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Abstract

Continuous circuit miniaturization and increased pro-
cess variability point to a future with diminishing returns
from dynamic voltage scaling. Operation below Vcc-min
has been proposed recently as a mean to reverse this trend.
The goal of this paper is to minimize the performance
loss due to reduced cache capacity when operating below
Vee-min. A simple method is proposed: disable faulty
blocks at low voltage. The method is based on observations
regarding the distributions of faults in an array according
to probability theory. The key lesson, from the probability
analysis, is that as the number of uniformly distributed
random faulty cells in an array increases the faults in-
creasingly occur in already faulty blocks. The probability
analysis is also shown to be useful for obtaining insight
about the reliability implications of other cache techniques.

For one configuration used in this paper, block disabling
is shown to have on the average 6.6% and up to 29% better
performance than a previously proposed scheme for low
voltage cache operation. Furthermore, block-disabling is
simple and less costly to implement and does not degrade
performance at or above Vcc-min operation. Finally, it
is shown that a victim-cache enables higher and more
deterministic performance for a block-disabled cache.

I. Introduction

While continuous technology miniaturization enables
the doubling of transistors in a chip with every new tech-
nology node, supply voltage decrease-rate is slowing down.
This alarming trend [21] can translate to unrestrained
power growth which can not be sustained due to cost,
battery, power-delivery, reliability, and environmental con-
cerns. What is more, such a development may preclude the
simultaneous use of all available resources on a chip and,
therefore, limit or even halt the performance/cost gains
from technology scaling. Consequently, on-chip power is
a prime constraint in the design of modern processors [2],
[13], [9] and techniques for mitigating it are at the focus
of numerous research studies.

One of the most effective and widely used methods to
limit power is dynamic voltage scaling [16]. It enables
cubic reductions in the dynamic power at the expense of
a linear frequency decrease. Scaled down voltage, also,
means lower static power since leakage currents have a
dependence on supply voltage.
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However, voltage can not be reduced to an arbitrary
value because below a certain voltage, known as minimum
supply voltage or Vcc-min, some on-chip devices become
unreliable. Consequently, the overall Vcc-min value is
determined by the maximum Vcc-min value required for
reliable operation by any device on a given chip. Further-
more, non-determinism in the manufacturing process leads
to large variations in threshold voltage between transistors
on the same chip [3]. This process induced variability, that
is expected to worsen with smaller feature size, requires
larger voltage noise margins and prevents the lowering
of Vcc-min. These developments point to a future with
diminishing returns from dynamic voltage scaling and
performance severely constrained by power.

The implications of dynamic voltage scaling on dy-
namic power (Pgy,=CV?F) and performance are illustrated
pictorially in Fig. 1.a'. The figure highlights the signif-
icance of the Vcc-min that divides the graph into two
regions of power reduction: the cubic and the linear. The
trend that this paper is trying to reverse is the shrinking of
the region with cubic power reduction with each technol-
ogy node.

A. Operation Below Vcc-min

One recent work, aimed to retain the benefits of dy-
namic voltage scaling for future technology nodes, pro-
posed to allow operation with supply voltage below Vcc-
min [22]. Obviously this can enable cubic power reductions
over a larger region but this comes at a price: transistors
become unreliable when operating below Vcc-min. It has
been shown [12] that the probability of cell failure is
growing exponentially with voltage decrease and, depend-
ing on the voltage and cache size, can be prevalent with
100s or even 1000s of faulty cells in an array. To avoid
compromising correctness, the unreliable devices need to
be identified a priori and not accessed when operating
below Vcc-min?. Therefore, at low voltage operation [22]
reliability is intentionally compromised in a prescribed
manner. This enables trading-off performance, since fewer
number of resources or caches with smaller capacity are
available to use, for energy reduction.

