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Abstract—' This work proposes to reduce energy by avoiding
access to columns of on-chip SRAM arrays whose cell contents
are all 1s or all 0s. We refer to this dynamic phenomenon as the
Same-Cell-Content-Column (SCC-column). Analysis reveals that
SCC-columns occur frequently in several processor arrays, such
as tag arrays of L1 caches, TLBs and predictors. An interval
based scheme that employs one bit per column is proposed
to track whether we have a SCC-column. We explain how a
SCC-column can be leveraged to reduce the energy needed for
SRAM read and write accesses. Experimental analysis for a
specific processor configuration reveals that the proposed scheme
detects SCC-columns effectively. The potential energy savings of
the proposed approach at 32nm often exceeds 40% for several
processor arrays.

I. INTRODUCTION

The continuous miniaturization of devices on silicon chips
has provided designers the opportunity to place more func-
tionality per unit area. Unfortunately, the scaling of other key
design parameters has not followed suit. In particular, to avoid
power increase, voltage and frequency have scaled slower
than area scaling [1], [2], [3]. These conflicting trends have
rendered paramount the development of effective techniques
that harness power across all computing layers. As a result,
power minimization has been at the forefront of architectural
research for more than a decade [4].

On-chip array structures such as caches, TLBs and predic-
tors consume significant die area and power and have received
the attention of a plethora of microarchitectural proposals for
power reduction. A category of such techniques, most relevant
to our work, aim to leverage the properties of the dynamic
content of the arrays to reduce power [5], [6], [7], [8].

In this work we identify a new dynamic phenomenon:
array columns whose cells contents are the same. We refer
to this as Same-Cell-Content-Column (SCC-Column). The
key qualitative difference from previous work is that we
consider non-uniformity across vertical array columns whereas
all previous work, as far as we know, considered it horizontally
for blocks/entries or at the granularity of a cell. Related work
and its comparison with our technique is given in Section VI.

For motivation, we measure the frequency of SCC-column
during the execution of various SPEC benchmarks for several
arrays of a given processor configuration (presented in Sec-
tion IV). Fig. 1 shows the average fraction of time a column
is the same for a given array and program execution. For each
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array, results are sorted in ascending order to make the graph
more readable 2. The results vary depending on the benchmark
and array but overall the data suggest the phenomenon is
frequent. It occurs more than 80% for many cases, at least
35% of the time for half the benchmarks and all structures
except the data cache and DTLB for which SCC-column is
more rare.

We propose to leverage SCC-column to reduce read and
write access energy. An interval based scheme that requires
one bit per column is used to detect a SCC-column and the
value it stores. When accessing a SCC-column some of the
actions needed to read or write can be avoided thus saving
energy. Experimental analysis reveals energy savings of more
than 40% for several arrays.

The main contributions of this paper are: (i) the identifi-
cation of the SCC-Column phenomenon, (ii) the introduction
of an efficient mechanism for detecting and exploiting SCC-
columns, (iii) a circuit explanation of how a SCC-column can
save access energy, and (iv) a characterization of the potential
savings of the proposed scheme for various benchmarks and
arrays.

II. MECHANISM

Let’s assume that we have an array with N entries and B bits
per entry, and each column is initialized to all 0’s or all 1’s.
For each column in the array we use two extra bits initialized
as follows: the Same-Bit that is set to 1 and the Initial-Bit
set to the initial column value that is the same for all column
cells. When the value of the Same-Bit is 1 it means that every
cell in its corresponding column has the same value, and the
value is equal to its Initial-Bit value.

On a read from a column with the Same-Bit set we do
not read from the column in the array but read through a
multiplexer the value from the column’s Initial-Bit. Otherwise,
when the Same-Bit is 0 we perform a normal column read. The
access path for a read is shown in Fig. 2.a.

On a write access when the Same-Bit of a column is set,
we check if the bit value to write to that column is equal to
the column’s Initial-Bit. If it is the same we inhibit the write
access, otherwise, we reset the corresponding Same-Bit and
perform a normal write. A normal write is also performed
when the Same-Bit is not set. The write path is illustrated in
Fig. 2.b.

2The x-axis is not common between curves, i.e. a benchmark may corre-
spond to different x-points
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Fig. 1.

