
RVC: A Mechanism for Time-Analyzable Real-Time
Processors with Faulty Caches

Jaume Abella1, Eduardo Quiñones1, Francisco J. Cazorla1,2, Yanos Sazeides3,
Mateo Valero1,4

1Barcelona Supercomputing Center (BSC-CNS)
2Instituto de Investigación en Inteligencia Artificial (IIIA-CSIC)

3University of Cyprus (UCY)
4Universitat Politecnica de Catalunya (UPC)

jaume.abella@bsc.es, eduardo.quinones@bsc.es, francisco.cazorla@bsc.es,
yanos@cs.ucy.ac.cy, mateo@ac.upc.edu

ABSTRACT
Geometry scaling due to technology evolution as well
as Vcc scaling lead to failures in large SRAM arrays
such as caches. Faulty bits can be tolerated from the
average performance perspective, but make critical real-
time embedded systems non time-analyzable or worst-
case execution time (WCET) estimations unacceptably
large.

This paper proposes a mechanism to tolerate faulty
bits in caches while still providing safe and tight WCET.
Our solution is based on adapting structures such as the
victim cache, cache eviction buffers or miss state handle
registers to serve as replacement for faulty cache stor-
age. We show how modest modifications in the hard-
ware help providing safe and tight WCET on the face of
permanent faulty bits with negligible impact in power
and performance.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and reliability—per-
formance analysis and design aids

General Terms
Performance, Reliability

Keywords
Real-time, Time Analysis, Embedded, Cache, Faults

1. INTRODUCTION
Technology evolution leads to smaller geometries of

devices and larger number of transistors in the chip.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HiPEAC 2011 Heraklion, Crete, Greece
Copyright 2011 ACM 978-1-4503-0241-8/11/01 ...$10.00.

Process variations [25] are still an issue for processor
design, and even if absolute variations decrease, their
relative impact increases. Thus, transistors and wires
are more likely to misbehave due to variations. On the
other hand, limited power budget requires decreasing
Vcc to keep power and temperature at bearable levels.
Lowering Vcc exacerbates the impact of process varia-
tions in timing because cycle time guardbands must be
increased significantly to keep reliability levels constant
across generations. However, those large guardbands
overwhelm the potential benefits of technology scaling.
Hence, some increase in the number of faults must be
expected in future technology generations.
Large cache memories occupy a vast area of chips

because they provide increased performance at the ex-
pense of low power. Most of the cache area is devoted
to SRAM cells storing contents. SRAM cells are par-
ticularly error-prone at low Vcc operation since process
variations and noise jeopardize their data retention ca-
pabilities [3]. Therefore, SRAM cells require large de-
sign effort to keep error rates low. Last level caches (L2
or L3 caches depending on the processor) may lay in
a different Vcc domain to that of the rest of the chip.
Those caches are operated in such a way that retain
contents at ultra-low Vcc and their voltage is raised in
the proper banks when data are accessed. Typically,
Vcc to serve accesses is higher than that of the rest of
the chip to guarantee correct operation. Unfortunately,
this approach cannot be applied to L1 caches that lay
in the same voltage island than the cores themselves.
Thus, even if SRAM cells of L1 caches are larger than
those of L2 and L3 caches, their operation Vcc is lower
and hence, their error rates may be higher than those
of caches in independent voltage islands.
Techniques to detect and correct errors in data have

been largely studied in the past. Some general methods
such as parity and error correction codes (ECC) deal
with these issues [5]. In general those methods are ef-
fective for soft errors, but are not used to correct errors
due to hard faults because they have an impact in per-
formance and reliability. For instance, if a cache line
is extended with single error correction double error de-
tection (SECDED) codes and has a faulty bit, each read

1

operation to that particular cache line requires reading
the data and correcting it before providing the data to
the core, thus impacting latency. Moreover, any soft er-
ror in that cache line cannot be corrected by means of
SECDED. Thus, such cache line lacks of error correc-
tion capabilities for transient errors. In general, those
issues are avoided by disabling faulty cache lines. By
disabling few cache lines average performance experi-
ences negligible degradation and reliability in the chip
is not jeopardized [14,19,22].

Performance requirements and energy constraints in
real-time systems pushes for processors with cache mem-
ories and multiple cores [15]. While disabling faulty
storage has been shown to be an effective solution in
terms of average performance [1,21,26], such a solution
may have a large impact in worst-case execution time
(WCET) estimations in real-time environments. Given
the fact that an accurate analysis of caches is key for
tight and safe WCET estimation of real-time applica-
tions, disabling cache lines makes WCET analysis in-
accurate or highly pessimistic, thus leading to unpre-
dictable or unacceptably large WCET estimations.