'This example assumes linear relation of performance to clock fre-
quency for illustration purposes

’Note that these devices are reliable when operating at Vcc-min or
higher voltage
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Figure 1. Voltage Scaling vs Power and Performance

The implications of operation below Vcc-min are high-
lighted in Fig. 1.b. Three regions of behavior can be
observed. The cubic region has the same range as before.
However, the linear region shrunk and a new region, the
low voltage, appears between the cubic and linear. The
cubic and linear regions exhibit similar behavior as in
Fig. l.a. The performance in these two regions can be
lower than the corresponding performance in Fig. l.a
depending on whether the method used to provide reliable
operation below Vcc-min affects the performance when
operating in the other two regions. The main differences
are in the low voltage region. The power reductions
are now cubic but the performance degradation is sub-
linear, instead of linear as in Fig. 1.a. The performance
degradation gets worse as voltage is further reduced since
increasingly more devices become unreliable.

The goal of this paper is to mitigate the performance
loss due to reduced cache capacity when operating in the
low-voltage region of Fig. 1.b. The paper focuses on caches
since they are critical to performance, occupy most of the
chip area and consume a large fraction of the power.

A simple method is proposed that disables faulty cache
blocks [19] at low voltage. The rationale for such method
is based on observations regarding the distributions of
faults in an array according to probability theory. The
key insight from the probability analysis is that as the
number of random uniformly distributed faulty cells in
an array increases the faults increasingly occur in already
faulty blocks. This probabilistic analysis is also shown
to be useful for assessing the potential of other cache
configurations and techniques to mitigate the performance
degradation due to faults.

For the configuration used in this paper, block disabling
is shown to have better performance than a previously
proposed scheme aimed to facilitate low voltage operation
but based on word-disabling [22]. Furthermore, block-
disabling is simple to implement, requires 1 bit per block
instead of 1 bit per word and does not need extra alignment
logic. Also, it does not degrade performance at or above
Vcce-min operation. Finally, it is shown that a victim-cache
enables higher and more deterministic performance for a
block-disabled cache.

The remainder of the paper is organized as follows: Sec-
tion II reviews word-disabling a previously proposed cache
disabling scheme for low voltage operation. Section III
presents block-disabling. Next in section IV we present
a fault-distribution analysis based on probability theory.
The experimental framework and results are presented in
Sections V and VI respectively. Section VII discusses
related work and, finally, Section VIII concludes the paper.

II. Cache Operation Below Vcc-min with
Word-Disable

This section reviews the word-disable scheme proposed
in [22] to enable correct cache operation below Vcc-min.
This is the main mechanism that we compare our solution
against.

For the remaining paper low-voltage refers to operation
below Vcc-min and high-voltage to operation at or above
Vce-min.

The word-disable scheme tracks low-voltage faults at
word granularity. It maintains a fault mask per block
in the tag array. The fault mask contains as many bits
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Figure 2. Left: Word disabling mechanism. Right: Block disabling mechanism

as words in a block and each bit indicates whether its
corresponding word contains a fault. The fault mask is
initialized during the boot sequence of a processor using
low voltage memory tests.

During high voltage operation the fault-mask is ignored
and cache operates normally. When operating at low-
voltage a pair of physical blocks in a set is merged into
one logical block. This divides by two the cache capacity
and associativity®. The first physical block is responsible
to provide only the first half of the logical block while the
other half is provided by the second block of the pair. This
means that up to n/2 faulty words can be tolerated for a
block with n words. If a block has more than n/2 faulty
words it turns the whole cache defective and not suitable
for low-voltage operation. Section IV analyzes how fault
distribution affects the likelihood of a word-disable cache
to be classified as faulty.

To read out in aligned form the valid half block con-
tained in each physical block, the data in each block need
to pass through a shift-multiplexer network controlled by
each block’s fault-mask. This alignment network increases
the access latency of the cache in low-voltage mode and
may even increase the cache latency during high-voltage
operation.

For this work when using word-disabling the subblock
size is 8 words and, therefore, no more than 4 faulty words
can be tolerated in each subblock. The paper by [22] shows
that for an 8 word subblock size the alignment network
increases cache latency by 1 cycle.

Word-disabling is only applied to the data array of
a cache. The tag array where the fault-mask is stored
uses 10-transistor Schmitt trigger cells (10T) which are

3This scheme is only applicable to associative caches.

known [12] to be robust even at low-voltage. These tran-
sistors have roughly twice the area overhead of a regular
6-transistor (6T) cell.

