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Abstract— Continuous circuit and wire miniaturization in-
creasingly exert more pressure on the computer designers to
address the issue of reliable operation in the presence of faults.
Virtually all previous work on processor reliability addresses
problems due to faults in architectural structures, such as the
register file or caches. However, faults can happen in non-
architectural resources, such as predictors and replacement bits.
Although non-architectural faults do not affect correctness they
can degrade a processor performance significantly and, therefore,
may render them as important to deal with as architectural faults.

This paper quantifies the performance implications of faults
in a line-predictor, and shows that performance can drop signif-
icantly when the line-predictor has faulty entries. In particular,
a simulation based worst-case analysis of a high-end processor
that experiences faults in 1% of the entries in the line-predictor,
revealed an average performance degradation of 8% and up to
26%.

For solutions we point at no bit-interleaving as a more fault-
tolerant design style for prediction arrays and to a hardware
protection scheme based on address-remapping. This scheme is
able to recover most of the performance loss when up to 5% of
the line-predictor entries are faulty and when no faults exist it
does not degrade performance.

I. INTRODUCTION

Current computer technology scaling trends are leading us
toward smaller feature size and larger transistor budgets per
chip. These developments present to the processor designer
novel opportunities to improve performance and at the same
time many challenges to overcome. One of these challenges
is to provide reliable operation with little or no performance
degradation in the presence of faults.

Sources of faults are mainly different types of variability [1]
such as process variation due to manufacturing imperfections,
temperature variation due to non-uniform activity and process
variations, input variation due to workload composition and
input data, environmental variation due to cosmic radiation
and ambient temperature, and wear-out due to aging.

Techniques and processors that can provide reliable op-
eration have been around for many years [2], [3]. What is
distinct nowadays is that faults are becoming more frequent
and challenging. For instance, due to the shrinking feature size,
the design margins are narrowed down and the manufacturing
process introduces both significant inter-die and die-to-die
variations. Even in 130nm these variations are known to
result in as much as 30% variation in maximum frequency
and 20x variation in leakage power [4]. Furthermore, tight
power envelopes and reduced voltage margins may necessitate
operation below Vcc-min leading to otherwise well behaving
components to become unreliable [5].

In the past, because faults were more rare, it was acceptable
for low-end systems to offer little or no protection against

them. As a result, mainly processors used in high availability
systems employed advanced fault-tolerance techniques, such
as using redundant and spare units [2], [3]. With future
technology projections pointing to increased variability and
faults, a more general use of fault-tolerance techniques is
emerging. Furthermore, some of the known fault-tolerance
techniques relevant to high-end systems may not be applicable
to processors targeting markets where volume dictates profit
and cost requirements are stringent.

Virtually all previous microarchitectural studies on proces-
sor reliability and yield improvement aim to solve the problem
for architectural resources such as a cache or an execution
unit [6]–[8]. Faults in non-architectural resources, such as
a predictor or a replacement array, received little attention
because they do not affect correctness.

However, faults in these structures can affect performance
and may need to be addressed to ensure acceptable perfor-
mance levels, in particular for applications where performance
is of paramount importance, e.g. real time systems that can
not afford missing deadlines. Also, non-architectural faults can
result in energy inefficiency for the extra work needed due to
the additional mispredictions and/or cache misses they cause.
Moreover, non-architectural resources constitute a significant
fraction — according to our estimates around 10% for an EV6
like processor [9] — of the active area of the chip where
temperature is higher and, therefore, susceptible to some wear-
out and process variation induced faults [10], [11]. Also, if ar-
chitectural resources are protected and the frequency of faults
keeps increasing eventually non-architectural resources will
experience more faults and potentially become a performance
bottleneck.

One other reason to consider non-architectural faults is
frequency-binning [4], [12] since non-architectural faults can
cause non-uniform performance within a bin. One may argue
that if non-architectural faults are not dealt with then an
additional step in the binning process, with its associated
extra cost, may be needed to classify chips according to their
performance.

Previous work by Bower et al. [6] investigates the perfor-
mance effects of up to 8 faulty entries in a branch history
table. They conclude it is not worthwhile protecting it against
hard faults as performance degradation is negligible. Our work
considers the performance impact for a different prediction
structure and shows that faults in a few bit-interleaved entries
can lead to a significant performance penalty. In particular, this
paper quantifies the performance implications of faults in a a
line-predictor and shows that it may need protection against
faults. This study also points out that a no bit-interleaving
design style for prediction arrays is more resilient against



(a) Fault cluster in bit-interleaving design

(b) Fault cluster in no bit-interleaving design

Fig. 1. Bit-Interleaving vs. No Bit-Interleaving with multi-bit faults.

faults. Finally, we present and evaluate the effectiveness of a
simple fault detection and repair scheme for prediction arrays.

