.A
M

M
P

V
P
R
.G

A
P

M
G

R
ID

.G
A
P

A
M

M
P.

G
A
P

G
C
C
.W

U
P
W

IS
E

F
A
C
E
R
E
C
.G

C
C

F
A
C
E
R
E
C
.G

Z
IP

G
Z
IP

.W
U

P
W

IS
E

G
Z
IP

.G
C
C

F
A
C
E
R
E
C
.W

U
P
W

I
M

C
F.

G
A
P

M
G

R
ID

.L
U

C
A
S

A
P
P
L
U

.G
A
P

M
C
F.

M
G

R
ID

V
P
R
.A

P
P
L
U

M
C
F.

A
M

M
P

M
G

R
ID

.E
Q

U
A
K
E

A
M

M
P.

L
U

C
A
S

E
Q

U
A
K
E
.G

A
P

A
P
P
L
U

.A
M

M
P

L
U

C
A
S
.G

A
P

V
P
R
.L

U
C
A
S

M
G

R
ID

.A
P
P
L
U

E
Q

U
A
K
E
.A

M
M

P
V
P
R
.E

Q
U

A
K
E

V
P
R
.M

C
F

E
Q

U
A
K
E
.G

Z
IP

E
Q

U
A
K
E
.G

C
C

E
Q

U
A
K
E
.F

A
C
E
R
E
C

A
P
P
L
U

.W
U

P
W

IS
E

L
U

C
A
S
.G

Z
IP

F
A
C
E
R
E
C
.L

U
C
A
S

M
C
F.

G
Z
IP

A
P
P
L
U

.F
A
C
E
R
E
C

M
C
F.

F
A
C
E
R
E
C

L
U

C
A
S
.G

C
C

A
P
P
L
U

.G
C
C

E
Q

U
A
K
E
.W

U
P
W

IS
A
P
P
L
U

.G
Z
IP

L
U

C
A
S
.W

U
P
W

IS
E

M
C
F.

W
U

P
W

IS
E

M
C
F.

G
C
C

A
M

M
P.

W
U

P
W

IS
E

V
P
R
.W

U
P
W

IS
E

F
A
C
E
R
E
C
.G

A
P

G
A
P.

G
C
C

M
G

R
ID

.G
C
C

G
A
P.

W
U

P
W

IS
E

V
P
R
.G

C
C

M
G

R
ID

.G
Z
IP

V
P
R
.G

Z
IP

V
P
R
.F

A
C
E
R
E
C

M
G

R
ID

.F
A
C
E
R
E
C

A
M

M
P.

G
C
C

F
A
C
E
R
E
C
.A

M
M

P
M

G
R
ID

.W
U

P
W

IS
E

A
M

M
P.

G
Z
IP

G
A
P.

G
Z
IP

N
o

r
m

a
li
z
e
d

 E
n

e
r
g

y
 D

e
la

y

4MB CDA Cache 4MB Regular Cache

Figure 60: Normalized Energy delay for a 4MB CDA cache (with double the number of tags) and
a 4MB regular cache

The results from the previous section indicate that reducing the data array to 4MB, we can

maintain the performance in reasonable levels (similar or better to reducing the baseline to 4MB)

and increasing around 5% the execution time for most of the benchmarks and 7% on average.

Setting this point on the Figure 59 it indicates that for this scenario, and given we have better

performance than the 4MB baseline, the CDA cache will save more energy overall.

To backup our model we present the exact results for the Normalized Energy Delay, Figure

60, for all benchmarks when reducing the CDA cache data array to 4MB and when using a 4MB

regular cache. The results show that when there is the need for more performance, for example,

benchmark MCF.AMMP, the CDA cache can handle the need for more tags by compressing the

cache and achieving a total of 10% energy savings, while the regular 4MB cache presents a huge

increase in the execution time, about 30% (as shown in Figure 54), which results in 15% increase

in the energy consumption. The energy model used here is based on CACTI results and activity

factors of a cycle accurate simulation for each benchmark. Overall the results indicate that CDA

133

cache has the potential to be a more energy efficient cache design as compared to a regular smaller

cache.

7.6 Implementation Issues of CDA cache

The CDA cache as described above has significant potential, for saving energy, but also has

functional requirements that need to be investigated further and be solved in future work.

The following list describes all the functional requirements and suggests possible solutions:

• Data pointers to tags: Our scheme assumes that each tag has the ability to keep a pointer

to each segment in the tag array to rebuild its logical block. The pointers will impose a

significant overhead to the mechanism regarding the required area. A way to overcome this

limitation is by moving the ECC bits from the data array to the tag array. By doing this, the

ECC bits can be used for indexing and pointing the data array. Since the ECC bits are always

checked and the Tag is read before the data this modification will not affect the latency of

the ECC validation. In this way, the overhead will be reduced significantly to only the ECC

bits for the extra tags.

• Indirect data array access: On a normal cache the data array is accessed by matching the

appropriate tag. In the CDA design the Tag array is first needs to be accessed and then the

pointers to the data are extracted from the matched tag and are used to indirectly access the

segments in the data array. This indirection we assume that will have a very small overhead

over the whole caches access procedure but needs to investigated and evaluated in future

work.