Using redundant cache lines to replace faulty ones has
been widely used to increase yield, but those approaches
require setting up fuses, which are expensive in terms
of area [7,13]. Moreover, re-routing signals to the spare
cache lines has an impact in latency that can be paid in
non-latency-critical caches such as L2 and L3 ones, but
such latency cannot be afforded in performance-critical
caches such as L1 ones. Thus, smart approaches based
on taking advantage of existing hardware must be ex-
ploited to keep embedded processors analyzable to pro-
vide safe and tight WCET estimations.

In this paper we propose a mechanism for replacing
faulty cache lines with extra cache lines that are added
and reserved in cache-assist structures such as victim
caches, miss state handle registers, eviction buffers and
write combining buffers in L1 cache memories. We show
how this cache-like blocks can be extended to replace
faulty cache lines, how L1 cache replacement informa-
tion must be updated to avoid altering L1 cache behav-
ior, and how replament cache lines can be taken into ac-
count by the WCET tool. Our approach lies on existing
error detection and correction techniques and provides
reconfiguration capabilities to keep execution time pre-
dictable. We focus on L1 caches because they occupy
most of the chip area (excluding L2 and L3, which may
use spares) and hence, they are the dominating compo-
nent in terms of permanent errors. Reconfiguration ca-
pabilities for further blocks remain as part of our future
work. The contributions of this paper are as follows:

1. The Reliable Victim Cache (RVC). The RVC is a
particular implementation of a conventional vic-
tim cache that allows replacing faulty cache lines
in L1 cache with supplementary cache lines avail-
able in the victim cache. We also show that RVC
behavior can be also emulated with other hard-
ware such as miss state handle, eviction and write
combining buffers.

2. Operation mechanisms to guarantee correct be-

havior of cache systems complemented with the
RVC. This is particularly important to keep re-
placement information in cache as if there were
not faulty cache lines. Otherwise WCET tools re-
quire further complexity to analyze several poten-
tial states of the replacement information.

3. A detailed evaluation of the impact in performance
(average and WCET), power and area of the RVC.
Results show that by paying a modest 1% area
and energy overhead WCET is not increased at
all despite cache faults.

The rest of the paper is organized as follows. Sec-
tion 2 presents the RVC, our approach to provide time
predictability in faulty caches. Alternative implemen-
tations of the RVC are detailed in Section 3. Section 4
presents performance (average and WCET), power and
area results for the RVC. Section 5 discusses related
work. Finally, Section 6 concludes this paper.

2. THE RELIABLE VICTIM CACHE
Hardware may suffer permanent and intermittent faults

due to many reasons. One of the most typical ones is
the fact that devices (metal stripes, polysilicon poly-
gons, silicon wells, etc.) are fabricated assuming a given
geometry, but actual physical devices do not match such
nominal geometry due to process variations and limited
capabilities of the manufacturing tools. Thus, although
physical devices resemble their expected shapes, they do
not match them exactly. In fact, in some cases they may
show mismatches large enough to make them not oper-
ate properly. However, in those cases processors can be
typically tested during post-silicon stages and discarded
due to their faults. Similarly, some particles may reach
the surface of the devices affecting their geometry.
Once a given processor passes all tests successfully, it

is considered to be a safe chip and can be used to run
real-time tasks. Unfortunately, some devices may be
almost faulty due to some imperfections and may fail
soon during operation when they degrade enough due
to their usage. This kind of early faults is typically re-
ferred to as latent defects. Although on-line approaches
to detect those failures have been proposed, it may be
unfeasible to replace those processors, at least immedi-
ately. For instance, those chips may be part of a space
engine intended to operate for several years with no way
to replace faulty chips (e.g., a satellite), or part of an
aircraft, which cannot be repaired until landed.
Latent defects are more likely in smaller devices where

the relative impact of a small defect is larger. Large
cache arrays are designed using rather small transistors
and wires to increase their capacity and decrease their
power and delay per unit area. However, such small ge-
ometry for devices, its high density and their large area
makes caches prone to faults. Thus, we can expect most
of the faults to arise in cache memories. Fortunately,
the purpose of setting up caches is increasing perfor-
mance, not providing correctness. Thus, some cache
space can be removed while still allowing correct execu-
tion of tasks and high average performance [14, 19, 22].