The remainder of this paper is organized as follows. Sec-
tion II provides details on fault modeling non-architectural
array structures while Section III introduces a detection and
repair scheme for predictors. Section IV overviews the used
methodology, and Section V presents the experimental results.
Section VI concludes the paper.

II. FAULT MODELING

Non-architectural structures can be divided into arrays, such
as a predictor array, and random logic, such as an adder used
for computing the address of prefetched data. The focus in
this paper is on faults in prediction arrays which are more
area dominant within non-architectural units.

The impact of faults can vary widely according to their
number, location and fault model. The more faults the more
potential for degradation. Also, a fault on a frequently used
entry is likely to have a bigger impact than a fault on a rarely
accessed entry. Similarly, a cell stuck-at-1 may have more
impact if the bits stored in the cell are more biased toward zero.
Therefore, to investigate fault implications requires examining
the following parameters: (i) the number of faults, (ii) the
location of the faults in the array, and (iii) the fault model of
each fault.

The physical principles that will determine the value of
the above parameters in the future are poorly understood and
difficult to model accurately. Regarding the number of faults
it is important to consider scenarios covering a range of faults
from small to large. Although currently, manufacturers do
not expect to ship chips with 1,000’s of faults, in the future
power constraints may require operating circuits with voltage
below Vcc-min at the expense of a larger number of unreliable
devices [5]. Also, it is generally known that faults, at least due
to manufacturing and process variation, are distributed accord-
ing to a random component—expressing the non-determinism
of fault locations—and a spatial component—expressing the
clustering of faults. Furthermore, it is understood that various
fault behaviors can be observed in arrays and several fault
models have been proposed in the literature to capture them,
such as random, inverse, stuck-at, etc.

Another issue that affects the resiliency of arrays is bit-
interleaving. Specifically, for caches the bits from different
words are usually interleaved together to increase both area
efficiency and tolerance against soft-errors [13]. The former is
possible since a single sense amplifier can be used for multiple

Fig. 2. Principle of address-remapping.

columns and the latter is realized because multiple neighboring
bits can flip while still being able to detect and correct them
since neighboring bits are protected by distinct error correction
codes.

The bit-interleaving design style is applicable to non-
architectural arrays but only offers an area advantage since
predictors are, as far as we know, not error protected. However,
with respect to performance in the presence of faults, bit-
interleaving may not be suitable since a multi-bit fault cluster
can affect multiple predictions and, therefore, can degrade per-
formance to a larger extent as compared to no bit-interleaving.
This is illustrated in Fig. 1 where a wordline contains four
predictions, A, B, C and D each n bits wide. A four bit multi-
bit cluster fault affects four predictions in the bit-interleaved
design but merely a single prediction in the no bit-interleaving
design.

III. ADDRESS REMAPPING FOR PREDICTION ARRAYS

This section introduces a mechanism to mitigate the per-
formance degradation due to faults in prediction arrays. Our
scheme is based on address-remapping and is applicable to
any prediction array though this study only considers its
application to a line-predictor [14].

The principle of address-remapping is illustrated in Fig. 2
for an 8 entry prediction array. Assume that the array has 3
faulty entries and that only the 4 filled entries are accessed
during the execution of a program. In the original situation,
in the left of Fig. 2, two out of the three faulty entries are
accessed. The problem this paper attempts to solve is to detect
during execution whether there are significant accesses to
faulty entries and consequently remap the accessed entries to
different locations to reduce the number of accesses to faulty
entries. The right of Fig. 2 shows the situation if the accesses
are permuted such that the same number of entries are accessed
after remapping but now only 1 of those is faulty.

Note that address-remapping does not merge accesses from
different entries, it merely redistributes them. This highlights
a key difference between protecting architectural and non-
architectural arrays. For the latter a protection mechanism does
not need to detect and avoid/repair all accessed faulty entries
as long as most of the performance degradation is recovered.
This property enables the design of simple detection and repair
schemes.

Fig. 3 shows how prediction arrays can be protected using
index remapping and remapping search units.
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Fig. 3. Prediction Array Protection Scheme.

A. Index Remapping

The purpose of the index-remapping is to provide the means
to dynamically change the logical to physical mapping of each
location. The idea of remapping logical to physical locations
to avoid faults has been proposed before, but, as far as we
know, in all previous work the remapping function mapped
a previously faulty entry to either a non-faulty entry or to a
spare [6]–[8], [15]. The remapping function we employ simply
redistributes the accesses, i.e. there are no spares to remap to,
and one or more entries may get remapped to faulty locations.