The operation and organization of word-disable is illus-
trated in Fig. 2.

In [22] the bit-fix mechanism is also proposed. This
scheme repairs faults at the granularity of bit-pairs. The
main downside of the bit-fix mechanism is that it requires
a complex merging that increases the cache access latency.
The performance analysis in [22], for a specific processor
configuration, revealed that word-disabling is more suit-
able, as compared to bit-fix, for a first-level cache. The
fastest access latency of word-disable makes up for its
lower capacity as compared to the slower but with larger
capacity bit-fix scheme.

For the rest of the paper we focus on improving the
performance of the word-disabling scheme that has overall
same or better performance and is simpler to implement
as compared to bit-fix.

ITI. Block-Disabling and Victim caching

The goal of this paper is to minimize the performance
loss due to the reduced cache capacity when operating
below Vcc-min. A simple method is proposed: disable
faulty blocks at low voltage. A block is disabled when
there is a faulty bit in either or both the tag or data of a
block.

Block disabling requires only an extra bit per block
in the tag array to indicate whether a block is disabled
during low voltage operation. The disabled bit can be set
during low voltage tests at boot time. The disabled bit is a
10T cell [12] that is resilient against low-voltage induced
faults. Block-disabling for a cache with 64 bytes/block and



Scheme Tag Disable bits Victim $ cost Alignment | Total
((tag_size+1)* | (mechanism_cost* | (tag+num_entries* network transistors
num_blocks) num_blocks) block_size(bits))

Baseline 25%512*6T N/A N/A No 76800

Baseline+V$ 25%512%6T N/A (31+16*512)*6T No 126138

Word Disabling 25%512*10T 16*512*10T N/A Yes 209920

Block Disabling 25%512*6T 1#512*10T N/A No 81920

Block Disabling+V$ 10T | 25%512*6T 1*512*10T (31+16*512)*10T No 164150

Block Disabling+V$ 6T 25%512%6T 1%#512*10T (31+16*512)*6T + | No 131418

16*10T(dis. bits)

Table I. Overhead Comparison of the different Disabling schemes

3 bytes/tag results in an overall cache increase of 0.4%.
For this configuration, this overhead is smaller by more
than an order of magnitude than what is required by word-
disabling ( 0.4% vs 10%). Furthermore, block-disabling
does not require an alignment network that increases the
cache access latency of the word-disable scheme.

As illustrated in Fig. 2 support for block-disabling re-
quires minimal changes and should not have an impact on
access latency of the cache either at high or low voltage. At
high-voltage the disable-bit is ignored and a cache operates
as normally. At low-voltage, however, a disabled block
is never allocated for a fill on a miss. Therefore, block
disabling results in a cache with variable associativity per
set that is determined by the number and distribution of
faults in the cache. This is in contrast to word-disabling
where either each set has half the associativity and size or
the whole cache is defective.

Block-disabling has been proposed by [15], [19] to
increase processor yield and is used by modern pro-
cessors [13] to continue operation in the presence of
permanent-errors. In this work we consider it for low-
voltage operation. The main contribution of the paper is
not the notion of block-disabling but the analysis that
explains why it can be an attractive option to consider.
As demonstrated in the next Section IV, depending on the
probability of failure and fault distribution, the number of
valid blocks at low-voltage can be more than half when
using block-disabling and, therefore, the overall capacity
can be higher than word-disabling. The higher capacity
of block-disabling in combination with its lower cost
overhead and simplicity make it an attractive option to
consider for low-voltage operation.

A. Victim-Caching

Although, block-disabling can have higher overall ca-
pacity some of its sets may have lower associativity than
word-disable. This can translate to lower performance if
the low-associativity sets happen to be accessed frequently
with locality that is better captured with more ways. This
possible shortcoming of block-disabling can be circum-
vented by using a victim cache [10]. In particular, a victim-

cache may be more useful for a block-disabled cache,
as compared to a word-disabled cache, because block-
disabling’s higher capacity and variable associativity may
cause most replacements to come from few sets. This
can translate to more temporal locality in the misses that
is captured by the victim cache. With word-disable the
overall cache capacity is smaller and all sets have same
associativity. As a result, misses are more uniform from
many sets and, therefore, there is less opportunity for hits
in the victim-cache.

