
How to make SMT Tail Latency Friendly

ABSTRACT

In this work we investigate how to run a latency sensitive

workload on all simultaneous multithreading (SMT) contexts of a

core while improving both latency and throughput. Our study

focuses on the SMT ramifications on a web search application.

One way to run web search with SMT is to execute one

independent web search query per SMT context. This approach

improves web search throughput, because more queries can be

served in parallel, but unfortunately it is detrimental for QoS. The

culprit is single thread performance degradation due to resource

contention across SMT contexts. As a possible remedy for this

degradation, we examine the benefits of partitioning the dataset

and serving each web search query with multiple threads across

SMT contexts. Our results show this approach to improve the tail

latency of web search as compared to a baseline that does not use

SMT. Since each query is served faster, throughput is improved as

well. These findings indicate that web search is amenable to

parallelization and dataset partitioning. Our results on a real

platform show that the synergy of SMT with workload

partitioning and parallel execution improves web search

throughput and tail latencies by 1.3X.

CCS Concepts

• Computer systems organization -> Architectures

Keywords

SMT, hyper threading, web search, partitioning, online, latency

sensitive, datacenters, simultaneous multi-threading, tail, latency

1. INTRODUCTION
Simultaneous multithreading [30] is a performance feature found

often in server processors [1,2,3,27]. Datacenter and HPC

operators can choose whether to actually employ SMT or disable

it. Broadly speaking, SMT increases CPU utilization and

computational throughput by allowing multiple threads to share a

physical core’s resources (such as registers, execution units and

caches). On the flip side, SMT can have harmful effect on single

thread performance because of the contention for shared

resources. Particularly in the case of latency sensitive workloads

(online workloads), SMT can have detrimental effects on response

latencies and QoS (Quality of Service) requirements [2,3] such as

the tail latency.

A clear testament of the SMT trade-off between throughput and

response latency is presented in Figure 1. The figure analyzes the

performance implications of SMT on a web search service by

comparing a run which utilizes 8 physical cores versus a run that

utilizes 16 SMT contexts on the same 8 physical cores. More

details about this experiment and the experimental setup are given

in Sections 3 and 4. Throughput above 1 indicates that SMT is

beneficial, whereas average and 99th percentile above 1 show that

SMT is harmful to response latencies. As it is expected

throughput is increased because more threads are available to

serve independent query requests. But the average and 99th

response latency increase as well. Therefore, using SMT improves

throughput but single thread performance is degraded. Therefore,

the safest choice by a datacenter architect, that cares about

response latency of this service, will be to not use SMT.

Figure 1. Relative comparison of throughput and latencies

with and without SMT

Indeed, related work as well as anecdotal sources suggests that a

often datacenter and HPC operators prefer to not utilize SMT

[1,2,3]. Not using SMT means inefficient use of available

resources that translates to need for additional servers, higher

power and cost. Naturally, previous work attempted to identify

safe ways to collocate batch and online workloads on SMT

contexts to improve server utilization without violating QoS

requirements [2,3]. But, as far as we know, no previous published

work proposed means to leverage SMT for both throughput and

latency reduction.

This works builds on the observations of an earlier study [9] that

shows, for a web search benchmark, dataset partitioning and

parallel execution - on lower performing cores - can match both

the average and tail latency of a more powerful core without

dataset partitioning.

In particular, in this work we examine how the above observations

can enable the efficient use of SMT for servers running online

services. We show that SMT can be useful for improving both

throughput and latency of interactive services. To achieve this, we

combine dataset partitioning and parallel execution of each web

query across SMT contexts. This idea is appealing for two

reasons: a) It enables latency reduction of each web request, b)

throughput wise, it has the capacity to serve the same number of

independent web requests as a server that is deployed with SMT

disabled; furthermore, since each request is served faster,

throughput is improved as well. The proposal is evaluated using

the Cloudsuite’s web search benchmark [4] which is a

representative online service workload [4,5,6].