An analysis of the access distributions of prediction struc-
tures provides the rationale behind this remapping approach.
Experimentally we found that for SPEC CPU 2000 bench-
marks very few entries are responsible for the majority of
correct predictions for the line-predictor. Therefore, when
accesses to faulty entries are detected it may be possible,
through the remapping function, to remap frequently accessed
faulty entries to rarely accessed entries without a fault. In this
case, the performance will be as if there were no faults and
no further remapping is needed. Of course, it is possible for
remapping not to improve or even make the problem worse,
i.e. increase the number of faulty accessed entries. In the
latter case, the mechanism will detect that many accesses are
mapped to faulty entries and will try to determine a better
remapping.

There are plenty of remapping functions that can be consid-
ered and in this study we choose to use the XOR. The XOR is a
simple remapping function, and can be implemented as shown
in Fig. 3 by XOR-ing the original index with a remap-vector.
XOR-remapping only provides symmetric permutations of the
logical to physical location mapping. Note that the remapping
shown in Fig. 2 can be obtained by XOR-ing the index with the
value 1. Simplicity of the remapping function is an important
asset since the remapping function lies in the critical path to
access the array.

The success of XOR-remapping depends on choosing well
the remap-vector to redistribute the accesses to avoid faulty
entries. For an n bit remap-vector there exist 2n possible
permutations and it is the job of the remapping search unit
to find out which permutation will work best.
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Fig. 4. Remapping Search.

B. Remapping Search

The proposed address-remapping scheme monitors the ac-
cesses in faulty entries per interval and if their number is
above a certain threshold it triggers a search to determine
the remapping vector that will minimize the accesses to faulty
entries. In particular, this search uses a fault-map that indicates
for each predictor entry whether is faulty or not and an access-
map that contains the number of accesses in each entry in
the previous interval. The search determines for each possible
remapping the number of accesses to faulty entries in the
previous interval and selects the remapping with the minimum
number of faulty accesses as the new remap vector for the
next interval. The functionality of the remapping-search unit is
illustrated in Fig. 4. It is noteworthy that the proposed scheme
does not degrade performance when no faults are present or
when all faults occur in non-accessed entries.

In the above discussion we assumed that the fault map is
available, next we describe how it is determined.

The fault map is a bit vector indicating for each entry
whether is faulty or not. The fault map can be determined
using a built-in-self-test (BIST) unit that applies to each
predictor entry various test patterns to detect possible faulty
behavior [16]. The BIST can be activated selectively, instead
of doing so continuously, during periods when the predictor
is idle, at boot-up, or at regular time intervals.

The state cost of the BIST, is roughly equal to the counters
used to sequence through the predictor table and the test-
patterns table, and the ROM that stores the patterns [16].
The number of test patterns depends on the type of faults
that need to be detected but for a memory this is typically
small. Therefore, the state cost of the BIST is a very small as
compared to the predictor cost.

IV. METHODOLOGY

We extended the validated cycle accurate simulator sim-
alpha [17] to measure the performance implications of faults
in the line-predictor of a high performance out-of-order su-
perscalar processor that its key parameters are summarized in
Table I. We simulated all the SPEC CPU 2000 benchmarks
using reference inputs for a 100M committed instructions. An
in-house SimPoint-like tool is used to select the regions to
simulate.



Pipeline depth 15 stages
Superscalarity 4
Line-Predictor 6 KB, 4096 entries, 11 bit prediction + 1 bit

hysteresis/entry
Branch Predictor 4 KB meta, 4 KB bimodal, 8 KB gshare
Reorder buffer 128
L1 instr. cache 64 KB, 2-way, 64 B blocks, 1-cycle
L1 data cache 64 KB, 2-way, 64 B blocks, 3-cycle
L2 unified cache 2 MB, 8-way, 64 B blocks, 12-cycle hit la-

tency, 255 cycles miss latency

TABLE I
BASELINE PROCESSOR

The 4096 line-predictor entries are assumed to be mapped
in a row-major fashion using 256 wordlines each holding
16 11-bit predictions. This configuration makes the line-
predictor more square and area efficient for layout. For the
bit-interleaving design style, which is the default configuration,
the predictions on a wordline are bit-interleaved and an entry
consists of 16 consecutive bits coming from 16 different
logical predictions.