2

While functional correctness may be enough for general-
purpose systems, safety critical embedded systems re-
quire also timing correctness to execute all tasks timely
not missing any deadline. Soft errors may require some
overhead to recover, but their transient nature limits
their impact, and hence, some slack can be left avail-
able in task scheduling to deal with those errors. How-
ever, hard faults, and particularly those in caches, may
make real-time tasks to violate their deadlines repeat-
edly. WCET estimation tools rely on a determinis-
tic behavior of caches. However, faults introduce non-
determinism (fault number and location is unknown a
priori). Thus, it is critical setting up solutions to keep
time analyzability in embedded systems despite of faults
instead of making extremely pessimistic assumptions
(e.g., assume that all cache lines are faulty and data
must be retrieved from main memory).

2.1 Impact in WCET of Faults in Cache
Memories

A single faulty bit in a cache line may require dis-
abling the whole cache line or at least part of it. Re-
cently, some literature has proposed how to minimize
the amount of cache space disabled due to faults [1,21,
26]. Anyway, some space will be disabled. For the sake
of this discussion we will assume that the whole cache
line is disabled (e.g., the faulty bit is part of the tag).

Once a cache line has been disabled due to a faulty
bit, we must measure its impact in performance. In
general, such impact is relatively small given the fact
that caches may have some hundreds or even thousands
of cache lines, and hence, on average few hits will be-
come misses due to the faulty cache line. However, in
terms of WCET potentially all the cache accesses may
become misses due to a single faulty cache line. Thus,
to be safe, we must make such a pessimistic assumption
to estimate the WCET. In order to show this effect we
illustrate two different ways to proceed in the presence
of a faulty cache line.

• Scenario A. The cache line is removed from the
replacement stack. Let us assume we have an N-
way set-associative cache. Potentially, all cache
accesses could be mapped to the very same cache
set, and potentially they could access each cache
line in a round-robin fashion. For instance, in a
4-way cache with LRU (least recently used) re-
placement we could have 4 lines (D1, D2, D3 and
D4) mapping to the same set and being accessed
in a round-robin fashion (see Figure 1). If one of
the cache lines in the set becomes faulty all ac-
cesses will miss in cache because we will be able
to fit only 3 cache lines in the set and each access
will replace the cache line that will be used im-
mediately. A less pessimistic way to measure the
impact in WCET would consist of assuming that
we will lose all the hits to the cache set with the
highest number of hits, or at least all those hits in
the LRU position of the set. However, performing
those accurate estimations would require having a
full knowledge of the addresses of cache accesses.

Tags Data

@

Hit

Eviction
Tags Data

Data

1st Level Data Cache

Victim Cache

Figure 2: Example of a 2-way 1st level data cache
(DL1) with a 4-entry victim cache

Anyway, each extra cache miss may have large la-
tency by having to go through some buses (which
may be shared with other cores/devices) and ac-
cessing some other blocks such as L2/L3 caches
and main memory (which again may be shared
with other cores/devices).

• Scenario B. The cache line is kept in the replace-
ment stack but its contents are not cached. Fol-
lowing the example in scenario A, we could as-
sume that whenever we have to allocate some data
into a physically faulty cache line, we simply serve
the data to the processor and do not cache the
line. In the example before, all accesses to one of
the lines (e.g., D4) would miss in cache (see Fig-
ure 1). Potentially, such a solution could make
all cache accesses miss in cache if all accesses are
performed to data fitting into a cache line that
is physically mapped into a faulty cache line. A
less pessimistic way to perform this estimation
would consider that the physical cache line with
the largest number of hits always produces misses.
Again, the cost of each cache miss can be huge due
the long latency to fetch the data as well as the po-
tential contention that the access can experience
in shared or highly busy resources.

2.2 RVC Design
Our first proposal consists of using a slightly-modified

victim cache [11] adapted for reliability purposes. The
purpose of victim caches is storing those cache lines
evicted from first level caches (L1) to allow temporal
extra associativity for some cache sets that may need it.
Figure 2 shows the schematic of a 2-way L1 data cache
and a victim cache. Victim caches can be accessed either
(i) in parallel with L1 caches, thus serving data with the
same latency as L1 caches, or (ii) sequentially, but only
in case of an L1 miss, with a total latency higher than
that of an L1 hit.
The basic idea consists of replacing faulty L1 cache

lines with extra victim cache lines set up for reliabil-
ity purposes in such a way that the hit latency to the
faulty L1 lines either remains the same (e.g., if the L1
and victim caches are accessed in parallel) or is slightly

3

Cache is 4-way, LRU. Data access pattern for a given cache set: (D1, D2, D3, D4)*

 LRU stack (MRU left, LRU right)
Access Fault-free h/m Scenario A h/m Scenario B h/m