Our experimental results on a real platform show that the

combination of (i) dataset partitioning and (ii) parallel execution

of web search query across SMT contexts, offers significant

performance gains. Particularly, the results show approximately

1.3X improvement in throughput and tail latencies over a baseline

configuration that does not use SMT.

The rest of the paper is organized as follows. Section 2 provides

background on SMT and Web Search. Section 3 examines the

impact of SMT on Web Search. Section 4 presents the

experimental setup. Section 5 presents the experimental results.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

queries/sec latency_avg latency_99th

SM
T_

O
N

 /
 S

M
T_

O
FF

 ≥1Better
≥1 Worse ≥1 Worse

Figure 2. Illustration of pipeline behavior without and with

SMT.

Section 6 presents the related work and explains how this paper

differs from it. The paper concludes in Section 7.

2. Background
This section provides some background on SMT and web search.

2.1 SMT
Figure 2 illustrates how two threads A and B run on a core

without SMT support, or SMT disabled, and when using SMT.

Without SMT the threads run sequentially and the pipeline is

underutilized when hazards prevent instructions of one thread

from executing (empty squares in Figure 1 signify idle execution).

When SMT is enabled we can observe that pipeline utilization is

increased because the two threads can execute simultaneously and

use different processor resources. In general, with SMT the

instructions per cycle (IPC) executed by the core is increased but

single-thread performance, IPC per thread, gets worse due to

resource contention.

Most modern CPUs offer two-way SMT [11], this means that up

to two threads can simultaneously execute and share a core’s

resources. However, the impact of SMT is not always beneficial,

even for throughput oriented batch workloads (e.g. HPC

workloads). Previous work shows that some applications see

performance improvement with SMT and others do not [1,12,13].

Regarding the SMT effects on online services, the throughput may

improve, but latencies will worsen due to resource contention

[2,3].

2.2 Web Search
Web search is one of the most widely used online services [14].

Web search refers to services that respond to user queries with

relevant web documents. For example, a query with the following

keywords “how smt works” should return web pages that explain

SMT functionality. For our evaluation we use the Nutch web

search benchmark from cloudsuite [4]. Nutch benchmark is based

on Lucene [15] a widely deployed open source search engine.

The Nutch Web Search benchmark consists of four main

components that are illustrated in Figure 3 that describes the

overall architecture and information flow. Namely, the four

components are: the client, frontend server and multiple index and

document servers. The index may be partitioned across many

index servers so that each index server gets to hold a disjoint part

of the index. The index partitioning enables parallel search across

index servers. Typically index search is performed in parallel

across multiple server machines [5,7]. Document servers hold the

actual documents and they are used for fetching the summaries of

the search results. A query is executed with the following

sequence: 1) The client sends a query to the frontend server. 2)

The frontend server receives the query and asks from each index

server to return the most relevant to the query documents. 3) The

Figure 3. The basic components of the Nutch Benchmark. The

arrows show the information flow and interactions between

components during a query execution. The numbers show the

order of the execution flow.

index servers perform the search and respond to frontend with the

document Ids and the relevance scores of the top-k relevant

matching documents. 4) The frontend server collects the results

and sorts the documents according to their relevance score. 5)

After the frontend has the final top-k results, it sends a detail

request to each index server whose search results are in the

current top-k list. The index server responds to a detail request

with the title and the url for each request. 6) As soon as the

frontend has all the titles and urls of the top-k results, it asks from

the document servers the summaries of the top-k results. The

frontend is aware of which documents each document server

holds. Consequently, only the document servers which hold the

documents that are in the top-k results are asked for summaries. 7)

The document servers generate the summaries and send them to

the frontend. 8) When the frontend receives the summaries it

assembles the final html response and sends it to the client.

To summarize, a query end to end latency can be viewed as the

sum of four discrete web search phases: 1) the time spent on client

– frontend communication (client sends request, frontend

assembles the html response and sends it back to client), 2) the

index search which is performed on the index server 3) the detail

requests which are also performed on the index server, and 4) the

summary requests which are performed on the document server.

