Performance Implications of Hard-Faults in Non-Architectural

Structures

Veerle Desmet*

“Dept. of Electronics and Information Systems

Ghent University, Belgium

Abstract

Continuous circuit and wire miniaturization in-
creasingly exert more pressure on the computer design-
ers to address the issue of reliable operation in the
presence of hard-faults. Virtually oll previous work
on hard-fault reliability addresses problems that arise
when a fault occurs in architectural resources, such as
the register file or caches. However, hard-faults can
happen in non-architectural resources, such as predic-
tors and replacement bits. Although non-architectural
hard-faults do not affect correctness they can degrade a
processor performance significantly and, therefore, may
render them as important to deal with as architectural
hard-faults.

In this paper we determine, using previously pro-
posed hard-fault models, the temperature conditions for
which the frequency of hard-faults in non-architectural
structures is in the same order of magnitude as in ar-
chitectural structures. Furthermore, this paper quan-
tifies the performance implications of hard-faults in
two mon-architectural resources: a line predictor and
a return-address-stack. In particular, a simulation
based analysis of a high-end processor that experiences
a stuck-at fault in one of its most frequently used cells
in the return-address-stack and the line predictor, re-
vealed a degradation up to 9% and 3%, respectively.
When a stuck-at hard-fault occurs in one of the out-
put drivers the slowdown can be as high as 34% in the
return-address-stack and 19% in the line predictor.

1 Introduction

1.1 Motivation

Current computer technology scaling trends are
leading us toward smaller feature size and larger tran-
sistor budgets per chip. These developments present to

Yiannakis Sazeides™

Costas Vrioni™

*tDept. of Computer Science
University of Cyprus, Nicosia

the processor designer novel opportunities to improve
performance and at the same time many challenges
to overcome. One of these formidable challenges is to
provide dependable operation with little or no perfor-
mance degradation in the presence of faults.

Techniques and processors that can provide depend-
able operation have been around for many years [15,
18, 21]. What is distinct nowadays is that faults, due
to shrinking feature size, occur more frequently. Srini-
vasan et al. report that the failure rate due to hard-
faults of a scaled 65nm processor is 316% higher than
a similarly pipelined 180nm processor [22].

In the past, because faults were more rare, it was
acceptable for low-end systems to offer little or no pro-
tection against faults. As a result, mainly processors
used in high availability systems employed advanced
fault-tolerance techniques, such as using redundant and
spare units [15]. With technology projections pointing
to a dramatic fault increase in processors [22] a more
general use of fault-tolerance techniques is emerging.
Furthermore, some of the known fault-tolerance tech-
niques relevant to high-end systems may not be ap-
plicable to processors targeting markets where volume
dictates profit and cost requirements are stringent.

The above developments are creating an impetus for
the development of processor fault-tolerance techniques
that in the presence of faults can provide minimal or
no performance degradation at low-cost. This paper
represents a step toward that direction.

1.2 Fault Classification

Faults can be classified according to several crite-
ria. One of the most widely used classification divides
processor faults based on duration into non-permanent
faults and permanent faults. Non-permanent faults
temporarily affect the system, and may appear for a
very short time, e.g. alpha particles, or stay for an
undetermined longer period, but eventually they can

disappear. Permanent or hard-faults remain in exis-
tence for the lifetime of a system or until a repair fixes
the fault. Hard-faults can occur during manufacturing
due to design imperfections or during operation due to
wear-out. The most dominant wear-out mechanisms
are more likely at high temperature of operation [23].

Alternatively faults can be classified depending on
their implications on correctness and performance. A
fault may manifest into incorrect execution if it occurs
in an architectural resource, such as a cache or an exe-
cution unit, or may degrade performance if it happens
in a mon-architectural resource, such as a predictor or
a replacement array.

Virtually all previous studies on hard-faults due to
wear-out aim to solve the problem for architectural
resources [2, 3, 4, 5, 6, 8, 17]. Hard-faults in non-
architectural resources received little attention because
they do not affect correctness. However, faults in these
structures can affect performance and may need to
be addressed to ensure acceptable performance levels,
in particular for applications where performance is of
paramount importance, e.g. real time systems that can
not afford missing deadlines.

