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ABSTRACT 

In this work we investigate how to run a latency sensitive 

workload on all simultaneous multithreading (SMT) contexts of a 

core while improving both latency and throughput. Our study 

focuses on the SMT ramifications on a web search application. 

One way to run web search with SMT is to execute one 

independent web search query per SMT context. This approach 

improves web search throughput, because more queries can be 

served in parallel, but unfortunately it is detrimental for QoS. The 

culprit is single thread performance degradation due to resource 

contention across SMT contexts. As a possible remedy for this 

degradation, we examine the benefits of partitioning the dataset 

and serving each web search query with multiple threads across 

SMT contexts. Our results show this approach to improve the tail 

latency of web search as compared to a baseline that does not use 

SMT. Since each query is served faster, throughput is improved as 

well. These findings indicate that web search is amenable to 

parallelization and dataset partitioning. Our results on a real 

platform show that the synergy of SMT with workload 

partitioning and parallel execution improves web search 

throughput and tail latencies by 1.3X.  
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1. INTRODUCTION 
Simultaneous multithreading [30] is a performance feature found 

often in server processors [1,2,3,27]. Datacenter and HPC 

operators can choose whether to actually employ SMT or disable 

it. Broadly speaking, SMT increases CPU utilization and 

computational throughput by allowing multiple threads to share a 

physical core’s resources (such as registers, execution units and 

caches). On the flip side, SMT can have harmful effect on single 

thread performance because of the contention for shared 

resources. Particularly in the case of latency sensitive workloads 

(online workloads), SMT can have detrimental effects on response 

latencies and QoS (Quality of Service) requirements [2,3] such as 

the tail latency.  

A clear testament of the SMT trade-off between throughput and 

response latency is presented in Figure 1. The figure analyzes the 

performance implications of SMT on a web search service by 

comparing a run which utilizes 8 physical cores versus a run that 

utilizes 16 SMT contexts on the same 8 physical cores. More 

details about this experiment and the experimental setup are given 

in Sections 3 and 4. Throughput above 1 indicates that SMT is 

beneficial, whereas average and 99th percentile above 1 show that 

SMT is harmful to response latencies. As it is expected 

throughput is increased because more threads are available to 

serve independent query requests. But the average and 99th 

response latency increase as well. Therefore, using SMT improves 

throughput but single thread performance is degraded. Therefore, 

the safest choice by a datacenter architect, that cares about 

response latency of this service, will be to not use SMT.  

 

Figure 1. Relative comparison of throughput and latencies 

with and without SMT 

Indeed, related work as well as anecdotal sources suggests that a 

often datacenter and HPC operators prefer to not utilize SMT 

[1,2,3]. Not using SMT means inefficient use of available 

resources that translates to need for additional servers, higher 

power and cost. Naturally, previous work attempted to identify 

safe ways to collocate batch and online workloads on SMT 

contexts to improve server utilization without violating QoS 

requirements [2,3]. But, as far as we know, no previous published 

work proposed means to leverage SMT for both throughput and 

latency reduction.  

This works builds on the observations of an earlier study [9] that 

shows, for a web search benchmark, dataset partitioning and 

parallel execution - on lower performing cores - can match both 

the average and tail latency of a more powerful core without 

dataset partitioning.  

In particular, in this work we examine how the above observations 

can enable the efficient use of SMT for servers running online 

services. We show that SMT can be useful for improving both 

throughput and latency of interactive services. To achieve this, we 

combine dataset partitioning and parallel execution of each web 

query across SMT contexts. This idea is appealing for two 

reasons: a) It enables latency reduction of each web request, b) 

throughput wise, it has the capacity to serve the same number of 

independent web requests as a server that is deployed with SMT 

disabled; furthermore, since each request is served faster, 

throughput is improved as well. The proposal is evaluated using 

the Cloudsuite’s web search benchmark [4] which is a 

representative online service workload [4,5,6].  

Our experimental results on a real platform show that the 

combination of (i) dataset partitioning and (ii) parallel execution 

of web search query across SMT contexts, offers significant 

performance gains. Particularly, the results show approximately 

1.3X improvement in throughput and tail latencies over a baseline 

configuration that does not use SMT.  

The rest of the paper is organized as follows. Section 2 provides 

background on SMT and Web Search. Section 3 examines the 

impact of SMT on Web Search. Section 4 presents the 

experimental setup. Section 5 presents the experimental results.  
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Figure 2. Illustration of pipeline behavior without and with 

SMT. 