For a cache that is already backed-up by a victim-cache
with 6T cells the overhead for using it in low-voltage
mode is either (a) to double the victim cache area by
implementing it with 10T cells to provide reliably the
same associativity both at high and low voltage, or (b)
add one 10T cell per block in the victim cache to indicate
if it is valid for low-voltage use. The first option has
higher performance potential but also higher cost. Its cost
will be about half of word-disabling if the victim cache
data storage in terms of bits equals the number of words
in a cache.* Recall that with word-disable one bit/word
indicates if a word is faulty. The second option has minimal
overhead but may have lower performance due to reduced
associativity at low-voltage.

For a cache without victim buffer the options are: a
10T cell victim cache or a 6T cell victim cache with one
10T cell per block used for disabling. When the victim
data bits are as many as the words in the cache, the 10T
cell victim cache has less but roughly the same overhead
as word-disabling. The 6T cell victim-cache incurs about
half the overhead of word-disabling.

Table I summarizes the cell transistor overhead of the
different victim cache options assuming a 32KB §-way
64B/block cache with a 24 bit tag, 6 bit index, 6 bit offset
and 1 valid bit. It is evident that in all cases block-disabling
has lower overhead. Section VI compares the performance
of the different schemes.

“4For a 32KB cache with 64bytes/block this corresponds to 8K cells or
16 blocks of data.
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IV. Analysis of Distribution of Random Fault
Cells in an Array

This section performs analysis using probability the-
ory to establish the conditions under which a block-
disable cache can have superior performance than word-
disable [22]. In particular, we determine the conditions that
result in block-disabling to have higher cache capacity than
word-disabling at low-voltage. Recall that word-disabling
gives up half the associativity and size at low-voltage. We
also demonstrate how our analysis methodology can be
used to estimate the capacity of other cache configurations
and techniques.

We assume that faults occur with uniform random
distribution at the granularity of a cell. Random process
variation- the main source of faults at low-voltage - vary
at such fine granularity [4]. The work that we compare
against [22] also makes the same assumptions.

A. Estimating the Capacity of the Block-Disabling
Scheme

For a fixed number of faults the problem we are trying
to analyze is analogous to selecting at random n balls from
an urn that contains dk balls without replacement,where d
is the number of unique colors and k is the number of balls
of each color. The urn represents the cache, the variable
n the faults, d the number of blocks and k the number of
cells in each block.

One key property of this problem is the mean number
of distinct blocks, u, that contain at least one faulty cell
in a cache with n faulty cells. This can be obtained using
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Figure 4. Probability Distribution of Cache Capac-
ity when py,;,=0.001 for a 32KB 64B/block cache)

the following expression [23]:

k—1
n

u:d—dH(l—dk_i) (1)
=0

For instance, for an example cache with 512 blocks, with
64B/block, 24 bit tag and 1 valid bit per block, d=512,
k=64%8+24+1=537 and dk=274944 cells. If 1 out of 1000
cells are faulty, there will be 275 faulty cells that, according
to Eq. 1, are expected to occur in 213 distinct blocks. The
remaining 62 faults will occur in blocks that are already
faulty.

When i is much smaller than the total number of cells,
dk, then Eq. 1 can be approximated by the expression’
which is useful for a fixed probability of failure (pfqq):

w=d—d(1—pse)" )

Fig. 3 shows using Eq. 2 how the mean fraction of
faulty blocks grows as a function of the pfail of faulty
cells for a cache with 64B/block and 24 bit tag. The graph
clearly illustrates that as the number of faulty cells in
an array increases the faults increasingly occur in already
faulty blocks. Probably the most important observation is
that block-disabling offers more than half cache capacity
when pygq is less than 0.0013. Therefore, if low-voltage
operation results in pgq; less than 0.013 then block-
disabling offers larger cache capacity than word-disable.

This is an encouraging result for block-disabling but is
only true for the mean number of faulty blocks for a given
probability of failure. What is also important to know is the
probability distribution of the cache capacity. In particular,
what is the probability for a cache to have x capacity, i.e.