134

• Building cache block: As opposed to a normal cache, the block in a CDA cache needs to

be build from its segments before is send to the higher level in the memory hierarchy. Be-

cause cache’s physical implementation already involves subarrays, we believe that current

cache designs may naturally fit the segmented solution needed by CDA. This requirement

is something that needs to be evaluated further, in the future, both in respect of energy but

also the delay that is needed to build the blocks.

• Fully associative data array: The CDA cache data array is assumed to be a fully associative

table in all the experiments so far in order to measure the limits of the mechanism. We have

also initial analysis with a 64way set associative data array that shows similar performance

as the fully associative data array. As discussed in the previous bullet the ECC bits are used

for indexing and pointing to the data array. We believe that a fine tuning in the ECC hashing

function by permuting few bits will achieve even better distribution of the segments in the

data array.

• Dirty block: Dirty blocks have always been a problem for compression designs because

when the data are overwritten often require more space than the compressed data [49].

Another problem is with mechanisms that use correlations between duplicated blocks [46].

The problem arises when a data is written with another value and it’s no longer duplicated

for the two, or more, tags that are pointing to it. Our solution to this is to keep the dirty

blocks uncompressed as explained in the 7.3.2. By separating the dirty and clean blocks to

Address based and Content based it provides us the ability to handle dirty blocks better and

handle the writes with no extra effort since we ensure that only one tag is pointing to a dirty

Address based block. The delay and energy overheads of creating the AB blocks need to be

investigated further.

135

• Tag invalidation on data eviction: The final problem is the functional requirement to in-

validated tags that are pointing to a segment that is being evicted. A segment can be evicted

while still valid tags are pointing to it if the data required by the valid tags cannot be accom-

modated by the compressed data array and the limited number of segments in it. There are

few ideas to solve this problem without the need of long tag lists as proposed in the limit

study.

– Limit number of tags per segment: The simplest idea to overcome this problem is

to limit the number of tags that can point to each segment. By doing this, we can have

a limited number of backward tag pointers for each segment. These pointers will be

used to invalidate all relevant tags when the segment is evicted. Furthermore when a

new tag needs to point to a segment that is already full of tags then the content needs to

replicated to another location and the new tag will point there. This approach is simple

to implement but will cost in performance since will limit the compression potential

of a workload. One way to absorb some of this lost potential is to keep narrow values

in the tag in the place of the pointers. By having an extra bit in pointer in the tag we

can choice that if the content is a pointer to the data array or a narrow value. A narrow

value is defined as a value that requires maximum bits as the number of bits available

for the pointer. This idea has already been proposed and evaluated by Molina et al.

[47]. Another solution is to keep not only small values but all the frequent values, after

profiling, encoded using a frequent value table similar to [45].

– Bloom filter[90]: Another idea is to use a bloom filter in front of the tag array and

each time a pointer to a segment is updated in a tag the relevant bit in the bloom filter

will be set. On a data segment eviction, the bloom filter will be accessed with the

136

content and will point to valid tags that potentially contain this pointer. Then this tag

can be either greedily invalidated or can be checked if indeed contains a pointer to this

segment and then invalidated.

– Link list embedded in the tags: One last idea is to implement an efficient double

linked list in the tags by using two extra tag-pointer for each data pointer. The first will

point to the previous tag and the other to the next tag containing using this segment.

Also, a backward pointer in the data segments is needed that points to the last tag

inserted. In this way when a data segment is replaced, its backward pointer will be

used to track the last tag that points to the segment and then the list will be traversed

to invalidate all tags that also point to that segment. This list can be accommodated

in the data array itself, into unused data segments. This will limit the available space

for storing data but, assuming we have a good compression ratio, this loses will be

compensated due to the additional tags.

All ideas mentioned here need to be investigated further, both the cost and performance, in

future work.

7.7 Chapter Summary

In this chapter we have evaluated the performance potential of a new cache design, the CDA

cache, for both single and multiprogram workloads.

The trends indicate that with the granularity that we detect the duplication is decreasing the

duplication is increasing. For 16byte data segments granularity for single program workloads the

137

results indicate usually more than 40% compression ratios and up to 90% for LUCAS bench-

mark when compressing only clean blocks. When compressing both clean and dirty blocks the

compression ratio is usually more than 60% and close to 99% for benchmark APSI.

Furthermore, for the multiprogram workloads the we usually have more than 50% compression

and in many cases up to 80% for clean blocks. An interesting result is that the contribution of dirty

blocks in compression for multiprogram workloads is much lower and usually less than 5%.

Finally, the CDA design indicates moderate performance improvement, close to 5% when

adding 2 extra ways, but it shows that can reduce the Energy Delay product considerably, 10% on

average and up to 15% at most, for multiprogram workloads.

The potential appears to be more promising on multiprogram workloads for the Last Level

Caches mainly due to the higher pressure. Also, the direction of reducing the data array to save

energy appears to be more appealing since it achieves lower Energy Delay and can maintain the

performance in a great deal as compared to reducing the size of a regular cache.

The CDA cache design proposed here assumes a limit study implementation, and all the func-

tional requirements mentioned in 7.6 need to be investigated further.