Section 6 presents the related work and explains how this paper 

differs from it. The paper concludes in Section 7.   

2. Background 
This section provides some background on SMT and web search.  

2.1 SMT 
Figure 2 illustrates how two threads A and B run on a core 

without SMT support, or SMT disabled, and when using SMT. 

Without SMT the threads run sequentially and the pipeline is 

underutilized when hazards prevent instructions of one thread 

from executing (empty squares in Figure 1 signify idle execution). 

When SMT is enabled we can observe that pipeline utilization is 

increased because the two threads can execute simultaneously and 

use different processor resources. In general, with SMT the 

instructions per cycle (IPC) executed by the core is increased but 

single-thread performance, IPC per thread, gets worse due to 

resource contention.  

Most modern CPUs offer two-way SMT [11], this means that up 

to two threads can simultaneously execute and share a core’s 

resources. However, the impact of SMT is not always beneficial, 

even for throughput oriented batch workloads (e.g. HPC 

workloads). Previous work shows that some applications see 

performance improvement with SMT and others do not [1,12,13].  

Regarding the SMT effects on online services, the throughput may 

improve, but latencies will worsen due to resource contention 

[2,3]. 

2.2 Web Search 
Web search is one of the most widely used online services [14]. 

Web search refers to services that respond to user queries with 

relevant web documents. For example, a query with the following 

keywords “how smt works” should return web pages that explain 

SMT functionality. For our evaluation we use the Nutch web 

search benchmark from cloudsuite [4]. Nutch benchmark is based 

on Lucene [15] a widely deployed open source search engine.  

The Nutch Web Search benchmark consists of four main 

components that are illustrated in Figure 3 that describes the 

overall architecture and information flow. Namely, the four 

components are: the client, frontend server and multiple index and 

document servers. The index may be partitioned across many 

index servers so that each index server gets to hold a disjoint part 

of the index. The index partitioning enables parallel search across 

index servers. Typically index search is performed in parallel 

across multiple server machines [5,7].  Document servers hold the 

actual documents and they are used for fetching the summaries of 

the search results. A query is executed with the following 

sequence: 1) The client sends a query to the frontend server. 2) 

The frontend server receives the query and asks from each index 

server to return the most relevant to the query documents. 3) The  

 

Figure 3. The basic components of the Nutch Benchmark. The 

arrows show the information flow and interactions between 

components during a query execution. The numbers show the 

order of the execution flow. 

index servers perform the search and respond to frontend with the 

document Ids and the relevance scores of the top-k relevant 

matching documents. 4) The frontend server collects the results 

and sorts the documents according to their relevance score. 5) 

After the frontend has the final top-k results, it sends a detail 

request to each index server whose search results are in the 

current top-k list. The index server responds to a detail request 

with the title and the url for each request.  6) As soon as the 

frontend has all the titles and urls of the top-k results, it asks from 

the document servers the summaries of the top-k results. The 

frontend is aware of which documents each document server 

holds. Consequently, only the document servers which hold the 

documents that are in the top-k results are asked for summaries. 7) 

The document servers generate the summaries and send them to 

the frontend. 8) When the frontend receives the summaries it 

assembles the final html response and sends it to the client. 

To summarize, a query end to end latency can be viewed as the 

sum of four discrete web search phases: 1) the time spent on client 

– frontend communication (client sends request, frontend 

assembles the html response and sends it back to client), 2) the 

index search which is performed on the index server 3) the detail 

requests which are also performed on the index server, and 4) the 

summary requests which are performed on the document server. 

Figure 4 shows on average how much time is spent at each query 

phase in relation to dataset size. This graph is obtained by 

executing sequentially 100K queries and calculating the average 

time spent at each phase. The sequential execution is enforced to 

isolate the latencies from the effects of queuing, contentions on 

shared resources, etc. The key takeaway from the figure is that the 

most time is spent on index search. This conclusion is in line with 

what previous work has reported, that index search is the most 

important part of a web search engine [5,8,16]. Therefore unless 

noted otherwise, this paper focus is on optimizing index search. 