D1 - - - - miss - - - miss - - - miss
D2 D1 - - - miss D1 - - miss D1 - - miss
D3 D2 D1 - - miss D2 D1 - miss D2 D1 - miss
D4 D3 D2 D1 - miss D3 D2 D1 miss D3 D2 D1 miss
D1 D4 D3 D2 D1 hit D4 D3 D2 miss D3 D2 D1 hit
D2 D1 D4 D3 D2 hit D1 D4 D3 miss D1 D3 D2 hit
D3 D2 D1 D4 D3 hit D2 D1 D4 miss D2 D1 D3 hit
D4 D3 D2 D1 D4 hit D3 D2 D1 miss D3 D2 D1 miss
D1 D4 D3 D2 D1 hit D4 D3 D2 miss D3 D2 D1 hit
D2 D1 D4 D3 D2 hit D1 D4 D3 miss D1 D3 D2 hit
D3 D2 D1 D4 D3 hit D2 D1 D4 miss D2 D1 D3 hit
D4 D3 D2 D1 D4 hit D3 D2 D1 miss D3 D2 D1 miss
D1 D4 D3 D2 D1 hit D4 D3 D2 miss D3 D2 D1 hit
D2 D1 D4 D3 D2 hit D1 D4 D3 miss D1 D3 D2 hit
D3 D2 D1 D4 D3 hit D2 D1 D4 miss D2 D1 D3 hit
D4 D3 D2 D1 D4 hit D3 D2 D1 miss D3 D2 D1 miss

Figure 1: Access pattern for 3 different scenarios: a fault-free cache, scenario A and scenario B. Black
boxes stand for faulty entries and grey boxes for entries experiencing a hit

Valid

bit
Tag

(as in cache)
Physical tag
(set + way)

Data
(as in cache)

Lock
bit

Figure 3: Example of a 4-entry RVC

increased and in a deterministic manner (e.g., L1 and
victim caches are accessed sequentially). Typically, vic-
tim cache entries consist of a valid bit, a tag and data
space to store a full cache line. Our approach requires
adding some extra victim cache entries and extending
entries with two extra fields: the lock bit and the phys-
ical tag as shown in Figure 3. The lock bit indicates
whether a victim cache entry has been allocated to re-
place a faulty cache line. The physical tag indicates
which cache line this entry replaces (set and way) in
case it has been locked.

Similarly to state-of-the-art approaches for fault tol-
erance [1,2,21,26] we assume that there are mechanisms
in place to detect faulty storage and configure the ex-
tra fields of the RVC properly. Those mechanisms rely
on running some tests at boot time and/or periodically
during operation to detect faulty bits and set particular
bits indicating whether each storage block is faulty or
not1.

The RVC itself may also experience faults. However,
extra entries set up for reliability purposes may serve
also to replace faulty victim cache entries. Thus, in case
of having a faulty entry in the RVC, there will be one
less RVC entry available to be locked. This way extra
RVC entries set up for reliability purposes serve as re-
placement for both faulty L1 and RVC lines. However,
when replacing faulty RVC lines they are not locked as
they lay in the same structure and replace faulty lines
naturally. Note that the number of faulty lines sup-
ported in both the L1 and the RVC equals the number
of extra entries set up in the RVC. How many extra
entries must be set up depends on the cache size and

1Note that those bits are hardened or implemented with
triple modular redundancy to ensure that they are fault-
free.

Probability of avoiding maximum WCET for all accesses

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0,01% 0,001% 0,0001% 0,00001% 0,000001%

Faulty bit rate

Base
RVC + 2 entries
RVC + 4 entries

Figure 4: Yield for a 4-way 8KB 64B/line cache
with a 4-entry victim cache, 6-entry RVC and
8-entry RVC

faulty bit rate. We illustrate this dependency in Fig-
ure 4 for a cache with a 4-entry victim cache and two
configurations of the RVC with 2 and 4 extra entries
respectively. For instance, for a 0.001% faulty bit rate
(1 faulty bit every 100,000 bits) the baseline cache sys-
tem would have a yield as low as 50.5%. This means
that 49.5% of the processors would have faulty bits and
WCET estimations would not be valid. Conversely, an
RVC with 2 and 4 extra entries increases yield up to
96.7% and 99.9% respectively.
The remaining control bits in cache, such as those

devoted to store replacement information (e.g., LRU
bits), as well as cache line dirty and valid bits are as-
sumed to be hardened (e.g., using more robust memory
cells [9, 10]) as their relative contribution to the cache
are and power is negligible.
Next we describe how to manage cache accesses in the

presence of faults to keep time analyzability with the
help of the RVC. We describe different scenarios with
the help of the example in Figure 5.