1.3 Contributions

This paper performs an initial investigation of
the performance implications of hard-faults in non-
architectural structures to determine whether such
structures merit protection from hard-faults due to
wear-out. In particular, the contributions in this paper
are:

e show that the frequency of hard-faults in non-
architectural structures is in the same order of
magnitude as in architectural structures.

e quantify the performance implications of hard
faults in a line predictor and a return-address-
stack. Our results show up to 19% slowdown for a
hard-fault in a line predictor, and up to 34% per-
formance degradation when a fault occurs in the
return-address-stack.

The remaining paper is organized as follows. Sec-
tion 2 demonstrates that the frequency of hard-faults
in non-architectural structures is in the same order of
magnitude as in architectural structures. Section 3
illustrates the different effects hard-faults may have
on a physical array structure. Section 4 provides de-
tails on our methodology while Section 5 quantifies the
performance implications of hard-faults in two non-
architectural structures. After Section 6 with related
work, Section 7 concludes the paper and provides di-
rection for future work.

2 Architectural vs Non-Architectural
Hard-Faults

Hard-faults due to wear-out are mainly influenced
by operating conditions, such as temperature or activ-
ity. Since these conditions can be different between
non-architectural and architectural structures, one of
the key questions this study attempts to answer is
whether non-architectural structures, like a branch pre-
dictor, are equally vulnerable to wear-out as architec-
tural structures, such as a register file.

To answer whether we should worry about non-
architectural hard-faults, we employ analytical mod-
els proposed by IBM researchers for some of the most
important wear-out mechanisms that lead to perma-
nent hard-faults: electromigration, gate oxide break-
down, stress migration, thermal cycling, and negative
bias temperature instability (NBTI) [11, 24, 25]. These
analytical models express a transistor’s or wire’s mean
time to failure (MTTF) as a function of temperature.
For some of the wear-out mechanisms their models con-
sider additional parameters, such as activity, voltage,
and current density.

Since the value of temperature, and of other param-
eters of interest, may vary across the units of a pro-
cessor, the MTTF due to hard-faults is expected to
vary across different structures. To determine quanti-
tatively the difference between the MTTF of architec-
tural and non-architectural structures we compute the
ratio of MTTF (RMTTF) of a non-architectural over
an architectural structure for a range of temperatures.
Also, we assume that—as shown in previous tempera-
tures studies [19] —the hottest architectural resource
has usually the same or higher operating temperature
than any non-architectural structure.

The RMTTF equation for NBTT is given below and
is derived assuming that t, and t,, correspond to the
temperature of the architectural and non-architectural
structures, respectively.

MTTFnon—arch

RMTTF =
MTTEF, ch
1
B
<1D(7AL) = In(—25— —)Lz)
1+2¢ ktna 1+2ektna ektna

(1) - (A~ 0))

1+2€m ekta

where A, B, C, D, and 3 are fitting parameters,
and k is Boltzmann’s constant. According to Zafar
et al. [25] we used the values A = 1.6328, B = 0.07377,
C =0.01, D = —0.06852, and # = 0.3. In a similar

Negative Bias Temperature Instability (NBTI)

NBTI ——

RMTTF

pRpPRpe NN
RrRROBNNRO®DW

351
t_non-architectural

(a) Negative Bias Temperature Instability

Figure 1. Ratio of MTTF (RMTTF) for Architectural versus Non

way the RMTTF can be derived for all other wear-out
models.

Figure 1 shows the RMTTF for negative bias tem-
perature instability and electromigration when the
temperature of the architectural resource ranges from
360 to 370 degrees K, and the temperature of the non-
architectural resource ranges from 340 to 360 degrees
K. The maximum temperature difference of 30 de-
grees (370-340) is larger than what is typically observed
between processor units in thermal simulations [19].
For electromigration the RMTTF equation used in
Fig. 1(b) assumes that the activity of the architectural
resource is 1.6 times that of the non-architectural re-
source. This activity ratio is typical between an in-
struction cache and a conditional branch predictor.

The data reveal that for NBTI the RMTTF varies
from 1 to 2.6 and for electromigration from 1 to 17.
A ratio of one means hard-faults are equally likely to
occur in an architectural and a non-architectural struc-
ture. A higher ratio indicates that a hard-fault is less
frequently to occur in the non-architectural structure,
e.g. an RMTTF of 2 means that there is 50% less
chance of having a hard fault in a non-architectural
structure. For the other failure mechanisms we found
similar ratios as in Figure 1(a) for NBTI.