2.2.1 Parallelization benefits for Index Search  
Figure 4 shows that the index search time increases linearly with 

dataset size. Therefore, partitioning the dataset among multiple 

index servers and performing parallel search can potentially help 

decrease the search time. To confirm that indeed index search 

time scales well with parallelization we split the index to 2 and 4 

parts and run parallel index search. Figure 5 shows the effect of 

partitioning on average and 99th percentile latencies as perceived 

by the frontend server. In other words, the query latency is 

measured from the time the frontend server issues search requests 

to all index servers until the time the search results arrive back to 

frontend. Also, queries are executed sequentially in isolation. The 

figure shows that the speedup for average index search time and 

99th percentile scales nearly linearly for 2 index servers. Also, the 

speedup in 99th percentile is better than the speedup of the average  



 

Figure 4. Time spent at each phase of the benchmark in 

relation to dataset size. The index search is the most 

demanding phase and scales with dataset size. 

 

Figure 5. Speedup in average index search time and 99th 

percentile vs the number of index servers 

response time both for 2 and 4 index servers. Queries that dictate 

the 99th percentile usually have much higher processing times than 

the average query [3,6,9,10]. It is generally accepted that the 

bigger a problem is in terms of amount of work that has to be 

performed, the more it will benefit from parallelism [10]. 

Therefore, it is reasonable to see higher speedup for 99th 

percentile. To conclude, the observed speedup both for average 

and 99th percentile encourages index dataset partitioning and 

parallel index search across SMT contexts.  

3. SMT impact on web search 
This Section presents different ways of using SMT to run an 

interactive service and discusses the SMT implications on an 

individual server’s performance as well as on the overall 

datacenter architecture running an interactive service. The 

following three possibilities are examined: a) Use one SMT 

context per physical core (same effect as disabling SMT), b) 

Enable SMT and execute one independent query per SMT 

context, c) Enable SMT, partition the workload across SMT 

contexts and execute each query in parallel. 

3.1 SMT implications on server performance 
Figure 6 presents the three options for how to use SMT resources 

to serve web search queries. The first option is to not use SMT 

(NO-SMT), the single thread performance and response latency is 

best but the SMT capability remains unused. The second option is 

to use SMT (“SMT” configuration) to increase the logic core 

count by two; therefore, each core can serve up to two 

independent queries at the same time and increase throughput. 

Unfortunately, the cores are slower than a core with “No-SMT” 

because of the single thread performance degradation due to 

contention (see Figure 1). One way to recover the performance 

loss is to reduce the dataset per server and employ more servers 

each with smaller dataset. This has ramification on the datacenter 

scale that is discussed subsequently.  

The third configuration, the one that we propose, combines SMT 

with dataset partitioning (SMT+ partitioning). This configuration 

does not tradeoff latency for throughput as the “SMT” 

configuration does and improves both latency and throughput over 

the “NO-SMT” configuration. This is possible given (i) that 

dataset partitioning does not lead to imbalance, supported by 

Figure 5 that shows ~1.9X with two-way partitioninig, and (ii) the 

performance degradation due to resource contention caused by 

SMT scales slower than the degree of dataset partitioning 

(supported by Figure 1 that shows 33% degradation with two way 

SMT). Simply put, if we partition a dataset by X and use X SMT 

threads in a core, then if each SMT thread has performance >1/X 

as compared to NO-SMT then SMT can better both response 

latency and throughout over NO-SMT. Putting it in another way, 

the per query latency is improved because the parallelism benefits 

from partitioning overcome the single thread slowdown due to 

SMT. Naturally, the throughput of SMT+partitioning is also 

higher as compared to NO-SMT since each query is executed 

faster. 

A broader implication of SMT+partitioning is that it may be 

applicable to real life web search deployments for immediate 

latency, energy and cost reduction. Of course, workload 

partitioning across SMT contexts might need some development 

or administrative effort, which varies depending on the 

particularities of each specific web search engine. Nonetheless, 

we believe that this effort is worthwhile. First of all, the proposed 

approach enables the use of SMT, a feature that often remains 

unexploited [3]. This helps web search providers to use more 

efficiently the purchased servers. Secondly, the latency and 

throughput gains observed, enable energy and cost savings. 

Simply put, SMT+partitioning improves server performance and, 

thus, for the same amount of work fewer servers can be used 

which can translate to energy and cost savings. 