Fig. 2.c shows a flow diagram that summarizes the different
access scenarios.

A. How to Set Regularly the Same-Bit

The description of the mechanism so far implies that once
a Same-Bit is reset there is no way for it to be set again
which of course is extremely limiting. This can be overcome
by reinitializing the array and the Same-bit vector at regular
time intervals. The intuition behind such an approach is
that a column may temporarily lose its uniformity and by
reinitializing it we enable the mechanism to detect if it became
a SCC-column again.

We illustrate the workings of the interval based scheme used
to initialize an array multiple times with the aid of the example
in Fig 3 that describes the behavior for one array column.

Let’s assume that at the Start Point of an interval the column
is logically initialized to all Os, indicated by the Initial-Bit set
to 0, and the Same-Bit for that column is set. Lets assume at
a point X cycles into the interval the Same-Bit is reset, we
refer to this as the Change Point. This means that 1 is written
into one of the entries in that column, which violates the SCC
property of the column.

All the accesses to the column that occurred between Start
Point and Change Point are either reads or writes of a 0 value.
During the interval between Start Point and Change Point the
column is a SCC-column since it contains all Os and we refer
to it as SCC-column interval. Naturally during a SCC-column
interval the Same-Bit remains set and read and writes are
prevented from accessing the column.

After the Change Point the Same-Bit is reset and remains
reset until the End Point, the end of an interval. During
this period all the accesses to the column are performed
normally. Therefore, during this period we lose the opportunity
of detecting a transition back to a SCC-column. Thus the
proposed scheme can lose some of the potential in Fig. 1.
However, reinitializing all the columns of the array at the end

Frequency of SCC-column for various Benchmarks and Arrays

of each interval, facilitates the detection of columns that have
transition to a SCC-column. This can occur because we reset
cell content in a column that can contain a rarely accessed bit
that breaks the uniformity in the column. Section 5 compares
the performance obtained with continuous tracking for SCC-
columns, shown in Fig. 1, vs interval-based tracking.

The key parameter of interest is the length between initial-
ization intervals. If the interval is too short the mechanism will
be able to detect quickly the possible transition of a column
back to SCC-column but this may entail major performance
penalty since reinitializing arrays may imply cold starts. Alter-
natively, if the interval is too long SCC-columns opportunities
are lost but the impact of cold starts due to array reinitialization
will be small.

Previous work [9] has shown that reinitializing core re-
sources (flushing L1 caches and TLBs, resetting predictors
state, but maintaining L2) has a negligible impact on perfor-
mance if it is done every 1 million or more cycles. The reason
for this is that usually the number of entries in these structures
is in the order of 100 to 1000 entries and they can be warmed
up relatively quickly as compared to the interval length. This is
particularly true for flushed L1 caches that are backed-up by an
inclusive L2. Furthermore, as we argue in the next subsection,
an array reinitialization does not require an actual physical
reinitialization of the content but only a semantic one.

B. How to Reinitialize On-Chip SRAM Arrays

To reinitialize L1 data and instruction caches, both data and
tag arrays, and TLBs, we reset at the end of each interval their
per block valid bits without changing the actual cache contents.
Writeback caches need to write back their dirty blocks before
they get invalidated. Additionally, the per column Same-Bit
is also set to indicate a same column. The array content
needs no reinitialization because when a write does not match
a column’s [nitial-Bit it will perform a normal write and
overwrite the cache content. Therefore, by block invalidation
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we can assume the column initial state, indicated by the Initial-
Bit vector, to be either all Os or all 1s. The best value of
the initial-bit vector depends on program phase, input data,
and structure, however, analysis we performed suggests that
a good compromise is to use an initial-bit vector that always
contain 0s. Future work can explore a more dynamic scheme
for selecting the initial-bit vector at each interval. However, for
this work we assume the initial-bit vector value to be always
zero and hence the initial-bit overhead can be completely
eliminated resulting in just one bit overhead (Same-Bif) per
column.

For prediction arrays reinitialization is very simple: just set
the Same-Bit vector. This is sufficient since we do not need to
worry about reading stale values (as incorrect predictions do
not affect correctness). This has the interesting property that
when a SCC-column of a predictor transitions to non-SCC its
previous content becomes available for reading and thus the
training overhead for the predictors is kept minimal.