SWe found this to be an accurate approximation for all cache config-
urations we examined.
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x fault free blocks, for a given p 4. This can be obtained
using binomial probability:

<d> (Pos)* (1= pog)* =" 3)

T

where py¢ is the probability of a block with k bits to
contain a fault that is given by ppy =1 — (1 — prau)”

Eq. 3 produces the distribution shown in Fig. 4 for
our running example cache configuration when pfail is
0.001. This is a normal distribution with mean at 58%
and standard deviation of 2.02. Consequently, there is
a 99.9% probability for a block-disable cache to have
more than 50% capacity. Therefore, block-disabling will
virtually always have higher capacity than word-disabling.

The results in Fig. 3 show that word-disabling may be
a better option for low-voltage when py,;; is higher than
0.0013. However, with higher ps,; word-disabling has
increasingly higher probability of having 8-word subblocks
containing more than four faulty words. This renders
a whole cache unfit for low-voltage operation [22]. To
calculate the probability of whole cache failure (p,.r) of
the word-disabling scheme we use the following:

1 — (pnps) ™2 4

where pp; is the probability that a half-block will contain
more than 4 faulty words and can be calculated using the
following®:

Phbf = Z

i=a/241

(wura-pop= ©

6The expression in the ISPASS 2010 version of the paper contained a
typo that is now fixed.
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Figure 6. Capacity for Different Configurations of
Block Size

where p,r =1—(1—p fm-l)32 is the probability that a
word will be faulty (assuming 32 bit words), and a is
the number of words in a half-block. Note that the above
equations do not take the tag bits into account since for
the word-disabling scheme, the tag bits are assumed to be
built using reliable 10T cells and are therefore always fault
free.

Fig. 5 shows the the probability of a whole cache
failure for a 32KB 64B/block word-disable cache. It can
be observed that when pysq;; is 0.001 the probability is
small, almost 1 in 1000 caches are unfit. But, when p .
grows to 0.0015 the cache failure probability increases by
a factor of 10 to 1 out of 100.

Overall, the analysis reveals that block-disabling may be
a useful alternative to consider for low-voltage operation.
In Section VI we investigate how the larger capacity of
block disabling translates to actual performance improve-
ment.

Before reporting the performance results we highlight
next some other uses of the probability analysis for as-
sessing the potential of other cache configurations and
techniques to minimize the performance degradation due
to faults.

B. Effect of Different Block Size

To evaluate the sensitivity of block-disabling to the
block size we evaluated Eq. 2 for three block sizes:
32B,64B and 128B. Fig. 6 shows the corresponding ca-
pacity for the three block sizes as a function of pys. In
each configuration we kept the cache size and associativity
constant and altered the block size and the number of
sets. From the figure it is evident that smaller block size



means higher capacity. In the block-disabling scheme, a
single faulty cell renders the whole block inoperable. By
decreasing the block size, the effect on cache capacity of
single faulty cell decreases and, therefore, overall capacity
increases. The capacity increase comes at the expense of
lower spatial locality. This can be mitigated, however, with
the use of prefetching. Examining the effect of cache con-
figuration parameters, such as the block size, along with
supporting techniques, such as prefetching, on reliability
represents an interesting direction for future work.

C. Evaluating an Incremental Word-Disable

Mechanism

In this subsection we apply our analysis methodology to
a variant of the word-disabling scheme named incremental
word-disabling. This mechanism allows pairs of blocks
that are fault free to operate at full capacity even at low
voltage operation. Additionally, pairs of blocks that contain
a half-block with more than 4 faulty words are disabled so
that the whole chip does not have to be discarded. Block
pairs that contain faults, but do not have to be disabled,
operate at half capacity as in the original word-disabling
scheme. To estimate the capacity of this scheme we use
the following:

Popff + (1= Popss — Popd) /2 (6)

where py,fy represents the probability that a block-pair
is fault-free, and pypq the probability that a block-pair
is disabled. Therefore, expression 1 — py,r¢ — Pppd COI-
responds to the fraction of block pairs that operate at
half capacity. To calculate py,;; we use the following
expression: ppyrs = (1 — pfm-l)’C><2 where k is the
number of data bits in a block. py,q is calculated from
1—(1—pnp f)4 where pp,; ¢ represents the probability that
a half-block will contain more that 4 faulty blocks and is
obtained using Eq. 5.