Chapter 8

Conclusions

This thesis defines a new cache phenomenon, the Cache-Content-Duplication (CCD). We have

shown that CCD exists for various types of instructions caches, data caches, and Last Level Caches

(LLCs). Also applications and mechanisms, to exploit the phenomenon, were proposed. In this

Chapter, we will provide a summary of the contributions of this work and directions for future

work.

8.1 Contributions

The main contributions of this thesis are:

• Characterization of redundancy: We provide a characterization of redundancy for both

instructions and data. For the instructions, we have analyzed the redundancy at the gran-

ularity of valid sequences while for data we investigate this property at the granularity of

32byte segments.

This thesis also gives a more thorough analysis of the redundancy in data caches. We in-

vestigate what percentage of data, both in L1 data cache but also in Last Level Cache, its

138

139

for dirty blocks, and zero runs for various segment and cache sizes. This analysis provides

a better understanding of the program behavior and points to two important observations.

First, the benefit from compressing dirty blocks is not very important so they can be ignored

to make the duplication detection mechanisms simpler. Second, the percentage of duplica-

tion due to zero runs drops significantly in Last Level caches as compared to L1 data caches,

especially in shared LLCs where multiple applications create more pressure. This suggests

that it’s worth investigating again the benefit for compressing all values in an LLC, both

zero and non-zero.

The results indicate that there is high redundancy in many benchmarks that worth more in-

vestigation and proposing mechanisms and applications to remove it for both instructions

and data. The outcome for L1 data caches was not very encouraging since there is a signifi-

cant amount of zero runs that have been already investigated before by others. Even though,

the results for LLCs were very promising and were investigated further.

• CCD limit studies: We preset limit studies that show the potential of CCD for various

instructions cache (regular, basic block and trace caches), for L1 data cache and for Last

Level Caches. In all cases the limit studies are applied to a wide design space that includes

various cache sizes and duplication detection granularities.

• Proposed mechanisms and applications: This thesis proposes two mechanisms that can

be applied to detect and eliminate CCD to either improve performance or save energy. The

first design is CATCH that is proposed to improve the performance of L1 instruction caches,

and the results show that a 1.38KB mechanism can capture about 58% of the potential of

the limit study which corresponds to about 5% performance improvement.

140

Also, the Cache Duplicate Aware (CDA) Cache is proposed that be implemented for Last

Level Caches to save energy. Initial analysis shows that a limit study mechanism can achieve

close to 10% energy reduction with very little performance loss as compared to the baseline

and much better performance as compared to reducing the size of a regular cache in few

benchmarks.

We anticipate that the content of this thesis will give more insight for the potential of cache

compression and content duplication specifically and inspire people to perform research in this

area. The characterization of redundancy presented in this work gives new information on the

Cache Content Duplication and the CCD limit study indicates that the potential of the phenomenon

is worth investigating more in the future.

8.2 Future Work

This thesis provides several directions for future work. One is to investigate other methods

to tolerate block differences and lead to higher CCD frequency. A mechanism for zero cycle

secondary hit latency may be also useful to design and evaluate. CCD may also be considered

in combination with static code compaction to investigate the synergistic potential of the two

approaches.

The Text Cloning phenomenon also needs to be investigated further. An extended analysis of

Text Cloning in Grid Computing and Cloud Computing frameworks to determine its frequency

and performance implications in a realistic setup will be very beneficial for the developers of Grid

Computing systems.

Another important direction of research is to consider transformations of CCD for data caches

to increase duplication. For example, data sequences can be approximated as valid sequences,

141

similar to instructions, by using the compiler’s knowledge of structs, tables and other data struc-

tures. If we were able, with the assist of compiler, to detect these valid data sequences then we

could adapt CCD detection at this granularity and increase the frequency and benefits even further.

Finally, the CDA Cache design needs to be investigated further and all the functional require-

ments mentioned in Section 7.6 need to be implemented and evaluated.

Overall, all the proposed mechanisms and applications in this thesis can be extended further by

using the assist of the compiler or by the operating system to improve the performance of modern

processors even further.

Bibliography

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[2] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications of the Obvious,”
ACM SIGARCH Computer Architecture News, vol. 23, no. 1, pp. 20–24, March 1995.

[3] B. M. Beckmann and D. A. Wood, “Managing wire delay in large chip-multiprocessor
caches,” in MICRO 37: Proceedings of the 37th annual IEEE/ACM International Sympo-
sium on Microarchitecture. Washington, DC, USA: IEEE Computer Society, 2004, pp.
319–330.

[4] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Optimizing replication, communication,
and capacity allocation in cmps,” SIGARCH Comput. Archit. News, vol. 33, no. 2, pp. 357–
368, 2005.

[5] A. Shayesteh, G. Reinman, N. Jouppi, S. Sair, and T. Sherwood, “Dynamically configurable
shared cmp helper engines for improved performance,” SIGARCH Comput. Archit. News,
vol. 33, no. 4, pp. 70–79, 2005.

[6] I. Ganusov and M. Burtscher, “Future execution: A hardware prefetching technique for chip
multiprocessors,” in Proceedings of the 2005 International Conference on Parallel Architec-
tures and Compilation Techniques. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 350–360.

[7] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” in Proceedings of the 17th International
Symposium on Computer Architecture, June 1990, pp. 364–373.