The above analysis shows that hard-faults in non-
architectural structures are likely to occur in the
same order of magnitude as in architectural structures.
Therefore, if the performance degradation they cause
is substantial, they may need to be protected against
faults. In Section 5 we investigate the performance im-
pact of hard-faults in two non-architectural structures.

Electromigration

Electromigration

35(
t_non-architectural

(b) Electromigration

-Architectural Wear-Out

E:@
GNETEETY T
”@7/’
| (| (| (] | faoane
GNETIE IS
@ETIET T
ST
Zell
%J‘M ‘ébiilin-e
EM
driveré
7

Figure 2. Physical hard fault locations.

3 Modeling Hard-Faults in
Architectural Array Structures

Non-

Non-architectural structures can be divided into ar-
rays, such as a predictor array, or random logic, such
as an adder used for computing predicted address.
The focus of the remaining paper is on faults in ar-
ray structures which are more dominant between non-
architectural units.

The various wear-out mechanisms cause physical
faults that may occur in different locations in an ar-
ray structure such as cell, bitline, wordline, decoder
and driver as shown in Figure 2.

Studying faults at the physical level requires detailed
and slow simulations that are not practical. What is
done usually instead, is to abstract the physical faults

address bit ,

y i
!
3
y 4

7

7 i

% output bit

v &

y
data_in bit j %oell

Figure 3. Possible stuck-at locations in logical
array view.

into functional faults in a logical model of an array that
is easier to model and study.

The most popular class of functional faults are
stuck-at. A stuck-at-0 or stuck-at-1 fault causes a sig-
nal to permanently hold the value zero or one, respec-
tively. More sophisticated functional fault models in-
clude transition faults and coupling faults. Transition
faults behave as stuck-at faults, but it takes until a
specific transition before effectively manifesting as a
fault. Coupling faults represent relations between mul-
tiple erroneous signals, e.g. always the same or opposite
value as another signal, and the range of possibilities
is enormous. Therefore, we focus on the most typically
used models of stuck-at-0 and stuck-at-1 faults.

Figure 3 shows a logical view of an array and some
of its possible stuck-at fault locations. The impact of
a single stuck-at fault can widely vary according to
where exactly the fault manifests itself. A cell stuck-at
is reasonable to cause less degradation than a stuck-at
output bit.

We like to point out that it is necessary to consider
both stuck-at types because their impact might be dif-
ferent. Indeed, a stuck-at fault is only manifested when
it is read and is supposed to contain the opposite value.
In the other case, when e.g. a stuck-at-0 is read and has
to be a zero the hard fault is logically masked. Thus,
dependent on the value that it was supposed to be a
stuck-at-0 will be more severe than a stuck-at-1, or
vice-versa.

In the experimentation we will consider stuck-at
faults for a single cell and a single output bit for non-
architectural array structures.

4 Methodology

We extended the validated cycle accurate simulator
sim-alpha [9] to measure the performance of a high per-

formance out-of-order superscalar processor with and
without faults. Table 1 summarizes the parameters for
our baseline processor.

The experiments we perform aim to measure the
impact of a stuck-at fault on a single cell and a single
output bit in two non-architectural structures, namely
the line predictor and return-address-stack. In the
near future we plan to extend our study to other non-
architectural structures.

For each unique experimental configuration with a
hard-fault we perform two experiments, one injecting a
stuck-at-0 and another with a stuck-at-1, and we report
the worst case of the two. Therefore, our results have
the potential to represent the worst case performance
degradation under our assumptions.

For the single cell stuck-at faults, for each program
we select the most frequently used entry, according to
a previous program run, again aiming to determine the
implications for a worst case scenario. Note that due to
subtle interactions of the different microarchitectural
structures worst case fault scenario may not always ap-
pear with a fault in the most accessed entry. Also is
important to mention that for the return-address-stack
we selected the entry that was popped most frequently,
including wrong-path pops.

The stuck-at fault is injected in the most significant
bit position of the predicted addresses by the line pre-
dictor and the return-address-stack. The upper bits of
addresses usually exhibit less variance than lower bits
and a hard-fault may cause more degradation since the
potential for disagreement can be higher.

We simulated all the SPEC CPU 2000 benchmarks
using reference inputs for a 100M committed instruc-
tion interval. An in-house SimPoint [10] like tool is
used to select the region to simulate. Table 2 shows the
basic statistics of the benchmarks used in this study.