Fig. 7 shows that the incremental word-disabling mech-
anism for a 32KB 64B/block cache performs well. At low
probabilities of failure, the number of fault free block-
pairs is high with capacity over 50%. As the number of
faulty cells increases, more block-pairs will contain faults
and capacity begins to saturate at 50%. When we move
to higher probabilities of failure, more block-pairs are dis-
abled which decreases capacity to a value below 50%. The
analysis shows that the incremental word-disabling scheme
degrades more gracefully than the word-disabling while
completely avoiding the whole cache failure scenario. We
do note however, that this scheme may not be easy to
implement. A block pair can be in three states: fault-free,
disabled, half capacity. A different access path is required
for the fault-free and half capacity blocks since the later
requires the block to pass through the word-disabling
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Figure 7. Capacity as a function of pyai for the
incremental word-disabling scheme

shifting network. This can increase the cache access time
non-determinism and may complicate implementation.

V. Evaluation Framework

For our experiments we used the validated cycle
accurate simulator sim-alpha [6] that models a high-
performance out of order superscalar processor. The simu-
lator is extended to support cache block disabling. Table II
contains the processor parameters that are constant for
all runs while Table III displays configuration specific
parameters. For all configurations, we run all 26 SPEC
CPU 2000 benchmarks for 100M committed instructions
using reference inputs. The simulation regions they were
selected using an in-house SimPoint-like tool.

The performance of block-disabling is evaluated with
many simulation runs since faults can occur randomly
at any cell. In particular, block-disabling configurations
are evaluated with 50 random fault map pairs. Each pair
consists of two maps one for the instruction cache and
another for the data cache. The cell probability failure is
assumed to be 0.001 the same as in [22]. The analysis
in Section IV shows that using a higher pysqs will result
in many whole cache failures. Faults can occur either in
the tag array or data array of a cache. For a given fault
map any block that has at least one faulty cell is marked
disabled for low-voltage operation. In section VI we report,
for each block-disabling configuration and benchmark, the
average and minimum values for 50 runs.

Block-disabling does not affect the cache latency
whereas word-disabling adds one cycle both in high and
low voltage. Additionally, for the low-voltage configura-



Parameter description Setting

Pipeline depth 15 stages
Line Predictor 6.5 KB
RAS 16 entries
Branch Predictor
Fetch/Decode/Issue/Commit
Issue Queue

Functional Units

Reorder buffer

L2 unified cache

128 entries

8 KB gshare (15 bits history)
up to 4/4/6/4 instr. per cycle
40 INT entries, 20 FP entries
4 INT ALUs, 4 INT mult/div, 1 FP ALUs, 1 FP mult/div

2 MB, 8-way, 64 B blocks, 20-cycle hit latency, LRU

Table Il. Parameters that are constant for all configurations

Operation | Configuration Frequency | Memory | L1(I+D) LI(I4D) | Victim$
Mode latency size, associativity, latency entries/latency
(cycles) block (cycles)
Baseline 3 N/A
Word disabling 4 N/A
High Word disabling+V$ 3GHz 255 32KB, 8-way, 64B | 4 16/1
Voltage Block disabling 3 N/A
Block disabling+V$ 3 16/1
Baseline 32 KB, 8-way, 64 B | 3 N/A
Word disabling 16 KB, 4-way, 64B | 4 N/A
Low Word disabling+V$ 16 KB, 4-way, 64B | 4 16/1
Voltage Block disabling 600MHz 51 32 KB, 8-way, 64B | 3 N/A
Block disabling+V$ 10T 32 KB, 8-way, 64B | 3 16/1
Block disabling+V$ 6T 32 KB, 8-way, 64B | 3 16/1

Table Ill. Configuration dependent parameters

tions of word-disabling we reduced IL1 and DL1 cache
associativity and size in half.