[8] M. Kleanthous and Y. Sazeides, “The Duplication of Content in Instruction Caches and its
Performance Implications,” University of Cyprus, Tech. Rep. TR-CS-01-05, January 2005.

[9] M. Kleanthous and Y. Sazeides, “CATCH: A method for Dynamically Detecting Cache-
Content-Duplication,” ACACES, July 2005.

[10] M. Kleanthous and Y. Sazeides, “Cache-Content-Duplication for Valid Blocks,” ACACES,
July 2006.

[11] M. Kleanthous and Y. Sazeides, “Dynamically Detecting Cache-Content-Duplication in In-
struction Caches,” University of Cyprus, Tech. Rep. TR-CS-03-07, February 2007.

142

143

[12] M. Kleanthous and Y. Sazeides, “CATCH: A Mechanism for Dynamically Detecting Cache-
Content-Duplication and its Application to Instruction Caches,” in Proceedings of the 2008
conference on Design, Automation and Test in Europe, March 2008, pp. 1426–1431.

[13] M. Kleanthous, Y. Sazeides, and M. D. Dikaiakos, “Extrinsic and intrinsic text cloning,” in
WIOSCA 2010 (held in conjuction with ISCA 2010), ser. Lecture Notes in Computer Science,
vol. 6161, 2010, pp. 324–340.

[14] M. Kleanthous and Y. Sazeides, “CATCH: A Mechanism for Dynamically Detecting Cache-
Content-Duplication in Instruction Caches,” Transactions on Architecture and Code Opti-
mization, (Accepted for publication).

[15] M. Kleanthous and Y. Sazeides, “Simulation Region Analysis for SPEC2000 Benchmarks,”
University of Cyprus, Tech. Rep. TR-CS-01-12, January 2012.

[16] Y. Sazeides, A. Moustakas, K. Constantinides, and M. Kleanthous, “The Significance of
Affectors and Affectees Correlations for Branch Prediction,” in Proceedings of the 3rd Inter-
national Conference on High Performance Embedded Architectures and Compilers, January
2008, pp. 243–257.

[17] Y. Sazeides, A. Moustakas, K. Constantinides, and M. Kleanthous, “Improving Branch
Prediction by Considering Affectors and Affectees Correlations,” Transactions on High-
Performance Embedded Architectures and Compilers, vol. 3, pp. 69–88, 2011.

[18] M. Kleanthous, S. Yehia, Y. Sazeides, and E. Ozer, “A Replacement Policy Based on Dy-
namic Profiling and Hashed Data,” ACACES, July 2007.

[19] M. Kleanthous and S. Yehia, “Entry Replacement Within a Data Store,” Patent Number
20080183986, July 2008.

[20] P. J. Denning, “Virtual Memory,” ACM Computing Surveys (CSUR), vol. 2, no. 3, pp. 153–
189, September 1970.

[21] J.-L. Baer and T.-F. Chen, “An Effective On-Chip Preloading Scheme to Reduce Data Access
Penalty,” in Proceedings of the 1991 ACM/IEEE conference on Supercomputing, November
1991, pp. 176–186.

[22] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and Load Value Prediction,”
in Proceedings of the 7th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, October 1996, pp. 138–147.

[23] M. Kjelso, M. Gooch, and S. Jones, “Design and Performance of a Main Memory Hardware
Data Compressor,” in Proceedings of the 22nd EUROMICRO Conference, September 1996,
pp. 423–430.

[24] K. D. Cooper and N. McIntosh, “Enhanced Code Compression for Embedded RISC Proces-
sors,” in Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language
Design and Implementation, May 1999, pp. 139–149.

[25] K. Rajan and G. Ramaswamy, “Emulating optimal replacement with a shepherd cache,” in
Proceedings of the 40th Annual ACM/IEEE International Symposium on Microarchitecture.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 445–454.

144

[26] M. Kharbutli and Y. Solihin, “Counter-based cache replacement algorithms,” in Proceed-
ings of the International Conference on Computer Design. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 61–68.

[27] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive insertion poli-
cies for high performance caching,” in Proceedings of the 34th International Symposium on
Computer Architecture. New York, NY, USA: ACM, 2007, pp. 381–391.

[28] A. González, C. Aliagas, and M. Valero, “A data cache with multiple caching strategies
tuned to different types of locality,” in Proceedings of the 7th International Conference on
Supercomputing. New York, NY, USA: ACM, 1995, pp. 338–347.

[29] N. Megiddo and D. S. Modha, “Outperforming lru with an adaptive replacement cache algo-
rithm,” Computer, vol. 37, no. 4, pp. 58–65, 2004.

[30] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The v-way cache: Demand based associativity
via global replacement,” in Proceedings of the 32nd International Symposium on Computer
Architecture. Washington, DC, USA: IEEE Computer Society, 2005, pp. 544–555.

[31] E. G. Hallnor and S. K. Reinhardt, “A fully associative software-managed cache design,” in
Proceedings of the 27th International Symposium on Computer Architecture. New York,
NY, USA: ACM, 2000, pp. 107–116.

[32] C. Zhang, “Balanced cache: Reducing conflict misses of direct-mapped caches,” in Proceed-
ings of the 33rd International Symposium on Computer Architecture. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 155–166.