C. Overheads

The detection of SCC-column in any structure results in
area, performance and energy overheads.

Extra hardware is needed to implement the counter that
keeps track of the number of cycles of an interval, but this
overhead is small due to small interval length and can possibly
have one counter shared for all structures. Also extra hardware
is needed for the Same-Bit Vector and the Initial Bit Vector. As
mentioned earlier the size of the two vectors depends on the
number of columns that an array has which typically is small
as compared to the array size. Additionally, it is possible for
a Same-Bit to be shared by multiple physical columns. For
the array configurations used in this paper (see Section IV),
the state overhead of the vectors for each array we consider
is never more than 1% as compared to each array size. In this
paper the Initial Bit Vector is always set to zero, therefore, the
Initial Bit overhead can be completely eliminated resulting in
only one bit per logical column overhead.
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On a read access a 2:1 Mux delay is added for each column
to select whether to read from the array or not (see Fig. 2.a).
On a write access extra delay is also added due to the need
to check the Same-Bit value, the Initial Bit value and the new
value before performing the write access (see Fig. 2.b). In
order to account for the delay of the added muxes and latches,
we do a breakdown of the delay using CACTI [10]. Subarray
to latch to output driver is about 20-30% of the CLK — > @)
delay for the memory, with about 40-20-40 split across each
component. The latch can add 4-6% of the total delay and this
delay can be reduced if output stage is tapered. However, this
is a tradeoff in area, leakage and delay. Our experiments have
shown that the multiplexer will impact the overall timing by
adding 0.2-2% to the pre-mux delay. Larger size for the pass
transistors in the mux will improve timing (lower resistance)
but at the expense of area overhead.

Another overhead is due to write-backs of dirty blocks. But
this is not needed often due to large intervals and limited
number of writeback arrays. For example for structures like
TLBs, 1$ and predictors we do not need to write-back data.
Furthermore, in data caches performing an early write back in
some cases helps performance because if a miss occurs at an
entry we do not need to write back data. Finally, write-through
caches do not need to perform a write-back.

One more overhead added by our mechanism is a degradation
at the beginning of each interval. Because we invalidate data at
the beginning of each interval the first accesses to a structure
are going to be misses or result in a misprediction. The per-
formance implication of these extra misses and mispredictions
depend on the size of the interval after which we should reset.
As was shown in [9] resetting processor arrays around every
1 million or more cycles has low performance overhead. We
have reconfirmed this observation and reported it in Section V.

III. LEVERAGING SCC TO SAVE ENERGY

We first explain a normal column access and then describe
access to a SCC column.
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A. Normal Access

An array consists of rows and columns. In an SRAM based
array, we have columns known as differential pair columns
(bitlines BL and BL’) and an associated wordline. This is
shown in Fig. 4. The figure also shows the control signals
that are necessary to perform the access, the sense amplifiers
and the write drivers. For simplicity we show just one cell and
one column pair.

The address and data are transferred to the array through
the buses. Before a normal access starts, the columns are
presumed to be in precharged state and ready to be accessed.
The decoders decode the row address from the address bits
and activate the associated wordline.

On a read access, the COL_RD selects the column to be
read (since many columns can be sharing the sense amps and
the associated drivers). Depending on the value of the cell,
either BL or BL’ is discharged. The SENSE_EN signal
allows the sense amps to sense the values and output the data.
Once the value has been read, the PRE and SENSE_PRE1
signals precharge the column and the sense amps back to the
precharge voltage.

In a write operation, the COL_W R operation selects the
column and data values are input through the DATA_IN
drivers. Unlike read, in a write access, a complete differential
has to occur for the value to be written (full swing as compared
to half swing). Once the write is done, the discharged column
is brought back to precharge voltage.

B. Access to SCC-column

If SCC column is detected, the normal access is bypassed.
We explain the mechanism for read and write to SCC column
and show the added circuitry to control them.