In section III we describe two possible implementations
for block disabling with victim cache. The first implemen-
tation assumes that the victim cache is built using 10T cells
so that it can operate reliably and at full capacity at low
voltage. When evaluating this scheme we use a 16-entry
victim cache. The second implementation assumes that the
victim cache is built using 6T cells and has an additional
10T cell per block that is used to disable unreliable blocks
during low voltage operation. When evaluating this scheme
we assume that half of the victim cache entries will contain
a fault and so we effectively evaluate the performance with
an 8-entry victim cache. This is a conservative assumption
since analysis with py,; of 0.001 reveals that the mean
number of faulty victim cache blocks is 6.5.

VI. Experimental Results

This section presents performance results for our block-
disabling scheme and compares it against word-disabling
as proposed by Wilkerson et al. [22]. We present separate
results for low and high voltage operation.

A. Low-voltage Operation

Fig. 8 shows normalized performance at low-voltage
for each benchmark with respect to the baseline without

victim cache. Word disabling—the first bar in each group-
matches earlier reported results [22] and suffers an average
of 11.2% performance loss. The proposed block-disabling
scheme reduces the average penalty of low-voltage oper-
ation to 8.3%. Considering that block-disabling is simpler
and less costly, these results make it an attractive option
for low-voltage operation. The improvements of block-
disabling is due to its higher capacity and faster access
time.

However, when considering the minimum performance
of block-disabling it performs worse than word-disabling
for the benchmarks mesa, wupwise, gap, gzip, and
perlbmk. This is due to the variable associativity of
block-disabling which may result in some frequently ac-
cessed sets having less valid ways than word-disabling.

To remedy this non-determinism of block-disabling,
we consider block-disabling together with a victim cache
with 10T cells. Such a configuration has still signifi-
cantly lower overhead than block disabling. As shown
in Fig. 8 block-disabling with a victim cache has con-
sistently higher average performance than word-disabling
and block-disabling without victim cache. Average per-
formance penalty is down to 5.3%. This represents an
average 6.6% improvement over word-disabling. Crafty
improves the most getting 29% better as compared to
word-disabling. Moreover, the minimum performance for
block-disabling with a victim cache is virtually always
higher than for word-disabling. This happens because the
victim cache acts as a fail-safe mechanism for the few sets
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Figure 8. Below Vcc-min mode results normalized to baseline without victim cache
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Figure 12. High voltage mode results normalized to baseline with victim

in the cache that have few valid blocks.

Figure 9 reports normalized performance assuming that
all configurations including the baseline are with a 10T cell
victim-cache. The average word-disabling degradation is
10% whereas block-disabling reduces this penalty down to
5.8%. The minimum degradation of block-disabling is con-
sistently same or smaller than word-disabling, underlying
again the usefulness of a victim cache for a block-disabled
cache. What is more, for most benchmarks the minimum
values are very close to the average values indicating that
the combined use of block-disabling and victim caches
produces more predictable performance.

Figure 10 highlights the influence of using a victim
cache implemented using 6T vs 10T cells. Both config-
urations have lower overhead than word-disabling but 6T
cells is less expensive. Recall from Section V that this
victim cache is assumed to have only 8 valid entries during
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low voltage operation. Although a few benchmarks show
a pronounced decrease of performance with 6T cell victim
cache, the average and minimum performance remains
better as compared to word-disabling.

B. High-voltage Operation

Having demonstrated the performance benefit of block-
disabling at low-voltage, we now consider the effect of
disabling during normal operation, i.e. at or above Vcc-
min. In high-voltage reliable operation of the entire cache
is guaranteed.

Figure 11 shows the normalized performance for word-
disabling, block-disabling and block-disabling with a vic-
tim cache when operating at high voltage. All results are
normalized to a baseline without victim cache. The block-
disabling schemes clearly outperform word-disabling. This



is because word-disabling has a longer cache latency in
high-voltage due to its alignment network.

In contrast, block disabling adds no overhead when
operating at high voltage and thus achieves same perfor-
mance as the baseline. Adding a victim cache, which is
needed for robust low-voltage performance, provides small
improvement for apsi, fma3d and crafty.