4.1 Line Predictor and Return-Address-Stack

A line predictor [7, 12] is a non-architectural struc-
ture that is used in the fetch stage to provide every
cycle a next line prediction to enable continuous in-
struction fetch. The price for fast line prediction is
lower accuracy. As a result a line predictor is backed-
up in the next stage with a more accurate branch pre-
dictor. When the branch predictor disagrees with the
line predictor the processor trusts the branch predictor
and re-steers the fetch to the branch predicted program
counter. Every time such a disagreement occurs there
is a cycle penalty. A line predictor fault can degrade
performance because it can increase the number of dis-
agreements between the line predictor and the branch
predictor. Note that in the next section we report line

| Parameter description | Setting
Line Predictor 6 KiB, 2-way
RAS 64 entries
Pipeline depth 15 stages
Fetch/Decode/Issue/ up to 4 instructions per cycle

Commit width
Issue Queue
Functional Units

40 INT entries, 20 FP entries
4 INT ALUs, 4 INT mult/div,
1 FP ALUs, 1 FP mult/div
Reorder buffer 128

Branch Predictor hybrid: 4 KiB meta, 4 KiB bi-
modal, 8 KiB gshare (15 bits
history)

64 KiB, 2-way, 64 B blocks,
LRU, 1-cycle latency

64 KiB, 2-way, 64 B blocks,
LRU, 3-cycle latency

L2 unified: 2 MiB, 4-way, 64 B
blocks, LRU, 10-cycle hit la-
tency, 255 cycles miss latency

L1 instruction-cache

L1 data-cache

Table 1. Baseline Processor

Benchmark | Fast fwd IPC | LinePred RAS

(billion) | baseline usage usage
ammp 4.95 1.493 8937878 20623
applu 2.10 0.401 650121 100
apsi 1.65 2.164 3635749 57742
art 3.15 1.879 8617394 110
bzip2 42.95 1.160 | 12731599 329579
crafty 0.95 1.900 | 11591903 | 1091659
eon 26.40 1.191 | 11757704 | 2024150
equake 19.25 0.378 3791795 | 1061219
facerec 36.55 1.152 7138174 166354
fma3d 10.25 1.424 | 19922052 | 1434416
galgel 4.45 2.404 5849044 0
gap 20.60 1.103 | 14550003 | 2051862
gec 8.40 0.895 8445648 478339
gzip 19.40 0.989 | 13857405 315047
lucas 2.65 0.513 1333339 0
mcf 13.40 0.107 | 27992306 | 3331666
mesa 0.45 1.739 9015327 | 1187486
mgrid 0.15 0.566 397340 327
parser 1 1.056 | 16810721 | 1987964
perlbmk 13.8 1.239 | 14383221 | 1351772
sixtrack 8.20 1.860 2289412 128
swim 1.15 0.287 2302776 66
twolf 7.20 1.108 | 12673833 704713
vortex 18.55 1.594 | 16970902 | 2054990
vpr 25.55 1.515 | 11041773 646494
wupwise 7.95 1.493 | 10615089 651842

Table 2. Benchmark summary: number of
fast-forwarded instructions in billions, num-

ber of committed instructions that used line

predictor and return-address-stack, respec-
tively.

mispredictions but actually we refer to disagreements
between the line predictor and the branch predictor for
committed branch instructions.

A return-address-stack is used to push the return-
address every time we encounter a call in the front-
end of the processor and pop a return-address every
time we encounter a return. Clearly, a return-address-
stack fault can increase the number of return-address
mispredictions. The return misprediction penalty is
significantly larger than a line misprediction because it
can be detected only at writeback and for the pipeline
used in this work this will be at least a 12 cycles.

5 Results

In this section we present our results about the per-
formance implications of stuck-at faults in the line pre-
dictor and the return-address-stack.

5.1 Line Predictor

Figure 4 shows the speedup in the presence of a
single stuck-at hard-fault as compared to a baseline
without hard-faults. For the cell stuck-at small degra-
dations are observed, with maximum 3.3% for art00.
When the single stuck-at fault occurs in the output
of the line predictor, the performance impact is more
detrimental. The results show that more benchmarks
suffer from a significant degradation, half of the bench-
marks slow down by more than 3%, with the worst case,
for gap00, experiencing a 19% slowdown.

Figure 5 shows the effect of hard-faults on the mis-
predictions per kilo instructions (MPKI) in the line pre-
dictor. By comparing the MPKI with the performance
degradation results in Figure 4, and the benchmarks
baseline IPC in Table 2 the following observations can
be made.