The study focuses on cell faults modeled as stuck-at faults
and investigates the effect on performance with increasing
number of faults. To capture the spatial component of fault
distribution we assume that whole line-predictor entries are
faulty. We perform experiments for two scenarios: worst-case
and random-case. Assuming n faults, the worst-case scenario
injects n faults in the top n entries that gave the most correct
predictions. For random experiments, with a given number of
faults, 10 random fault maps are evaluated. For the worst-
case each faulty entry is assigned a stuck-at value at each bit
position that will maximize the mispredictions. For the random
study when an entry is assumed to be faulty each of its cells
is assigned randomly a stuck-at-1 or stuck-at-0 fault.

Next we describe the specific values used in the experi-
mentation for key parameters of the protection mechanism
presented in Section III.

To keep the area overhead of the proposed protection
scheme low, the fault-map and access-map track faults and ac-
cesses at the granularity of wordlines and therefore each table
consists of 256 entries. Each entry in the fault-map contains
one bit indicating whether the corresponding line-predictor
wordline contains a fault. In this paper we assume that the
fault-map is always up to date since faults occur infrequently.
The access-map entries contain 8-bit saturating counters that
count the accesses to the corresponding line-predictor wordline
per interval. The interval length between checks as to whether
remapping is needed is 100000 committed instructions. Such
interval length allows the access-map table counts to be small
while keeping to minimal the cold effects due to remapping.
The number of accesses, to faulty line-predictor entries, that
will trigger a search for new remapping is set to 1000 per
interval.

The remapping search only explores wordline remapping.
This reduces the remapping search space to 256 options but
still requires some time to compute. We account for the delay
to perform the search by assuming that it requires 65536 cycles
to be completed.

The above cost optimizations and simplifications were found
to have minimal impact on the quality of the proposed solution.
The overall state cost of the proposed scheme is mostly

Fig. 5. Performance vs Number of Faults.

dominated by the access-map counts and is 325 bytes. This
corresponds to 5% of the line-predictor state cost.

V. RESULTS

In this section we present our results starting with the
performance degradation in the line-predictor with increasing
number of faults. Next, we discuss how two different array
design styles influence fault tolerance in prediction arrays, and
finally we examine the effectiveness of our address-remapping
to protect a line-predictor against faults.
Performance Implications. To assess the performance impli-
cations of faults in a line-predictor, we measure its perfor-
mance with increasing number of faults in a worst-case setup.
Fig. 5 illustrates the performance degradation compared to a
baseline which contains no faults with the different curves
corresponding to different benchmarks. Note the logarithmic
scale for the number of faults. A single fault can degrade up
to 11% for mesa, and 2.4% on average. With a few faults in
the line-predictor, processor performance drops significantly,
with merely 1% faulty entries (i.e. 32 entries) an average
degradation of 8% is measured, and up to 26% for gap. It
can also be seen that the curves saturate quickly, indicating
that few entries are responsible for the majority of correct
predictions.
Bit-interleaving. Fig. 6 compares the worst-case performance
degradation of a bit-interleaved versus a no bit-interleaved
line-predictor with varying number of faults. For each number
of faults, 10 runs with a random fault map are evaluated for
each benchmark and the results are sorted in descending order
of performance for the scheme with no bit-interleaving. The
latter curve is consistently above the bit-interleaved curve,
clearly supporting that a bit-interleaved design style will
suffer significantly more performance degradation for the same
number of faults. This suggests that a non-interleaved design
style for predictors is more resilient against faults.
Address-remapping. Fig. 7 shows the effectiveness of our
address remapping scheme to recover the performance loss in
the presence of faults. It compares the performance for a line-
predictor without and with address-remapping. Again, for each



Fig. 6. Bit-interleaving vs. no bit-interleaving.

number of faults, we measured performance for 10 random
fault maps for each benchmark and this time the results are
sorted in descending order of performance for the scheme with
faults and no address-remapping.

For the majority of the runs the proposed address-remapping
recovers the performance loss, almost perfectly up to 128
faults or 5% faulty entries. When more faults are present,
address-remapping can typically recover a fraction of the
performance loss.

VI. CONCLUSION

This work argues that it is important to protect prediction
arrays against faults because they can degrade performance.
The paper quantifies the performance implications of faults
in the line-predictor and shows that performance can drop
significantly when the line-predictor has few faulty entries.
More specifically, a simulation based worst-case analysis of
a high-end processor that experiences faults in 1% of the
entries in the line-predictor, revealed an average performance
degradation of 8% and up to 26%. For solutions we suggest
no bit-interleaving as a more fault-tolerant design style for
prediction arrays and a hardware protection scheme based on
address-remapping. This scheme is able to recover most of
the performance loss when up to 5% of the line-predictor
entries are faulty, and when no faults exist it does not degrade
performance.
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