Figure 4 shows on average how much time is spent at each query

phase in relation to dataset size. This graph is obtained by

executing sequentially 100K queries and calculating the average

time spent at each phase. The sequential execution is enforced to

isolate the latencies from the effects of queuing, contentions on

shared resources, etc. The key takeaway from the figure is that the

most time is spent on index search. This conclusion is in line with

what previous work has reported, that index search is the most

important part of a web search engine [5,8,16]. Therefore unless

noted otherwise, this paper focus is on optimizing index search.

2.2.1 Parallelization benefits for Index Search
Figure 4 shows that the index search time increases linearly with

dataset size. Therefore, partitioning the dataset among multiple

index servers and performing parallel search can potentially help

decrease the search time. To confirm that indeed index search

time scales well with parallelization we split the index to 2 and 4

parts and run parallel index search. Figure 5 shows the effect of

partitioning on average and 99th percentile latencies as perceived

by the frontend server. In other words, the query latency is

measured from the time the frontend server issues search requests

to all index servers until the time the search results arrive back to

frontend. Also, queries are executed sequentially in isolation. The

figure shows that the speedup for average index search time and

99th percentile scales nearly linearly for 2 index servers. Also, the

speedup in 99th percentile is better than the speedup of the average

Figure 4. Time spent at each phase of the benchmark in

relation to dataset size. The index search is the most

demanding phase and scales with dataset size.

Figure 5. Speedup in average index search time and 99th

percentile vs the number of index servers

response time both for 2 and 4 index servers. Queries that dictate

the 99th percentile usually have much higher processing times than

the average query [3,6,9,10]. It is generally accepted that the

bigger a problem is in terms of amount of work that has to be

performed, the more it will benefit from parallelism [10].

Therefore, it is reasonable to see higher speedup for 99th

percentile. To conclude, the observed speedup both for average

and 99th percentile encourages index dataset partitioning and

parallel index search across SMT contexts.

3. SMT impact on web search
This Section presents different ways of using SMT to run an

interactive service and discusses the SMT implications on an

individual server’s performance as well as on the overall

datacenter architecture running an interactive service. The

following three possibilities are examined: a) Use one SMT

context per physical core (same effect as disabling SMT), b)

Enable SMT and execute one independent query per SMT

context, c) Enable SMT, partition the workload across SMT

contexts and execute each query in parallel.

3.1 SMT implications on server performance
Figure 6 presents the three options for how to use SMT resources

to serve web search queries. The first option is to not use SMT

(NO-SMT), the single thread performance and response latency is

best but the SMT capability remains unused. The second option is

to use SMT (“SMT” configuration) to increase the logic core

count by two; therefore, each core can serve up to two

independent queries at the same time and increase throughput.

Unfortunately, the cores are slower than a core with “No-SMT”

because of the single thread performance degradation due to

contention (see Figure 1). One way to recover the performance

loss is to reduce the dataset per server and employ more servers

each with smaller dataset. This has ramification on the datacenter

scale that is discussed subsequently.

The third configuration, the one that we propose, combines SMT

with dataset partitioning (SMT+ partitioning). This configuration

does not tradeoff latency for throughput as the “SMT”

configuration does and improves both latency and throughput over

the “NO-SMT” configuration. This is possible given (i) that

dataset partitioning does not lead to imbalance, supported by

Figure 5 that shows ~1.9X with two-way partitioninig, and (ii) the

performance degradation due to resource contention caused by

SMT scales slower than the degree of dataset partitioning

(supported by Figure 1 that shows 33% degradation with two way

SMT). Simply put, if we partition a dataset by X and use X SMT

threads in a core, then if each SMT thread has performance >1/X

as compared to NO-SMT then SMT can better both response

latency and throughout over NO-SMT. Putting it in another way,

the per query latency is improved because the parallelism benefits

from partitioning overcome the single thread slowdown due to

SMT. Naturally, the throughput of SMT+partitioning is also

higher as compared to NO-SMT since each query is executed

faster.