In a read, the Same-Bit indicates whether a column is
SCC or non-SCC. If the column is in SCC state, we bypass
normal read and use the Initial-Bit of the column as the read
value. Since the read is not done, none of the two bitlines
are discharged and hence they do not need to be precharged.
Also there is no need for sensing the data, thus the sense amp
is gated off. Thus no energy is spent in bitlines, senseamps
and the associated multiplexers. The Same-Bit is used to turn
off COL_RD, SENSE_EN and PRE signals as shown in
the dotted circles at the left side of Fig. 4. If the column is
non-SCC, the read is done in a regular fashion and bitlines
are discharged.

In a write operation the following scenarios can occur: (i)
The write is to a non-SCC column. In this case a regular write
access is done. If after the write the column becomes SCC,
it is not detected until the start of the next interval, (ii) The
write is to a SCC column and the written value is the same
as Initial-Bit. In this case the normal write is bypassed. The
Same-Bit is used to deactivate the COL_W R signal, (iii) The
write is to a SCC column and the written value is not the same
as the Same-Bit. In this case a normal write has to be done
and the control signals are resumed and data is driven in. In
scenario (i) no energy is saved since column is accessed in a
normal way. In scenario (ii) energy is saved since there is no
need to write and drive the data in. Since full swing discharge
is avoided to write the data, the resultant precharge is also
avoided. In scenario (iii), a regular access is done and hence
no energy is saved.

There are some implementation issues related to deactivat-
ing sense and write drivers during a write to SCC column.
The contents of the cell can be corrupted if we lower the
precharge for a SCC column and the associated wordline is
activated. We thus propose to keep the columns floating in the
write state, that is, one column at precharge voltage and the
other discharged to avoid corrupting the cell contents. This is
done during the resetting of the column to SCC at the start of
the interval.

Another implementation issue could be that of leakage
current corrupting the cell value in an SCC column since the
bitline is not precharged. In traditional SRAM designs, bitlines
remain precharged when bitcells are not accessed, resulting
in subthreshold leakage current into the logical O sides of the
SRAM cells and junction leakage current from the N+ regions
connected to the bitlines. By allowing the bitline voltages to
float in the write state, these leakage components are decreased
and there is no path to leakage and hence the values are not
corrupted.

C. Energy Savings

The dynamic energy breakdown of an SRAM array access
is given by:

Edecoder + Ewordline + Eoutputdriver + Eamps + Eprecharge



Three components of energy that can not be eliminated
by SCC are Edecoder, Ewordline and Foutputdriver. On
an access to SCC column, Famps and FEprecharge are
eliminated.

The SCC-column energy overhead includes energy for up-
dating the Same-Bit vector, and the switching energy for gating
at the start of the intervals and for un-gating when SCC is
terminated. Thus, this overhead is negligible when compared
to the overall array energy over a large time interval. We do
not determine this overhead in detail but rather assume it is a
fixed fraction of the array energy and we report its implications
on overall energy of the scheme in Section V.

IV. FRAMEWORK

We use sim-alpha simulator [12] to evaluate SCC columns
for different arrays: D$-tag, D$-data, RAS, JUMP, I$-tag,
DTLB-tag, ITLB-tag and branch predictors. For benchmarks,
we use the SPEC2000 benchmark suite. Each benchmark is
run for 100 million instructions after fast forwarding to the
representative regions. All benchmarks are used with their
reference input sets.

For all structures except D$-data and branch predictor, we
show results for logical columns which means the bits of
different blocks at the same bit position belong to the same
column. This means the logical column can span across blocks
of different physical columns if the array is segmented into
smaller sub arrays. This allows the Same-Bit and Initial-Bit per
multiple physical columns (one logical column). The tradeoff
is that we lose some potential since it is more likely for the
column to be non-SCC.

For D$-data and branch predictor we show results by
segmenting the logical columns. The D$-data is segmented
according to physical ways. Branch predictor array is divided
into 256 segments. This means we have 256 columns and
128 wordlines for prediction and hysteresis bit respectively.
An entry is selected by using the upper 8 bits to choose the
segment number and the lower 7 bits to choose the entry within
the segment. We use segmentation for these structures since it
is closer to real implementation in which the arrays are mostly
squares. Segmenting the array increases the opportunity for
more SCC columns but also increases the overheads. The size
of each of the structure and the segmentation details are given
in the labels of Fig. 1 and Fig. 5.

For the interval based scheme we initialize all arrays to
zeroes (supported by the analysis of different structures and
benchmarks)and experiment with an interval length of 1Mil-
lion.