[33] C.-K. Luk and T. C. Mowry, “Cooperative prefetching: compiler and hardware support for
effective instruction prefetching in modern processors,” in Proceedings of the 31st Annual
ACM/IEEE International Symposium on Microarchitecture. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1998, pp. 182–194.

[34] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Spatial memory
streaming,” in Proceedings of the 33rd International Symposium on Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 252–263.

[35] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Temporal instruction
fetch streaming,” in Proceedings of the 41st Annual ACM/IEEE International Symposium on
Microarchitecture, 2008.

[36] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for mlp-aware cache re-
placement,” in Proceedings of the 33rd International Symposium on Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 167–178.

[37] P. H. Wang, J. D. Collins, H. Wang, D. Kim, B. Greene, K.-M. Chan, A. B. Yunus, T. Sych,
S. F. Moore, and J. P. Shen, “Helper Threads via Virtual Multithreading,” IEEE Micro,
vol. 24, no. 6, pp. 74–82, 2004.

[38] M. Corporation, Disk Operating System User’s guide (DOS Release 2.10). IBM Corpora-
tion, 1984.

145

[39] S. Quinlan and S. Dorward, “Venti: A New Approach to Archival Storage,” in Proceedings
of the 2002 Conference on File and Storage Technologies, 2002, pp. 89–101.

[40] C. A. Waldspurger, “Memory Resource Management in VMware ESX server,” SIGOPS Op-
erating Systems Rev., vol. 36, no. SI, pp. 181–194, 2002.

[41] “Kernel SamePage Merging,” http://www.linux-kvm.com/content/using-ksm-kernel-
samepage-merging-kvm.

[42] “KVM: Kernel Based Virtual Machine.” http://www.linux-kvm.org/.

[43] F. Douglis, “The Compression Cache: Using On-line Compression to Extend Physical Mem-
ory,” in Proceedings of 1993 USENIX Conference, January 1993, pp. 519–529.

[44] C. Lefurgy, E. Piccininni, and T. Mudge, “Reducing Code Size with Run-time Decompres-
sion,” in Proceedings of the 6th International Symposium on High Performance Computer
Architecture, January 2000, pp. 218–228.

[45] Y. Zhang, J. Yang, and R. Gupta, “Frequent Value Locality and Value-Centric Data Cache
Design,” in Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, November 2000, pp. 150–159.

[46] R. Sendag, P.-F. Chuang, and D. J. Lilja, “Address Correlation: Exceeding the Limits of
Locality,” IEEE Computer Architecture Letters, vol. 2, no. 1, p. 3, May 2003.

[47] C. Molina, C. Aliagas, M. Garcia, A. Gonzalez, and J. Tubella, “Non Redundant Data
Cache,” in Proceedings of the 2003 International Symposium on Low Power Electronics
and Design, August 2003, pp. 274–277.

[48] C. B. Morrey III and D. Grunwald, “Content-Based Block Caching,” in Proceedings of the
23rd IEEE Conference on Mass Storage Systems and Technologies, May 2006.

[49] A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compression for High-Performance
Processors,” in Proceedings of the 31st International Symposium on Computer Architecture,
June 2004, pp. 212–223.

[50] E. G. Hallnor and S. K. Reinhardt, “A Compressed Memory Hierarchy using an Indirect
Index Cache,” in Proceedings of the 3rd Workshop on Memory Performance Issues: in con-
junction with the 31st International Symposium on Computer Architecture, March 2004, pp.
9–15.

[51] S. Biswas, D. Franklin, A. Savage, R. Dixon, T. Sherwood, and F. T. Chong, “Multi-
Execution: Multicore Caching for Data-Similar Executions,” in Proceedings of the 36th
International Symposium on Computer Architecture, June 2009, pp. 164–173.

[52] L. Villa, M. Zhang, and K. Asanović, “Dynamic Zero Compression for Cache Energy Re-
duction,” in Proceedings of the 33rd Annual ACM/IEEE International Symposium on Mi-
croarchitecture, December 2000, pp. 214–220.

[53] M. Ekman and P. Stenstrom, “A Robust Memory Compression Scheme,” in Proceedings of
the 32nd International Symposium on Computer Architecture, June 2005.

146

[54] J. Dusser, T. Piquet, and A. Seznec, “Zero-Content Augmented Caches,” in Proceedings of
the 23rd International Conference on Supercomputing, June 2009, pp. 46–55.

[55] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, “Improving Code Density Using Compression
Techniques,” in Proceedings of the 30th Annual ACM/IEEE International Symposium on
Microarchitecture, December 1997, pp. 194–203.

[56] L. Benini, A. Macii, E. Macii, and M. Poncino, “Selective Instruction Compression for Mem-
ory Energy Reduction in Embedded Processors,” in Proceedings of the 1999 International
Symposium on Low Power Electronics and Design, August 1999, pp. 206–211.

[57] S. Hines, J. Green, G. Tyson, and D. Whalley, “Improving Program Efficiency by Packing In-
structions into Registers,” in Proceedings of the 32nd International Symposium on Computer
Architecture, June 2005, pp. 260–271.

[58] S. K. Debray, W. Evans, R. Muth, and B. D. Sutter, “Compiler Techniques for Code Com-
paction,” ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 22,
no. 2, pp. 378–415, March 2000.