A broader implication of SMT+partitioning is that it may be

applicable to real life web search deployments for immediate

latency, energy and cost reduction. Of course, workload

partitioning across SMT contexts might need some development

or administrative effort, which varies depending on the

particularities of each specific web search engine. Nonetheless,

we believe that this effort is worthwhile. First of all, the proposed

approach enables the use of SMT, a feature that often remains

unexploited [3]. This helps web search providers to use more

efficiently the purchased servers. Secondly, the latency and

throughput gains observed, enable energy and cost savings.

Simply put, SMT+partitioning improves server performance and,

thus, for the same amount of work fewer servers can be used

which can translate to energy and cost savings.

There are two ways to implement the SMT+partitioning

configuration regarding query and data locality. We can either aim

for query locality by enforcing SMT contexts of the same physical

core to perform search on the same query but different index data;

or we can strive for index data locality by enforcing SMT contexts

of the same physical core to perform search on the same index

data but for different queries. We will evaluate which option is

better in the experimental section.

To summarize, Table I qualitatively shows how each

configuration affects the latency and throughput. No-SMT is the

baseline; therefore, it has a neutral effect on throughput and

latency. “SMT” gives better throughput but worse latency

compared to No-SMT. And SMT+partitioning has better latency

and throughput greater or at least equal to “No-SMT”.

3.2 SMT implications on the datacenter

architecture
From a single server perspective, the “SMT+partitioning” looks

like the winner configuration. It provides both throughput and

latency improvement at the server level over the “No-SMT”

configuration. But from a datacenter total cost of ownership

(TCO) point of view it is not so trivial to draw conclusions.

0.00

5.00

10.00

15.00

20.00

4 14 24 34 44 54 64

Ti
m

e
 s

p
e

n
t

in
 m

s

Dataset Size (GB)

Search

Detail

Summary

Client Frontend Communication

0

1

2

3

4

1 2 4

sp
e

e
d

u
p

of index servers

speedup avg
speedup 99th

In particular, assuming that the NO-SMT configuration satisfies

QoS goals, then the SMT+partitioning configuration enables to

increase of index dataset per server while achieving the same QoS

and throughput as the No-SMT configuration. This essentially

translates to TCO reduction since fewer servers can be used to

achieve the same level of performance.

On the other hand, the “SMT” configuration can match the No-

SMT QoS by decreasing the amount of index dataset per server

and deploy more servers to accommodate the dataset. Acquisition

of more servers increases the TCO but the “SMT” configuration

offers 2X more throughput while achieving the same QoS as the

other configurations. Therefore, in terms of throughput/$ the SMT

might seem winner configuration. Still, though, it is hard to

conclude if such deployment would be advantageous because the

use of more servers to serve each query (as the dataset needed to

be searched is spread in more servers), can have impact on the tail

latencies of the whole cluster due to aggregation overheads, load

imbalance and other performance variability sources [30]. The

implications of scaling the number of servers on the tail latencies

is an important and interesting problem but out of the scope of this

paper. In future work we will try to evaluate the scaling overheads

over multiple servers and evaluate how the two SMT

configurations compare in terms of a holistic datacenter point of

view.

4. Experimental Setup
For the experimental analysis we use dual socket blade servers

based on Intel Xeon E5620@2.4 GHz CPU. Table II provides the

details of the blade server hardware. The experiments are

conducted with 3 blade servers: one client, one frontend server

and one index server. The machines are connected through 1Gb

Ethernet. Experiments are performed with CPU constantly

running at the max frequency of 2.4GHz. Our blade server has

eight physical cores. Each physical core supports two-way SMT.

Therefore, the total number of available SMT contexts is equal to

16.

For query stream we use 100K real life queries taken from the

AOL query log [26]. Queries are sent in a stress test manner

meaning each client thread sends a new query as soon as it

receives the response for the previous one. Unless stated

otherwise, eight client threads are used in the runs because we

find that this number is sufficient to utilize all the 8 physical cores

of our blade server. To set up the SMT+partitioning configuration

we run two index server processes on the index server machine.