Cache Hit.
Hits are managed as in a fault-free cache. If there is

a hit data are served as usual and replacement infor-
mation is updated conveniently. From the replacement

4

Tags Data
r0

@A

Tags Data

1st Level Data Cache

Victim Cache

LRU

Phys.Tag Lock bit

@B

@C @D

@E @F

D(A) D(B)

D(C) D(D)

D(E) D(F)

A, B

D, C

E, F

@B
@D

@G

D(B)
D(D)

D(G)

r4,c1
r7,c1

1
1

0

r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11

c0 c1

Figure 5: Example of a 2-way DL1 with a RVC.
Faulty cache lines are shown in gray

policy point of view faulty cache lines are considered in
the same manner as fault-free ones. For instance, this
would be the case if we accessed @A in Figure 5.

Cache Miss (Miss also in a fault-free cache) - Re-
place fault-free cache line.

Whenever there is a miss in a fault-free cache, data
must be retrieved from upper memory levels. In the
case of a faulty cache, whenever there is a miss we do
not know whether the miss was caused by a faulty cache
line or not. Thus, in terms of WCET computation each
miss may have been caused by the faulty cache line.

If we use the RVC data will not be present in the
RVC entries devoted to replace faulty cache lines. This
is so because the access would have been a miss even
in a fault-free cache. In this case data are retrieved
from its location (upper memory levels or unlocked RVC
entries). There are two different scenarios depending on
whether the cache line chosen for replacement in cache
is faulty or not. If the cache line is fault-free, the way
to proceed is as follows:

(i) Cache access happens as usual. A miss is detected.
E.g., we access @H, which is mapped in set r7.

(ii) The access proceeds to the RVC, either in paral-
lel or sequentially. It misses in the locked entries
because in the baseline the access was a miss. We
have the physical tag of the cache line being re-
placed in cache (set and way) (<r7,c0>) and will
compare it against the physical tags in the RVC.
There will not be any match in any locked entry
because the cache line chosen to store the data is
fault-free, and hence, it has no counterpart in the
RVC.

(iii) Data will be requested to upper memory levels or
unlocked RVC entries as in the baseline.

(iv) Whenever data are received, they are stored in
the corresponding cache line, but not in the RVC.
Thus, set r7 will hold @H and @D (@D is in a
faulty line).

(v) In parallel, the evicted cache line (@C) is moved to
an unlocked entry of the RVC. Potentially it could
evict @G from the RVC, however, @B and @D
could not be evicted as they are stored in locked
RVC entries.

(vi) Cache updates its replacement information. Thus,
the LRU stack will be {H,D}.

Cache Miss (Miss also in a fault-free cache) - Re-
place faulty cache line.
Conversely, if the cache line where data are to be allo-

cated is faulty, the way to proceed is somewhat different:

(i) Cache access happens as usual. A miss is detected.
E.g., we access @I, which is mapped in set r4.

(ii) The access proceeds to the RVC, either in parallel
or sequentially. It misses in the locked entries be-
cause in the baseline the access was a miss (there
is no tag match). We have the physical tag of the
cache line being replaced in cache (set and way)
(<r4,c1>) and will compare it against the phys-
ical tags in the RVC. There will be a match in
this physical tag for exactly one of the locked en-
tries (the one storing @B) because data are to be
allocated in a physically faulty cache line.

(iii) Data will be requested to upper memory levels or
unlocked RVC entries as in the baseline.

(iv) The RVC locked entry mapping the faulty cache
line (@B) is unlocked and becomes the most re-
cently used RVC entry.

(v) Whenever data are received (@I), they are stored
in a RVC line, which will be selected according to
the replacement policy of the RVC. Such RVC line
will be updated with the new tag and data (@I and
D(I)), it will be locked, and its physical tag will be
set to the one of the faulty L1 cache line it maps
(<r4,c1>). Note that if the data requested was
in an unlocked RVC entry, we should only update
the physical tag and lock fields of the two RVC
entries involved, thus avoiding unnecessary data
movements.

(vi) Cache updates its replacement information assum-
ing that the data have been allocated in the faulty
cache line that was chosen for replacement. Thus,
the LRU stack will be {I,A}.

Cache Miss (Hit in a fault-free cache).
Whenever there is a hit in a fault-free cache, data can

be served immediately. In the case of a faulty cache,
if the access hits a fault-free cache line data are served
as in the baseline case as explained before. However,

5

it may be the case that there is a cache miss because
the cache line where the data would have been hold was
faulty (e.g., accessing @B in the example). Data will
be present in a locked entry of the RVC. The way to
proceed is as follows:

(i) Cache access happens as usual (e.g., we access
@B). A miss is detected because the cache line
is marked as faulty.