There are two ways to implement the SMT+partitioning 

configuration regarding query and data locality. We can either aim 

for query locality by enforcing SMT contexts of the same physical 

core to perform search on the same query but different index data; 

or we can strive for index data locality by enforcing SMT contexts 

of the same physical core to perform search on the same index 

data but for different queries. We will evaluate which option is 

better in the experimental section.   

To summarize, Table I qualitatively shows how each 

configuration affects the latency and throughput. No-SMT is the 

baseline; therefore, it has a neutral effect on throughput and 

latency. “SMT” gives better throughput but worse latency 

compared to No-SMT. And SMT+partitioning has better latency 

and throughput greater or at least equal to “No-SMT”. 

3.2 SMT implications on the datacenter 

architecture 
From a single server perspective, the “SMT+partitioning” looks 

like the winner configuration. It provides both throughput and 

latency improvement at the server level over the “No-SMT” 

configuration. But from a datacenter total cost of ownership 

(TCO) point of view it is not so trivial to draw conclusions.  
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In particular, assuming that the NO-SMT configuration satisfies 

QoS goals, then the SMT+partitioning configuration enables to 

increase of index dataset per server while achieving the same QoS 

and throughput as the No-SMT configuration. This essentially 

translates to TCO reduction since fewer servers can be used to 

achieve the same level of performance.  

On the other hand, the “SMT” configuration can match the No-

SMT QoS by decreasing the amount of index dataset per server 

and deploy more servers to accommodate the dataset. Acquisition 

of more servers increases the TCO but the “SMT” configuration 

offers 2X more throughput while achieving the same QoS as the 

other configurations. Therefore, in terms of throughput/$ the SMT 

might seem winner configuration. Still, though, it is hard to 

conclude if such deployment would be advantageous because the 

use of more servers to serve each query (as the dataset needed to 

be searched is spread in more servers), can have impact on the tail 

latencies of the whole cluster due to aggregation overheads, load 

imbalance and other performance variability sources [30]. The 

implications of scaling the number of servers on the tail latencies 

is an important and interesting problem but out of the scope of this 

paper. In future work we will try to evaluate the scaling overheads 

over multiple servers and evaluate how the two SMT 

configurations compare in terms of a holistic datacenter point of 

view. 

4. Experimental Setup 
For the experimental analysis we use dual socket blade servers 

based on Intel Xeon E5620@2.4 GHz CPU. Table II provides the 

details of the blade server hardware. The experiments are 

conducted with 3 blade servers: one client, one frontend server 

and one index server. The machines are connected through 1Gb 

Ethernet. Experiments are performed with CPU constantly 

running at the max frequency of 2.4GHz. Our blade server has 

eight physical cores. Each physical core supports two-way SMT. 

Therefore, the total number of available SMT contexts is equal to 

16. 

For query stream we use 100K real life queries taken from the 

AOL query log [26]. Queries are sent in a stress test manner 

meaning each client thread sends a new query as soon as it 

receives the response for the previous one. Unless stated 

otherwise, eight client threads are used in the runs because we 

find that this number is sufficient to utilize all the 8 physical cores 

of our blade server. To set up the SMT+partitioning configuration 

we run two index server processes on the index server machine. 

Each index server utilizes 8 SMT contexts. We use taskset 

command to set the affinity of index servers. We have two options 

for setting the index server affinity. One option enforces query 

locality and the other option enforces index data locality among 

SMT contexts that belong to the same physical core. For instance, 

index server #1 may utilize one SMT context from each physical 

core and index server #2 may utilize the rest SMT contexts. 

Essentially, this way we enforce SMT contexts of a physical core 

to perform search on the same query but on different index data. 

Basically this option enforces query locality during execution. 

The other option is to force index server #1 to utilize all SMT 

contexts of the first four physical cores and index server #2 to 

utilize all SMT contexts of the last four physical cores. This way 

index data locality is achieved by enforcing SMT contexts that 

belong to the same physical core, to perform search on the same 

index data but for different query. We will examine in the 

experimental results section which option is better. For the index 

dataset we used the one which comes with the CloudSuite Simics 

images [20]. We are using a 5GB index. 

Table I. Tables shows qualitatively how each configuration 

affects latency and throughput. 