[59] A. Beszedes, R. Ferenc, T. Gyimothy, A. Dolenc, and K. Karsisto, “Survey of Code-Size Re-
duction Methods,” ACM Computing Surveys (CSUR), vol. 35, no. 3, pp. 223–267, September
2003.

[60] S. Kim, J. Lee, J. Kim, and S. Hong, “Residue Cache: a Low-Energy Low-Area
L2 Cache Architecture via Compression and Partial hits,” in Proceedings of the
44st Annual ACM/IEEE International Symposium on Microarchitecture, ser. MICRO-
44 ’11. New York, NY, USA: ACM, 2011, pp. 420–429. [Online]. Available:
http://doi.acm.org/10.1145/2155620.2155670

[61] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a Simultaneous Multithreaded
Processor,” in Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, November 2000, pp. 234–244.

[62] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput and fairness in SMT pro-
cessors,” in Proceedings of the 2001 International Symposium on Performance Analysis of
Systems and Software, November 2001, pp. 164–171.

[63] D. M. Tullsen, “Simulation And Modeling Of A Simultaneous Multithreading Processor,”
in Proceedings of the 22nd Annual Computer Measurement Group Conference, December
1996, pp. 819–828.

[64] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0: A Tool to Model
Large Caches,” HP Laboratories, Tech. Rep. HPL-2009-85, April 2009.

[65] C. C. Compaq, “Alpha Architecture Handbook,” October 1998.

[66] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically Characterizing Large
Scale Program Behavior,” in Proceedings of the 10th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, October 2002, pp.
45–57.

147

[67] M. Van Biesbrouck, L. Eeckhout, and B. Calder, “Representative multiprogram workloads
for multithreaded processor simulation,” in Proceedings of the 2007 IEEE International Sym-
posium on Workload Characterization (IISWC), September 2007, pp. 193–203.

[68] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E. Fernández, and M. Valero, “Fame: Fairly
measuring multithreaded architectures,” in Proceedings of the 2007 International Conference
on Parallel Architectures and Compilation Techniques, September 2007, pp. 305–316.

[69] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication in Source Code,” in
Proceedings of the 8th International Symposium on Static Analysis, July 2001, pp. 40–56.

[70] B. Black, B. Rychlik, and J. P. Shen, “The Block-based Trace Cache,” in Proceedings of the
26th International Symposium on Computer Architecture, May 1999, pp. 196–207.

[71] E. Rotenberg, S. Bennett, and J. E. Smith, “A Trace Cache Microarchitecture and Evalua-
tion,” IEEE Transactions on Computers, vol. 48, no. 2, pp. 111–120, February 1999.

[72] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel, “Optimization of Instruction Fetch
Mechanisms for High Issue Rates,” in Proceedings of the 22nd International Symposium on
Computer Architecture, June 1995, pp. 333–344.

[73] M. Behar, A. Mendelson, and A. Kolodny, “Trace Cache Sampling Filter,” in Proceedings
of the 2005 International Conference on Parallel Architectures and Compilation Techniques,
September 2005, pp. 255–266.

[74] A. Malamy, R. N. Patel, and N. M. Hayes, “Methods and aparatus for implementing a
pseudo-LRU cache memory replacement scheme with a locking feature,” United States
Patent 5353425, October 1994.

[75] R. Joseph and M. Martonosi, “Run-time Power Estimation in High Performance
Microprocessors,” in Proceedings of the 2001 international symposium on Low power
electronics and design, ser. ISLPED ’01. New York, NY, USA: ACM, 2001, pp. 135–140.
[Online]. Available: http://doi.acm.org/10.1145/383082.383119

[76] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel, A. Adileh,
D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-out processors,” in Proceedings of
the 39th International Symposium on Computer Architecture, 2012.

[77] D. Koufaty and D. T. Marr, “Hyper-Threading Technology in the Netburst Microarchitec-
ture,” IEEE Micro, vol. 23, no. 2, pp. 56–65, 2003.

[78] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid - Enabling Scalable
Virtual Organizations,” International Journal of Supercomputer Applications, vol. 15, no. 3,
pp. 200–222, August 2001.

[79] A. W. Services, “Amazon elastic compute cloud: User guide,” Tech. Rep. API Version 2009-
11-30, 2010.

[80] ARM, “Cortex-A8 Technical Reference Manual,” 2007.

[81] A. J. Smith, “Cache Memories,” ACM Computing Surveys (CSUR), vol. 14, no. 3, pp. 473–
530, September 1982.

148

[82] D. Sager, D. P. Group, and I. Corp, “The microarchitecture of the pentium 4 processor,” Intel
Technology Journal, 2001.

[83] J. Casazza, “First the tick, now the tock: Intel microarchitecture (nehalem),” Intel Corpora-
tion.

[84] F. Mohamood, M. Ghosh, and H.-H. S. Lee, “DLL-conscious Instruction Fetch Optimization
for SMT Processors,” Journal of Systems Architecture, vol. 54, pp. 1089–1100, 2008.