(ii) The access proceeds to the RVC, either in par-
allel or sequentially. It must hit in one of the
locked entries because in the baseline the access
would have been a hit. Thus, the RVC serves the
data. Since the RVC has a physical identifier of
the faulty cache line (set and way), it provides this
information to the cache along with the data.

(iii) The cache updates its replacement information as-
suming that there has been a hit in the cache
line indicated by the RVC (the faulty cache line).
Thus, the LRU stack will be {B,A}.

As shown, at the end of the access data are served
and the replacement stack of the cache holds the same
information as in the baseline case. Thus, we can guar-
antee the same behavior with one exception: all misses
in a set with at least a faulty cache line (those that
would have happened in the baseline and those caused
by faulty cache lines) observe a deterministic latency
increase2 to access the RVC before proceeding to the
upper memory levels.

2.3 Impact in WCET
In this section we describe how to account accurately

for the impact in the WCET of failures, both with and
without the RVC.

L1 and RVC Accessed in Parallel.
If a given L1 cache line is faulty, the RVC provides the

data that such L1 cache line should hold if it was fault-
free. If both the L1 cache and the RVC are accessed in
parallel, the access latency is the same independently
of which of both structures holds the data. Hence, our
approach does not impact the WCET with respect to a
fault-free cache system with a victim cache.

L1 and RVC Accessed Sequentially.
If the cache memory and the victim cache are accessed

sequentially, data that should be hold in a faulty L1
cache line is available in the RVC. Thus, the overall
access latency is increased by the latency of the RVC.
Note that knowing such latency is critical for WCET
estimation tools, which build their estimations assuming
deterministic behavior of processor components.

In general, in a processor free of timing anomalies [20]
like those used for safety critical embedded systems, an
access experiencing a hit in L1 has the following WCET:

WCET = hit latency(L1) (1)

2Latency increases only if the L1 cache and the RVC
are accessed sequentially. If they are accessed in parallel
there is no such latency increase.

Outcome Baseline Baseline RVC RVC
L1/VC Fault-free Faulty Fault-free Faulty
hit/- 2 104 2 4
miss/hit 4 104 4 4
miss/miss 104 104 104 104

Table 1: WCET latency for different types of
access for the baseline and the RVC design in
fault-free and faulty environments

Conversely, if the access experiences a miss in L1 but
hits in the victim cache (VC) in the baseline or the RVC
in our proposal, its WCET is as follows:

WCET = miss latency(L1)+

+ hit latency(RVC)
(2)

Finally, if the access experiences a miss both in L1
and the VC (or RVC), its WCET can be expressed as
follows:

WCET = miss latency(L1)+

+ hit latency(RV C) +mem latency
(3)

where mem latency stands for the corresponding la-
tency for the next levels of the memory hierarchy be-
yond the VC/RVC. Thus, it includes other cache levels
and DRAM memory.
In case of having faulty lines, accesses that would have

experienced a hit in a fault-free cache or a fault-free VC
may observe a significant increase in their latency. In
particular, those accesses should have had the WCET
indicated in equation 1 or equation 2 but, instead, they
have the WCET indicated in equation 3 as we cannot
determine whether their data will be available in L1 or
the VC due to the faulty cache lines. Thus, given that a
significant fraction of instructions are memory accesses
and the latency to access main memory is much higher
than L1/VC latency, we can expect a huge impact on
the overall WCET due to faulty L1/VC cache lines.
If we use the RVC, we can guarantee that all cache

accesses that would have hit in L1/VC in a fault-free
cache system, will hit at least in the RVC. Thus, only
those accesses with the WCET shown in equation 1 will
observe a slight increase because they WCET will be
that in equation 2.

Example.
In order to illustrate the advantage of the RVC we

use the example of a cache system where hit and miss
latencies for L1 and VC/RVC is 2 cycles, and memory
latency is 100 cycles. WCET latencies for each type of
access in a fault-free baseline are shown in Table 1.
It can be observed that the RVC design only has a

small impact in the WCET of those accesses that would
have hit in L1 in a fault-free cache, whereas the WCET
does not increase otherwise. Conversely, if no RVC is in
place, WCET latency can be as high as the latency to
access main memory because any access can become a
miss (see scenario A in Figure 1).

6

3. ALTERNATIVE RVC IMPLEMENTA-
TIONS

Current processors include structures to allow store
operations and dirty line evictions be performed in back-
ground without stalling the pipeline. For instance, write-
back caches use eviction buffers (EB for short) to hold
those dirty lines evicted from cache until they can be
updated in other cache levels.