Each index server utilizes 8 SMT contexts. We use taskset

command to set the affinity of index servers. We have two options

for setting the index server affinity. One option enforces query

locality and the other option enforces index data locality among

SMT contexts that belong to the same physical core. For instance,

index server #1 may utilize one SMT context from each physical

core and index server #2 may utilize the rest SMT contexts.

Essentially, this way we enforce SMT contexts of a physical core

to perform search on the same query but on different index data.

Basically this option enforces query locality during execution.

The other option is to force index server #1 to utilize all SMT

contexts of the first four physical cores and index server #2 to

utilize all SMT contexts of the last four physical cores. This way

index data locality is achieved by enforcing SMT contexts that

belong to the same physical core, to perform search on the same

index data but for different query. We will examine in the

experimental results section which option is better. For the index

dataset we used the one which comes with the CloudSuite Simics

images [20]. We are using a 5GB index.

Table I. Tables shows qualitatively how each configuration

affects latency and throughput.

Configuration Throughput Latency

No-SMT ++ ++

SMT +++ +

SMT+partitioning ++(+) +++

Figure 6. Illustration of how queries are executed without

SMT, with SMT and with SMT combined with index

partitioning

Table II. Server system parameters

5. Experimental Results

5.1 SMT Throughput vs Latency tradeoff
Figure 1 shows how SMT impacts the throughput and latency of a

server running index search. We evaluate the SMT impact on

index search performance by comparing a web search run which

utilizes 8 physical cores versus a run that utilizes 16 SMT

contexts (our CPU has eight physical cores that support two-way

SMT). The No-SMT configuration is being stressed with eight

client threads, whereas the SMT configuration is stressed with 16

client threads. The SMT configuration uses more clients to better

assess the throughput benefits of SMT; whereas the No-SMT

configuration uses eight client threads to prevent latencies from

being dominated by queuing effects. The throughput is increased

approximately ~1.35X with SMT because more threads are

available to serve independent query requests. But the average and

99th latency increase approximately by ~1.5X. With SMT enabled

single thread performance is degraded; therefore, each query is

served slower compared to the 8 physical cores configuration.

Number of CPUs 2

CPU

Intel Xeon E5620 @

2.4GHz

Number of physical

cores per CPU 4

Number of logical cores

(SMT contexts) per CPU 8

DRAM 32GB DDR3 1066MHz

Ethernet speed 1Gb

Figure 7. Throughput comparison between two different ways

for combining SMT with partitioning

Figure 8. Latency comparison between two different ways for

combining SMT with partitioning

5.2 Performance with Different SMT

Configurations
The results in Figures 7 and 8 examine how is better to run the

SMT+partitioning configuration: with query locality or with index

data locality (Section 3,4). Intuitively the index data locality will

provide better opportunities for caching and, therefore, better

performance. Figure 7 compares the two configurations in terms

of throughput and Figure 8 in terms of average latency and 99th

percentile. Indeed, data locality provides better throughput and

lower latency. Thus, for the rest of this section this configuration

will be used for assessing SMT+partitioning.

Figure 9 compares the No-SMT configuration with the

SMT+partitioning in terms of throughput and Figure 10 in terms

of response latency. SMT+partitioning provides 1.28X better

throughput, 1.25X lower average response time and 1.34X lower

99th percentile tail latency. The results show that the latency

improvement from index partitioning and parallel execution

across SMT contexts, overcomes the single thread performance

degradation caused by SMT. This yields latency and throughput

improvement over the configuration that does not use SMT.

6. Related work
This section presents the related work and describes how this

paper differs from previous work.