[85] D. H. Woo, M. Ghosh, E. Özer, S. Biles, and H.-H. S. Lee, “Reducing Energy
of Virtual Cache Synonym Lookup using Bloom Filters,” in Proceedings of the 2006
international conference on Compilers, architecture and synthesis for embedded systems,
ser. CASES ’06. New York, NY, USA: ACM, 2006, pp. 179–189. [Online]. Available:
http://doi.acm.org/10.1145/1176760.1176783

[86] X. Qiu, “The Synonym Lookaside Buffer: A Solution to the Synonym Problem in Virtual
Caches,” IEEE Transactions on Computers, vol. 57, no. 12, pp. 1585–1599, December 2008.

[87] “Enabling Grids for E-sciencE,” http://www.eu-egee.org/.

[88] C. Marco, C. Fabio, D. Alvise, C. Antonia, G. Francesco, M. Alessandro, M. Moreno,
M. Salvatore, P. Fabrizio, P. Luca, and P. Francesco, “The glite workload management sys-
tem,” in 4th International Conference on Grid and Pervasive Computing, 2009.

[89] A. Snavely and D. M. Tullsen, “Symbiotic job scheduling for a simultaneous multithreaded
processor,” ACM SIGARCH Computer Architecture News, vol. 28, no. 5, pp. 234–244, 2000.

[90] B. H. Bloom, “Space/time Trade-offs in Hash Coding with Allowable Errors,” Communica-
tions of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

Appendix A

CATCH Design Space Exploration

This appendix presents the design space exploration that we conducted to choose the best
size and associativity for HDD and DR tables. The lines in Figure 61 show the IPC for each
benchmark with respect to the left y-axis while the bars show the average IPC of all benchmarks
for each configuration with respect of the right y-axis.

A.1 HDD Design Space Exploration

Figure 61.a presents the IPC of CATCH for different HDD associativities, and an unbounded
DR when the HDD has only 512 entries. The results are for a 16KB UCC cache for valid blocks.

The figure indicates that we can achieve the maximum potential of the mechanism with 8 ways
associativity for HDD, and the performance drops rapidly when reducing the associativity.

One interesting observation from Figure 61.a is that sometimes with a lower HDD associativity
the performance of CATCH is higher for some benchmarks, for example Q8A. This happens
due to the “failure” to maintain the hashed content for all blocks in the cache because of HDD
replacements. This results in duplicated content to be inserted in the cache. The data show this
duplication to be beneficial to performance because CATCH may “allow” different mappings of
a block-content in the cache. If one of these mappings is to a set with fewer conflict misses, then
all the duplicates pointing to that block may have better performance as compared to a different
mapping.

Figure 61.b shows the IPC using CATCH with an 8-way HDD for various number of entries
and with unbounded and fully associative DR. The data indicate that a 128-entry usually provides
performance close to a 512-entry HDD.

Based on these results we decided that the best configuration for HDD should be 128 entries
with 8-way associativity.

A.2 DR Design Space Exploration

In the previous section we have concluded that 128-entry, 8-way, HDD provides performance
close to CATCH limit. This section explores the effects of associativity and size on the perfor-
mance of DR.

Using an 8-way set associative HDD with 128 entries, we have measured the performance of
DR with 1024 entries and for different associativities. These results are shown in Figure 61.c. It
is evident from the data that either a 4-way provides performance close to a fully associative DR.

149

150

1
.2

5
0

1
.2

4
1

1
.2

3
2

1
.2

2
7

1
.2

5
0

1
.2

4
8

1
.2

4
6

1
.2

3
5

1
.2

4
6

1
.2

4
6

1
.2

4
2

1
.2

4
1

1
.2

4
6

1
.2

4
5

1
.2

4
3

1
.2

4
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

8 4 2 1 512 256 128 64 8 4 2 1 1024 512 256 128

(a) HDD ways (512 entries) (b) HDD Entries (8way) (c) DR ways (1024 Entries) (d) DR Entries (4 way)

I
P

C
 o

f
e
a
c
h

 b
e
n

c
h

m
a
r
k

1.18

1.19

1.2

1.21

1.22

1.23

1.24

1.25

1.26

1.27

A
v
e
r
a
g

e
 I

P
C

 o
f

a
ll
 b

e
n

c
h

m
a
r
k
s

AVERAGE GZIP VPR GCC MCF CRAFTY PARSER EON PERLBMK

GAP VORTEX BZIP2 TWOLF WUPWISE SWIM MGRID APPLU MESA

GALGEL ART EQUAKE FACEREC AMMP LUCAS FMA3D SIXTRACK APSI

Q1F Q2F Q3F Q4F Q5F Q6F Q7A Q8A Q9A

Q10F Q11A Q12A Q13A Q14A Q15F Q16F Q17F

Figure 61: Performance potential of CATCH for a UCC using various sizes and associativity of
HDD and DR for 16KB cache for valid blocks

Furthermore, Figure 61.d shows the results for different number of entries in a 4-way asso-
ciative DR. It appears that we can reduce the required entries in DR down to 128 without loosing
much performance.

Overall, the analysis suggests that a 4-way 128-entry DR and an 8-way 128-entry HDD repre-
sent a good performing configuration.