Finally, Figure 12 compares the performance of block
disabling and word disabling when both configurations in-
clude victim caching. Normalization is done with respect to
a baseline with a victim cache. Here too, the extra latency
cycle required by word disabling makes its performance
degrade, whereas block-disabling performance is same as
the baseline.

VII. Related Work

Sohi [19] studied the performance impact of cache orga-
nization with disabled portions, such as ways and sets. The
goal of that work was to improve yield without noticeable
performance degradation. One interesting observation in
that work is that the impact of faults in equal size caches
is less pronounced for more associative structures. This
observation motivated us to consider a victim cache as a
backup to block-disable caches.

Related research was performed by Pour and Hill [17]
to study the performance impact of manufacturing faults
in caches using a more analytical approach. Lee et al. [14]
also explored various fault masking strategies for perma-
nent manufacturing faults in caches. The authors measure
performance degradation by disabling cache lines, sets,
ways, ports or even the complete cache. In this work, we
present a scheme to minimize the performance loss when
experiencing many faults due to operation below Vcc-min.

Agarwal et al. [1] developed a fault-tolerant cache
mechanism that dynamically scales down the cache size
by replacing faulty cells by correct cells. When faults are
detected, the column MUX is forced to select another non-
faulty block in the same row.

Victim caching was originally proposed by Jouppi [10]
as an approach to keep recently evicted blocks from the
main cache in a small fully associative structure. Several
variations on the original idea have been developed includ-
ing selective victim caching [20] and time keeping memory
systems [8].

Qureshi et al. [18] presented a variable way cache
which exploits the non-uniformity of accesses over the
different ways to maximize performance. In a sense, one
of our cache schemes also benefits from demand-based
associativity driven by the amount of unreliable cache
blocks, and recovering cache performance by adding a
simple victim cache.

In the context of reliability, victim cache-like schemes
have been used before. Das et al. [5] propose a small
fully associative array to keep duplicated data for slow to
access, due to process variation, cache words. Zhang [24]
proposes replica victim caching to raise the level of error
correction to multi-bit errors by storing a limited number
of replicas for frequently used blocks in places occupied
by dead blocks otherwise.

Another extension to typical error detecting/correcting
codes (EDC/ECC) applied to memory systems has been
presented by Kim er al. [11] to enhance yield. Their
two-dimensional error coding schemes can detect and
recover from large-scale multi-bit errors while increasing
the storage overhead. Yet, this area overhead for both ECC
and spares becomes very inefficient when the number of
faults becomes large as is the case below Vcc-min.

Kulkarni et al. [12] presented a reliable 10 transistor
Schmitt trigger cell suitable for sub-threshold operation.
They also report a failure rate analysis at low voltage
operation.

Based on dynamic voltage scaling Ernst et al. [7]
proposed ‘Razor’ as an approach where voltage is tuned
while measuring the rate of circuit timing errors. As a
result their design eliminates the need for worst case
voltage margins, and therefore high energy savings can
be achieved by further scaling down the operation voltage.

VIII. Conclusions

Operating below Vcc-min has been proposed to ex-
tend the power reduction provided by dynamic voltage
scaling for future technology nodes. In this paper, we
recommend a simple to implement block-based technique
to minimize the performance degradation due to disabling
unreliable parts in caches when operating below Vcc-min.
The scheme builds on a detailed probability analysis of
random fault distribution, that demonstrates that as the
number of faults increases is more likely for faults to
occur in already faulty blocks. The probability analysis is
shown to be useful to assess the potential of other cache
configuration and techniques.

Our experiments demonstrate that when pfail is 0.001
the block-disabling scheme outperforms a previously pro-
posed word-disabling on average by 6.6%. Furthermore,
block-disabling has much lower overhead, is simple to
implement and does not degrade performance at or above
Vce-min operation. In addition, we show that the addition
of a small victim cache can be a very useful add-on
to block-disabling to get higher and more deterministic
performance.

Future work will extend the analytical framework to
consider the effects of bit-interleaving and non-uniform
fault clustering. It will also examine the potential of block-



disabling for lower level caches and consider its interaction
with other mechanisms such as prefetching.
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