Cache accesses check both the cache memory and the
EB either in parallel or sequentially (as for the RVC)
to determine whether there is a hit or a miss. Thus,
instead of using the victim cache, we can use the EB
to implement the reliability enhancements required for
a tight WCET computation. The implementation is
analogous to that of the RVC since we have to add few
extra entries and the same fields to each entry as in the
case of the RVC. Those entries are operated also as in
the RVC.

Those extra EB entries are not available when esti-
mating the WCET. Therefore, if the cache memory and
the EB are accessed in parallel (the most typical imple-
mentation), the WCET is not impacted at all. Instead,
if the cache and the EB are accessed sequentially, the
impact in the WCET is analogous to that for the se-
quentially accessed RVC increasing slightly the latency
for those cache hits that should had happened in faulty
cache lines as described in previous section.

Other cache implementations use write-through pol-
icy instead of write-back. In those cases a write com-
bining buffer (WCB for short) is used instead of an EB.
Cache lines cannot be dirty because they are immedi-
ately updated in the corresponding cache levels, so there
is no need for an EB. However, the WCB allows send-
ing data to the other cache levels when the bus is avail-
able without stalling the pipeline and combining differ-
ent store instructions whose data map into the same
cache line. When accessing the cache memory, both the
cache and the WCB are accessed either in parallel or se-
quentially as it is the case for the EB. Thus, we can im-
plement the reliability enhancements required for tight
WCET computation in the WCB in the same way as
in the EB and the RVC. By allocating few extra WCB
entries for replacing faulty cache lines we avoid unde-
sirable side effects in the WCET computation. Thus,
WCET remains the same if the cache memory and its
WCB are accessed in parallel, and is slightly increased
in some particular cases as for the RVC and the EB.

Load misses and store misses3 are kept in miss state
handle registers (MSHR for short). Those registers group
requests to the same cache line to avoid issuing redun-
dant requests to the upper level of the memory hierar-
chy, and store the data when they arrive because the bus
is typically narrower than a cache line. Once the cache
line has been filled, it is updated in the L1 cache to avoid
inconsistencies. The way to manage the MSHR is anal-
ogous to that of the RVC, EB and WCB, because it can
be accessed in parallel or sequentially with L1. Again,
the MSHR can be extended as those other buffers with
identical impact in WCET.

3Under write allocate policy

Although solutions presented so far focus on L1 caches,
they can be used for any cache in the memory hier-
archy implementing victim caches, miss state handle
buffers, eviction buffers or write combining buffers. For
instance, EB or similar buffers should be used at any
cache level to avoid locking cache memories during long
time periods.

4. EVALUATION
This section presents the evaluation framework and

results in terms of WCET, performance, power and area
for the RVC design when the L1 data cache is faulty.
Results for the L1 instruction cache are not included
due to lack of space and because they do not provide
further insights.

4.1 Evaluation Framework
Impact on WCET has been studied for a set of sce-

narios with different degree of dependency on each level
of the data cache hierarchy. Thus, we have considered
synthetic benchmarks with different breakdowns of the
number of instructions in the execution path considered
for the WCET estimation. Instructions execute serially
and do not overlap their execution at all. Instructions
are classified into several groups (i) not accessing cache,
(ii) accessing cache with guaranteed hit latency in the
L1 cache, (iii) accessing cache with guaranteed hit la-
tency in the RVC, MSHR, EB or WCB, and (iv) access-
ing cache with no hit guarantee (hence, miss latency is
assumed). Such a study helps understand the potential
impact in WCET that each scenario may experience.
Although the extra VC/MSHR/EB/WCB entries are

set up for reliability purposes, they can be used to in-
crease performance if the cache system is fault-free. This
fact is particularly relevant for non real-time tasks, which
do not care about WCET but about average perfor-
mance. In order to evaluate such performance gains we
use an in-house cycle-accurate, trace-driven simulator
compatible with PowerPC and Alpha ISA. The simula-
tor models an in-order core with dual-issue pipeline with
a fetch bandwidth of 2 instructions. The size of the in-
struction buffer is 16, while the instruction window is
8. Branch prediction is enabled for non real-time tasks
and uses a Gshare predictor with 256 entries. Store op-
erations do not block the pipeline and they access the
cache directly, unless the write buffer is full.
The core has a private first level of cache with sepa-

rated data and instruction caches. The Instruction and
Data L1 caches are 4-way 16KB each. A MSHR with 4
entries is considered in the baseline case. It is extended
with 2 extra entries to implement our approach. Since
the remaining levels in the memory hierarchy are not
relevant for our approach, we simply assume a latency
of 100 cycles to access main memory. If such latency
is smaller (e.g., a L2 cache is in place) benefits will be
lower. Conversely, if memory latency is higher bene-
fits will be higher. Regarding the workload, we use the
SPECCPU2000 benchmark suite, which is representa-
tive of non real-time workloads [23].
Power and area results have been obtained by means