The impact of SMT on the performance of HPC application is

examined in [1,12,13]. Also, the following works [21,22,23,24]

examined the SMT impact on the performance of operating

system, database and network workloads. [4] examined the impact

Figure 9. Throughput comparison

Figure 10. Latency comparison

of SMT on cloud workloads but only from the perspective of

throughput not from the perspective of QoS. In [2,3] they identify

that SMT has detrimental effect to QoS of online cloud workloads

and attempted to provide solutions for increasing server utilization

by enabling the use of SMT without increasing the server

latencies. On the other hand, our work does not examine SMT

colocation but shows how a parallel online workload can exploit

SMT for improving latency. The closest related work is [22]

which evaluated parallel execution of database queries across

SMT contexts.

Also, in [8,9,25] the authors examined how web search can

benefit from parallel execution across CPU cores. Again this work

is very similar to ours with the key difference been that previous

work does not evaluate parallelism across SMT contexts. Actually

a lot of previous works does not use SMT for easing the analysis.

This shows that SMT is a feature often left unexploited and

underlines the importance of understanding how to use SMT more

efficiently.

7. Conclusions
The main contribution of this paper is to show that SMT can be

latency friendly for interactive services that are amenable to

dataset partitioning and parallel execution. The experimental

findings indicate that the proposed approach can help servers used

for web search to utilize more efficiently and effectively their

SMT capable servers.

For future work we plan to evaluate the SMT impact on

performance of more cloud workloads. We plan to evaluate

partitioning across SMT contexts on other workloads or evaluate

other ways to exploit SMT for the favor of latencies. Also, we

plan to enrich our work with: a) power measurements, b) analysis

of how scaling at multiple servers affects the tail latencies, and c)

TCO estimations.

0

200

400

600

800

1000

SMT+partitioning
(data locality)

SMt+partitioning
(query locality)

th
ro

u
gh

p
u

t
(q

u
e

ri
e

s/
se

c)

0

10

20

30

40

50

60

SMT+partitioning (data
locality)

SMt+partitioning (query
locality)

la
te

n
cy

 (
m

s)

average (ms)

99th (ms)

0

200

400

600

800

1000

No-SMT SMT+partitioning

th
ro

u
gh

p
u

t
(q

u
e

ri
e

s/
se

c)

0

20

40

60

80

No-SMT SMT+partitioning

la
te

n
cy

 (
m

s)

average (ms)

99th (ms)

8. REFERENCES
[1] Porter, Leo, et al. "Making the most of smt in hpc: System-

and application-level perspectives." ACM Transactions on

Architecture and Code Optimization (TACO) 11.4 (2015):

59.

[2] Zhang, Yunqi, et al. "Smite: Precise qos prediction on real-

system smt processors to improve utilization in warehouse

scale computers." Proceedings of the 47th Annual

IEEE/ACM International Symposium on Microarchitecture.

IEEE Computer Society, 2014.

[3] Yang, Xi, et al. "Elfen Scheduling: Fine-Grain Principled

Borrowing from Latency-Critical Workloads Using

Simultaneous Multithreading." 2016 USENIX Annual

Technical Conference (USENIX ATC 16). 2016.

[4] Ferdman, Michael, et al. "Clearing the clouds: a study of

emerging scale-out workloads on modern hardware." ACM

SIGPLAN Notices. Vol. 47. No. 4. ACM, 2012.

[5] Meisner, David, et al. "Power management of online data-

intensive services." Computer Architecture (ISCA), 2011

38th Annual International Symposium on. IEEE, 2011.

[6] Ren, Shaolei, et al. "Exploiting processor heterogeneity in

interactive services." Proceedings of the 10th International

Conference on Autonomic Computing (ICAC 13). 2013.

[7] Barroso, Luiz André, Jeffrey Dean, and Urs Holzle. "Web

search for a planet: The Google cluster architecture." IEEE

micro 23.2 (2003): 22-28.

[8] Jeon, Myeongjae, et al. "Adaptive parallelism for web

search." Proceedings of the 8th ACM European Conference

on Computer Systems. ACM, 2013.

[9] Hadjilambrou, Zacharias, Marios Kleanthous, and Yanos

Sazeides. "Characterization and analysis of a web search

benchmark." Performance Analysis of Systems and Software

(ISPASS), 2015 IEEE International Symposium on. IEEE,

2015.