A single cell fault typically increases misprediction
marginally over a baseline scheme with no hard-faults.
This indicates that usually no few entries in a line pre-
dictor are responsible for many of the line-predictions
in a program. This explains why the performance with
a cell fault only degrades minimally.

As expected, output bit faults cause more mispre-
dictions than cell faults. Unexpectedly, the data show
that a large increase in misprediction may not imply
large performance loss. For mcf00 this is due to very
low baseline IPC, and a low misprediction penalty, that
make the added overhead insignificant as compared to
the overall execution time of mcf00. The small degra-
dation can also be attributed to subtle interactions be-
tween the different microarchitectural units where a
degradation in the one can be useful to the other’s per-
formance. For example, additional line mispredictions
may allow branch predictor state to be more up-to-date
and improve its overall accuracy.

Ecell W output bit

s)inNe} pJey Jnoypm sujleseq o} palediioo drpeadg

= npasikdnmm
1 oguda

| DoXapoA

| 00uony

1 powms

00¥2ENXIS

1 ooywguad

nodas.ed

1 oopubw

4 poesaw

00U

% goseon|
4 podizB
% 0000

4 podeb

i

% 00peeLl

00oa.iage)

opaxenba

8 pouoa
3 nofyelo
% 0ozdizg
5 004E

noisde

ponjdde

" podwiwe

n line predictor.

Figure 4. Speedup compared to baseline without hard faults i

O base
M cell

O output bit

L

|

A

ﬁ

jﬂﬁﬂﬂML

.

250

200

T
=] =1 =]
[re] =1 [re]

Iy/suo o pa.ds|iA sup]

0

ooasiMdnm
oolda
ooXaHoAa
004|omy

00 Wwims
00oEXIS
ooy wqued
polesded
oo LBW
poesall
ogjow
gosesn)
ood|zB
opoob
opdeB
00[eB(eB
Oopeewy
0028.a0E)
ooayenba
pouos
00AYELD
oozd)zg
0oue
opisde
oon|dde

ooduwwe

Figure 5. Line Mispredictions per kilo instructions.

Overall, the data suggest that protection against
hard-faults in a line predictor may be important for
output bits but not for cells.

5.2 Return-Address-Stack

Now, lets consider how stuck-at hard-faults influence
the performance of a return-address-stack. Figure 6 il-
lustrates the degradation compared to a baseline with-
out errors and Figure 7 shows the effect of hard-faults
on the MPKI in the return-address-stack.

As expected, only benchmarks with a significant
number of committed returns are affected by faults (see
Table 2). The impact can be very high even with a sin-
gle cell fault, up to 9% for mesa. This is due to the
small number of entries of a return-address-stack that
results in many of the entries to have frequent accesses.
The performance decrease for output bit stuck-at is
even more pronounced, up to 34% for vortez00.

A comparison of the MPKI of the line predictor and
the return-address-stack reveals that line mispredic-
tions are larger and yet their performance degradation
is smaller. The reason for this is the longer mispre-
diction penalty of return instructions as compared to
line predictions. Recall that this penalty is at least 12
times longer for a return instruction.

Overall, the data suggest that return-address-stack
is much more vulnerable to performance degradation
and therefore may need to be protected against all kind
of hard-faults in future designs.

6 Related Work

As stated in the introduction most of previous hard-
fault research has concentrated on the impact of cor-
rectness. However, a few papers touched on perfor-
mance implications before.

Sohi [20] studied the performance impact of cache
organization with disabled portions, such as ways and
sets. The goal of that work was to improve yield with-
out noticeable performance degradation. Related re-
search was performed by Pour and Hill [16] to study the
performance impact of manufacturing faults in caches.
The work by [16] quantified the performance impact
in an isolated way through the cache miss ratio. Lee
et al. [13] also explored various masking strategies for
manufacturing hard-faults in caches. The authors mea-
sure performance degradation by disabling cache lines,
sets, ways, ports or even the complete cache. In our
work, we go beyond architectural structures, and quan-
tify the degradation of performance due to wear-out in
non-architectural structures.

Bower et al. [4] described a technique to tolerate
hard faults in array structures. Their mechanism is
able to detect faults, and once detected it maps out
the faulty array elements through an additional level
of indirection. This achieves almost fault-free perfor-
mance with a single hard-fault, and they reported a
slight speedup when 8 hard-faults were injected. For
non-architectural structure they focus on a branch his-
tory table, and they examine stuck-at-1 cell faults only.
In this respect, we augment their study by considering
faults in output bits of a line predictor and a return-
address-stack.