Appendix B

Synthetic Benchmark to Exercises Instruction Caches

vo id emptyFunc () { r e t u r n ;}
u n s i g n e d long long x = 0 ;

vo id oddN () {
x = 0 ; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++;
r e t u r n ;}

vo id evenN () {
x = 0 ; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++;
r e t u r n ;}

vo id (∗ f u n c t i o n N [3]) () = {&emptyFunc ,&oddN,&evenN } ;

i n t execFlagN−1 = 1 ;
vo id oddN−1(){

x = 0 ; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++;
execFlagN−1 = execFlagN−1 && ! (d e p t h == 2) ;
i n t c a l l F u n c = g e n r a n d () & (execFlagN −1);
f u n c t i o n N [execFlagN−1 + c a l l F u n c] () ;
f u n c t i o n N [execFlagN−1 + ((c a l l F u n c ˆ 1) & execFlagN − 1)] () ;
execFlagN−1 ˆ= 1 ;
r e t u r n ;}

vo id evenN−1(){
x = 0 ; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++;
execFlagN−1 = execFlagN−1 && ! (d e p t h == 2) ;
i n t c a l l F u n c = g e n r a n d () & (execFlagN −1);
f u n c t i o n N [execFlagN−1 + c a l l F u n c] () ;
f u n c t i o n N [execFlagN−1 + ((c a l l F u n c ˆ 1) & execFlagN − 1)] () ;
execFlagN−1 ˆ= 1 ;
r e t u r n ;}

vo id (∗ func t ionN −1 [3]) () = {&emptyFunc ,&oddN−1,&evenN−1};
.
.
.
vo id (∗ f u n c t i o n 2 [3]) () = {&emptyFunc ,&odd2 ,& even2 } ;

i n t e x e c F l a g 1 = 1 ;
vo id odd1 () {

x = 0 ; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++;

151

152

e x e c F l a g 1 = e x e c F l a g 1 && ! (d e p t h == 1) ;
i n t c a l l F u n c = g e n r a n d () & (e x e c F l a g 1) ;
f u n c t i o n 2 [e x e c F l a g 1 + c a l l F u n c] () ;
f u n c t i o n 2 [e x e c F l a g 1 + ((c a l l F u n c ˆ 1) & e x e c F l a g 1)] () ;
e x e c F l a g 1 ˆ= 1 ;
r e t u r n ;}

vo id even1 () {
x = 0 ; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++; x ++;
e x e c F l a g 1 = e x e c F l a g 1 && ! (d e p t h == 1) ;
i n t c a l l F u n c = g e n r a n d () & (e x e c F l a g 1) ;
f u n c t i o n 2 [e x e c F l a g 1 + c a l l F u n c] () ;
f u n c t i o n 2 [e x e c F l a g 1 + ((c a l l F u n c ˆ 1) & e x e c F l a g 1)] () ;
e x e c F l a g 1 ˆ= 1 ;
r e t u r n ;}

vo id (∗ f u n c t i o n 1 [3]) () = {&emptyFunc ,&odd1 ,& even1 } ;

i n t main (i n t a rgc , c h a r ∗ a rgv []) {
u n s i g n e d long long i = 0 ;
u n s i g n e d long long k = a t o i (a rgv [1]) ;
d e p t h = a t o i (a rgv [2]) ;
s t r u c t t i m e v a l t s t a r t , t f i n ;
g e t t i m e o f d a y (& t s t a r t ,NULL) ;
f o r (i = 0 ; i < k ; i ++){
i n t c a l l F u n c = g e n r a n d () & (0 x1) ;
f u n c t i o n 1 [c a l l F u n c + 1] () ;

f u n c t i o n 1 [(c a l l F u n c ˆ 1) + 1] () ; }
g e t t i m e o f d a y (& t f i n ,NULL) ;
t i m e v a l s u b t r a c t (& t f i n ,& t s t a r t) ;
r e t u r n 0 ;}

Appendix C

Acronyms

Acronym Term
AB Address Based

BCU Block Compare Unit
BST Block Size Table
BTB Branch Target Buffer

CATCH CCD Detection Hardware Mechanism
CB Content Based

CCD Cache Content Duplication
CDA Content Duplication Aware
CE Computing Element

CMP Chip Multiprocessor
DAC Duplicate Aware Cache
DL1 Data Level 1
DLL Dynamic Link Library
DMC Direct Mapped Cache

DR Table Duplicate Relation Table
ETC Extrinsic Text Cloning
FVC Frequent Value Cache

HDD Table Hashed Duplicate Detection Table
IL1 Instruction Level 1
IPC Instruction Per Cycle

ITLB Instruction Translation Lookaside Buffer
IRF Instruction Register File
ISA Instruction Set Architecture
ITC Intrinsic Text Cloning

KSM Kernel SamePage Merging

153

154

Acronym Term
L1 Level 1
L2 Level 2

LLC Last Level Cache
LRU Least Recently Used
MRU Most Recently Used

PC Program Counter
PID Process Identifier
PIPT Physically Indexed Physically Tagged
OS Operating System

RAS Return Address Stack
SMT Simultaneous Multithreading
TC Text Cloning

TLB Translation Lookaside Buffer
VIVT Virtually Indexed Virtually Tagged
VIPT Virtually Indexed Physically Tagged
UCC Unique Content Cache

UI User Interface
WMS Workload Management System
WN Worker Node
ZC Zero Content