Configuration Throughput Latency 

No-SMT ++ ++ 

SMT +++ + 

SMT+partitioning ++(+) +++ 
 

 

Figure 6. Illustration of how queries are executed without 

SMT, with SMT and with SMT combined with index 

partitioning 

Table II. Server system parameters 

 

5. Experimental Results 

5.1 SMT Throughput vs Latency tradeoff 
Figure 1 shows how SMT impacts the throughput and latency of a 

server running index search. We evaluate the SMT impact on 

index search performance by comparing a web search run which 

utilizes 8 physical cores versus a run that utilizes 16 SMT 

contexts (our CPU has eight physical cores that support two-way 

SMT).  The No-SMT configuration is being stressed with eight 

client threads, whereas the SMT configuration is stressed with 16 

client threads. The SMT configuration uses more clients to better 

assess the throughput benefits of SMT; whereas the No-SMT 

configuration uses eight client threads to prevent latencies from 

being dominated by queuing effects. The throughput is increased 

approximately ~1.35X with SMT because more threads are 

available to serve independent query requests. But the average and 

99th latency increase approximately by ~1.5X. With SMT enabled 

single thread performance is degraded; therefore, each query is 

served slower compared to the 8 physical cores configuration.  

Number of CPUs 2 

CPU 

Intel Xeon E5620 @ 

2.4GHz 

Number of physical 

cores per CPU 4 

Number of logical  cores 

(SMT contexts) per CPU 8 

DRAM 32GB DDR3 1066MHz 

Ethernet speed 1Gb 



 

Figure 7. Throughput comparison between two different ways 

for combining SMT with partitioning 

 

 

Figure 8. Latency comparison between two different ways for 

combining SMT with partitioning 

 

5.2 Performance with Different SMT 

Configurations 
The results in Figures 7 and 8 examine how is better to run the 

SMT+partitioning configuration: with query locality or with index 

data locality (Section 3,4). Intuitively the index data locality will 

provide better opportunities for caching and, therefore, better 

performance. Figure 7 compares the two configurations in terms 

of throughput and Figure 8 in terms of average latency and 99th 

percentile. Indeed, data locality provides better throughput and 

lower latency. Thus, for the rest of this section this configuration 

will be used for assessing SMT+partitioning. 

Figure 9 compares the No-SMT configuration with the 

SMT+partitioning in terms of throughput and Figure 10 in terms 

of response latency. SMT+partitioning provides 1.28X better 

throughput, 1.25X lower average response time and 1.34X lower 

99th percentile tail latency. The results show that the latency 

improvement from index partitioning and parallel execution 

across SMT contexts, overcomes the single thread performance 

degradation caused by SMT. This yields latency and throughput 

improvement over the configuration that does not use SMT. 

6. Related work 
This section presents the related work and describes how this 

paper differs from previous work.  

The impact of SMT on the performance of HPC application is 

examined in [1,12,13]. Also, the following works [21,22,23,24] 

examined the SMT impact on the performance of operating 

system, database and network workloads. [4] examined the impact 

 

Figure 9. Throughput comparison 

 

 

Figure 10. Latency comparison 

of SMT on cloud workloads but only from the perspective of 

throughput not from the perspective of QoS. In [2,3] they identify 

that SMT has detrimental effect to QoS of online cloud workloads 

and attempted to provide solutions for increasing server utilization 

by enabling the use of SMT without increasing the server 

latencies. On the other hand, our work does not examine SMT 

colocation but shows how a parallel online workload can exploit 

SMT for improving latency. The closest related work is [22] 

which evaluated parallel execution of database queries across 

SMT contexts.  

Also, in [8,9,25] the authors examined how web search can 

benefit from parallel execution across CPU cores. Again this work 

is very similar to ours with the key difference been that previous 

work does not evaluate parallelism across SMT contexts. Actually 

a lot of previous works does not use SMT for easing the analysis. 

This shows that SMT is a feature often left unexploited and 

underlines the importance of understanding how to use SMT more 

efficiently.     

7. Conclusions 
The main contribution of this paper is to show that SMT can be 

latency friendly for interactive services that are amenable to 

dataset partitioning and parallel execution. The experimental 

findings indicate that the proposed approach can help servers used 

for web search to utilize more efficiently and effectively their 

SMT capable servers.  

For future work we plan to evaluate the SMT impact on 

performance of more cloud workloads. We plan to evaluate 

partitioning across SMT contexts on other workloads or evaluate 

other ways to exploit SMT for the favor of latencies. Also, we 

plan to enrich our work with: a) power measurements, b) analysis 

of how scaling at multiple servers affects the tail latencies, and c) 

TCO estimations. 
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