A recent study by Li and Yeung approaches the im-
plications of faults from an application perspective [14].
They show somce applications, e.g. multimedia appli-
cations, can tolerate up to a certain amount of faults,
and still be acceptable to the user.

Recently, Abella et al. [1] augmented an adder tree
with a transistor called fuse to anticipate faults in
arithmetic units. The idea is to stress the fuse so that
it will fail short before the first transistor in use.

7 Conclusion

This paper investigates the performance implica-
tions of hard faults in non-architectural structures.
Non-architectural hard-faults do not affect correctness
but they can degrade a processor performance at a low
level and therefore may make them as important to
deal with as architectural hard-faults.

This work shows, using previously proposed analyt-
ical models, under what temperature conditions hard-
faults in non-architectural structures are likely to occur
in the same order of magnitude as hard-faults in archi-
tectural units.

A worst-case analysis of the performance degrada-
tion of a high performance processor due to a sin-
gle cell stuck-at fault in two prediction structures—
return-address-stack and line predictor—revealed in
some cases a degradation up to 9%. The performance
decrease goes up to 34% when considering a hard-fault
on one of the output bits.

The above findings underline the importance to con-
tinue the study of the performance implications of non-
architectural hard-faults. Our future work will perform
a comprehensive quantification of the performance im-
pact of different types of hard-errors (such as cell or
line stuck-at-X) on various structures including branch
direction, branch target and memory dependence pre-
dictors, Iru bits used for replacement, and units used
for target calculation. Both worst and average case
analysis will be performed in our future work. In addi-
tion, we will explore the use of low-overhead detection

Ecell W output bit

s)inNe} pJey Jnoypm sujleseq o} palediioo drpeadg

= npasikdnmm
8 poida

1 ooxapoa

4 oodomy

1 powms

00¥2ENXIS

1 ooywguad

nodas.ed

1 oopubw

8 poesaw

00U

% goseon|
4 podizB
% 0000

8 podef

i

% 00peeLl

00oa.iage)

opaxenba

3 pguos
3 nofyelo
% 0ozdizg
5 004E

noisde

ponjdde

" podwiwe

n return-address-stack.

Figure 6. Speedup compared to baseline without hard faults i

Obase
M cell

O output bit

poesimdnm

oodda

QOXaHoA
0040}

0owImMs

000BNXIS

00y wgpad

i ooJasled

oOpHBW

?

noessWw

|

oojow

oosean|

pod|zB

00208

: | oodeB
oolebies
=
| —

oopgewy

D0osla0E)

opayenba

pouos

ooAyelD
00zdizq
ooMe
oolsde
oon|dde

nodwwe

35

30

25

[=] w o [Fe]

&~ -~ -

I3/suoiaIpads I Sy

0

tructions.

Figure 7. Return-address-stack misprediction per kilo ins

and correction techniques for non-architectural hard-
faults that are found to be more performance criti-
cal, to ensure future processors can operate with min-
imal degradation at the presence of non-architectural
hard-faults. We will leverage existing reconfiguration
techniques that have been proposed for error detec-
tion/correction of architectural structures, but, non-
architectural resources may provide a distinct oppor-
tunity for simpler detection and correction techniques
since they do not require a full repair.

Acknowledgments

This work is partially supported by Ghent Univer-
sity, University of Cyprus, HiPEAC, the European
SARC project No. 27648 and Intel. The authors
would like to credit Elli Demetriou and Constantinos
Kourouyiannis for the preliminary studies leading to
this work.

References

[1] J. Abella, X. Vera, O. Unsal, O. Ergin, and
A. Gonzélez. Fuse: A technique to anticipate failures
due to degradation in ALUs. In 13th IEEE Interna-
tional On-Line Testing Symposium, pages 15-22, July
2007.

[2] T. Austin. DIVA: A dynamic approach to micropro-
cessor verification. Journal of Instruction-Level Par-
allelism, 2, May 2000.

[3] T. M. Austin. DIVA: A reliable substrate for deep sub-
micron microarchitecture design. In Proceedings of the
32nd Annual International Symposium on Microarchi-
tecture, pages 196-207, Nov. 1999.