V. RESULTS
A. SCC Column Detection

Figure 5 shows the number of cycles the columns in
a structure are SCC using the interval based scheme. The
structures fall into two categories. (i) The D$ and DTLB that
lose the potential as compared to Fig. 1. (ii) The I$, ITLBs and
predictors for which the potential is maintained. For structures
falling in category (i), some of the potential is lost because

columns switch between SCC and non-SCC during intervals
and thus detecting SCC column only at the beginning of the
interval means the potential is lost for the remaining interval.
For structures falling in category (ii), the columns are mostly
zeroes throughout execution and hence with the reset based
scheme they preserve their SCC column potential.

B. SCC Energy Savings Results

We use CACTI version 6.0 [10] to calculate the energy
savings per access at 32nm. We concentrate on dynamic
energy.

To determine the implications of the energy overhead of
the proposed scheme we show the average energy savings per
access with three different fractions of fixed overhead 0%, 1%
and 5% in Figure 6.

The structures for which the SCC phenomenon occurs a lot
there are large energy savings. The savings can go as high as
60% for structures like TLBs. For several arrays the savings
exceed 40%. This is considerable as these arrays contribute
typically, according to our in-house power simulator based
on CACTI[10] and WATTCH[13], to 35% of the total power
consumption in a contemporary core including L1 caches. For
data cache data array, the energy savings is small. Also for
data caches, the invalidating of the cache after every interval
incurs more misses which account for more energy. However,
we observe only 0.3 additional misses/perKilolnstructions due
to reinitialization at 1M intervals (analysis not shown due to
space constraints), which agrees with the findings of [9].

VI. RELATED WORK

Several previous works aim to reduce energy by leveraging
cache dynamic properties. One such technique exploits the
non-uniformity in the values stored in arrays where a small
number of unique values account for most of the array
content [14] whereas another exploits the sparsity of used
entries [15]. Authors in [5] have shown how to reduce the
energy on reading or writing a O byte. For every byte in the
array they attached an extra bit, ZIB, which indicates whether
the byte is O or not. The approach is to prevent the bitline
discharging when reading or writing a O byte, preventing in
this way the bitline swing. They add various gating circuits,
similar to our scheme, to disable part of the access activity.
The main difference between the two techniques is that we
use extra information for each bitline instead of an extra bit
per byte in a wordline. Thus the two schemes exploit different
array phenomena caused by non-uniform cache content.

The frequent-value-cache [7] stores frequently occurring
block values encoded in a small table that is accessed first
to filter accesses to the larger cache for less frequent val-
ues. Asymmetric-cell SRAM [8] leverages finer grain non-
uniformity to reduce the leakage of cells that contain zero.

The decay cache approach turns off cache lines which are
not used for a large number of cycles to decrease leakage
power [6]. In contrast we reduce dynamic energy when an
access occurs to a SCC-column. The decay-cache and SCC-
column share some structural similarity because both schemes
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rely on a global counter and a few bits of state per line
for the decay-cache and two bits per column for the SCC-
column. However, the dynamic behavior that is exploited is
quite distinct: unused lines vs same cell content column.

One other work leverages the higher frequency of cells
storing O bits in caches to design low-leakage asymmetric-
sram cells [8]. The key difference from our work is that we
exploit same content at the granularity of columns instead of
individual cells.

An excellent discussion for the breakdown of energy con-
sumption in SRAM arrays is provided in [11].

VII. CONCLUSIONS AND FUTURE WORK

This paper shows how to reduce the energy to access an
array by exploiting the dynamic phenomenon of SSC-column
that occurs when all cells of an array column store the same
bit value. A characterization of SCC-column reveals that it
occurs frequently for many benchmarks and arrays. An interval
based scheme is introduced that requires one bit per column to
detect a SCC-column. This scheme can be used to gate some
of the actions needed to read or write a SCC-column thus
reducing the array access energy. An experimental evaluation
shows that the proposed interval based scheme detects SCC-
columns frequently and the energy savings often exceed 40%.
The findings of this paper point to future work aiming to
make the compiler and microarchitecture SCC-column aware

Percentage of Cycles Columns are SCC as detected by Interval Based Scheme

to increase the frequency of SCC-columns.
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