[10] Jeon, Myeongjae, et al. "Predictive parallelization: Taming

tail latencies in web search." Proceedings of the 37th

international ACM SIGIR conference on Research &

development in information retrieval. ACM, 2014.

[11] Marr, Deborah T., et al. "Hyper-Threading Technology

Architecture and Microarchitecture." Intel Technology

Journal 6.1 (2002).

[12] Saini, Subhash, et al. "The impact of hyper-threading on

processor resource utilization in production applications."

High Performance Computing (HiPC), 2011 18th

International Conference on. IEEE, 2011.

[13] Esmaeilzadeh, Hadi, et al. "Looking back on the language

and hardware revolutions: measured power, performance,

and scaling." ACM SIGARCH Computer Architecture News.

Vol. 39. No. 1. ACM, 2011.

[14] http://www.internetlivestats.com/google-search-statistics/

[15] Apache Lucene. http://lucene.apache.org/, 2014.

[16] Reddi, Vijay Janapa, et al. "Web search using mobile cores."

Proceedings of the 37th annual international symposium on

Computer architecture (ISCA). 2010.

[17] T. Hoff. Latency Is Everywhere And It Costs You Sales –

How To Crush It, 2009. http://highscalability.com/latency-

everywhere-and-it-costs-you-sales-how-crush-it

[18] E. Schurman and J. Brutlag. The user and business impact of

server delays, additional bytes, and http chunking in web

search. 2009

[19] Mars, Jason, et al. "Bubble-up: Increasing utilization in

modern warehouse scale computers via sensible co-

locations." Proceedings of the 44th annual IEEE/ACM

International Symposium on Microarchitecture. ACM, 2011.

[20] Simics images page

http://parsa.epfl.ch/cloudsuite/downloads.html

[21] Lo, Jack L., et al. "An analysis of database workload

performance on simultaneous multithreaded

processors." ACM SIGARCH Computer Architecture News.

Vol. 26. No. 3. IEEE Computer Society, 1998.

[22] Zhou, Jingren, et al. "Improving database performance on

simultaneous multithreading processors." Proceedings of the

31st international conference on Very large data bases.

VLDB Endowment, 2005.

[23] Ruan, Yaoping, et al. "Evaluating the impact of simultaneous

multithreading on network servers using real

hardware." ACM SIGMETRICS Performance Evaluation

Review. Vol. 33. No. 1. ACM, 2005.

[24] Redstone, Joshua A., Susan J. Eggers, and Henry M. Levy.

"An analysis of operating system behavior on a simultaneous

multithreaded architecture."ACM SIGPLAN Notices 35.11

(2000): 245-256.

[25] Tatikonda, Shirish, B. Barla Cambazoglu, and Flavio P.

Junqueira. "Posting list intersection on multicore

architectures." SIGIR 2011

[26] Pass, G., Chowdhury, A., and Torgeson, C. A picture of

search. InfoScale ‘06

[27] Kanev, Svilen, et al. "Profiling a warehouse-scale computer."

2015 ACM/IEEE 42nd Annual International Symposium on

Computer Architecture (ISCA). IEEE, 2015.

[28] Barroso, Luiz André, Jimmy Clidaras, and Urs Hölzle. "The

datacenter as a computer: An introduction to the design of

warehouse-scale machines." Synthesis lectures on computer

architecture 8.3 (2013): 1-154.

[29] Hölzle, Urs. "Brawny cores still beat wimpy cores, most of

the time." IEEE Micro 30.4 (2010).

[30] Tullsen, Dean M., Susan J. Eggers, and Henry M. Levy.

"Simultaneous multithreading: Maximizing on-chip

parallelism." ACM SIGARCH Computer Architecture News.

Vol. 23. No. 2. ACM, 1995

http://www.internetlivestats.com/google-search-statistics/
http://parsa.epfl.ch/cloudsuite/downloads.html