[4] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin.
Tolerating hard faults in microprocessor array struc-
tures. In Proceedings of the 34th Annual Interna-
tional Conference on Dependable Systems and Net-
works, pages 51-60, June 2004.

[5] F. A. Bower, D. J. Sorin, and S. Ozev. A mecha-
nism for online diagnosis of hard faults in microproces-
sors. In Proceedings of the 38th Annual International
Symposium on Microarchitecture, pages 197208, Nov.
2005.

[6] F. A.Bower, D. J. Sorin, and S. Ozev. Online diagnosis
of hard faults in microprocessors. ACM Transactions
on Architectural Code Optimization, 4(2), June 2007.

[7] B. Calder and D. Grunwald. Fast and accurate in-
struction fetch and branch prediction. In Proceedings
of the 21st Annual International Symposium on Com-
puter Architecture, pages 2—-11, June 1994.

[8] K. Constantinides, S. Plaza, J. Blome, B. Zhang,
V. Bertacco, S. Mahlke, T. Austin, and M. Orshan-
sky. BulletProof: A defect-tolerant cmp switch archi-
tecture. In Proceedings of the 12th International Sym-

(14]

(15]

posium on High Performance Computer Architecture,
pages 3-14, Feb. 2006.

R. Desikan, D. Burger, S. Keckler, and T. Austin.
Sim-alpha: a validated execution driven alpha 21264
simulator. Technical report, Department of Computer
Sciences, University of Texas at Austin, 2001.

G. Hamerly, E. Perelman, and B. Calder. How to use
simpoint to pick simulation points. In ACM SIGMET-
RIC Performance FEvaluation Review, 2004.

Failure mechanisms and models for semiconductor de-
vices. JEDEC Solid State Technology Association,
Mar. 2006.

R. Kessler, E. McLellan, and D. Webb. The Alpha
21264 microprocessor architecture. In Proceedings of
International Conference on Computer Design, pages
90-105, Oct. 1998.

H. Lee, S. Cho, and B. R. Childers. Performance of
graceful degradation for cache faults. In IEEE Com-
puter Society Annual Symposium on VLSI, pages 409—
415, Mar. 2007.

X. Li and D. Yeung. Application-level correctness and
its impact on fault tolerance. In Proceedings of the
18th International Symposium on High Performance
Computer Architecture, pages 181-192, Feb. 2007.

P. J. Meaney, S. B. Swaney, P. N. Sanda, and
L. Spainhower. IBM 2990 soft error detection and re-
covery. IEEE Transactions on Device and Materials
Reliability, 5(3):419-427, Sept. 2005.

A. F. Pour and M. D. Hill. Performance implications
of tolerating cache faults. IEEE Transactions on Com-
puters, 42(3):257-267, Mar. 1993.

S. Shyam, K. Constantinides, S. Phadke, V. Bertacco,
and T. Austin. Ultra low-cost defect protection for
microprocessor pipelines. In Proceedings of the 12th
International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct.
2006.

D. P. Siewiorek, R. S. Swarz, and A. K. Peters. Re-
liable computer systems (3rd ed.): design and evalua-
tion. Ltd, 1998.

K. Skadron, M. R. Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan. Temperature-
aware microarchitecture. In Proceedings of the 30th
Annual International Symposium on Computer Archi-
tecture, pages 2-13, June 2003.

G. S. Sohi. Cache memory organization to en-
hance the yield of high performance VLSI proces-
sors. IEEE Transactions on Computers, 38(4):484—
492, Apr. 1989.

L. Spainhower and T. Gregg. IBM S/390 parallel en-
terprise server G5 fault tolerance: A historical per-
spective. IBM Journal Research and Development,
43(5/6):863-874, 1999.

J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers.
The impact of technology scaling on lifetime reliability.
In Proceedings of the 34th Annual International Con-
ference on Dependable Systems and Networks, pages
177-186, June 2004.

[23]

[24]

[25]

J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers.
Exploiting structural duplication for lifetime reliabil-
ity enhancement. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture,
pages 520-531, June 2005.

J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers.
Lifetime reliability: Toward an architectural solution.
IEEE Micro, 25(3):70-80, May 2005.

S. Zafar, B. Lee, J.Stathis, A. Callegari, and T. Ning.
A model for negative bias temperature instability
(NBTI) in oxide and high-K pFETSs. In 2004 Sympo-
sium on VLSI Technology, pages 208-209, June 2003.