of the CACTI 6.5 tool [16,24]. CACTI is a delay, power

7

Name Fixed L1 VC/MSHR/... MEM
L1a 0.9 0.05 0.04 0.01
L1b 0.8 0.15 0.04 0.01
L1c 0.7 0.25 0.04 0.01
L1d 0.6 0.35 0.04 0.01
VMEWa 0.9 0.05 0.04 0.01
VMEWb 0.8 0.05 0.14 0.01
VMEWc 0.7 0.05 0.24 0.01
VMEWd 0.6 0.05 0.34 0.01
MEMa 0.9 0.05 0.04 0.01
MEMb 0.8 0.05 0.04 0.11
MEMc 0.7 0.05 0.04 0.21
MEMd 0.6 0.05 0.04 0.31

Table 2: Synthetic benchmark instruction break-
down

and area model for cache memories developed at the
HP Labs. Results have been gathered for 32nm pro-
cess technology, assuming low power design style, 330K
temperature and 0.6V operating voltage. We have vali-
dated that those trends observed hold for other technol-
ogy nodes, design styles, and temperature and voltage
values.

4.2 WCET
As explained above, several synthetic benchmarks are

considered with different instruction breakdowns. Those
configurations are depicted in Table 2. Fixed stands for
the fraction of instructions not accessing cache. For the
sake of simplicity we assume a latency of 1 cycle for
those instructions. L1, VC/MSHR/... and MEM cor-
respond to the fraction of instructions with guaranteed
L1 hit latency, VC/MSHR/EB/WCB hit latency and
memory latency respectively. We consider both paral-
lel and sequential L1 and VC/MSHR/EB/WCB access.
In the case of the parallel access, the fault-free baseline
has a L1 and VC/MSHR/EB/WCB hit latency of 2 cy-
cles. In case of miss it takes 102 cycles fetching data
from memory. Our approach has exactly the same la-
tency as the baseline despite of the faulty cache lines.
Conversely, the faulty baseline must assume always a la-
tency of 102 cycles for each access as it cannot determine
which cache line is faulty, and hence, which accesses are
guaranteed to hit in any cache structure. In the case of
the sequential access we use those latencies in Table 1.

As shown, we consider three sets of configurations.
The number of L1 hits, VC/MSHR/EB/WCB hits and
memory accesses is increased in the first, second and
third set respectively.

Figure 6 shows the relative WCET for the parallel
access scenario with respect to the fault-free baseline.
Results are depicted for a faulty baseline system and
a faulty system with our approach incorporated. Note
that a fault-free system with our approach has exactly
the same latency as the fault-free baseline system, so we
do not include those results in the figure. As shown, the
WCET grows dramatically for the faulty baseline cache
system. The only exceptions are MEM configurations
because a large fraction of the instructions experiences
high latencies to access main memory, and therefore,
by increasing the latency of those few instructions that
would have hit in cache in a fault-free system, the rel-

Relative WCET with Faulty L1 or VC/MSHR/EB/WCB Entries
(Parallel Access)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

L1
a

L1
b

L1
c

L1
d

REW
a

REW
b

REW
c

REW
d

MEMa
MEMb

MEMc

MEMd

Our approach
Baseline

Figure 6: Relative WCET for parallel access
to the L1 cache and the VC/MSHR/EB/WCB
when few lines are faulty

Relative WCET with Faulty L1 or VC/MSHR/EB/WCB Entries
(Sequential Access)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

L1
a

L1
b

L1
c

L1
d

REW
a

REW
b

REW
c

REW
d

MEMa
MEMb

MEMc

MEMd

Our approach
Baseline

Figure 7: Relative WCET for sequential access
to the L1 cache and the VC/MSHR/EB/WCB
when few lines are faulty

ative latency is increased much less than in the other
configurations. On the other hand, the WCET for our
approach is exactly the same as for the fault-free base-
line since our approach guarantees that all access have
exactly the same latency as in the baseline.
Figure 7 shows the relative WCET for the sequential

access scenario with respect to the fault-free baseline.
Trends are roughly the same as for the parallel access
scenario. The only difference is the fact that our ap-
proach experiences slight WCET increases due to the in-
creased latency of those instructions that hit in L1 (from
2 to 4 cycles). Such increase can be observed mainly in
those configurations where a large fraction of instruc-
tions were estimated to hit in L1. For instance, the
worst configuration is L1d where the WCET increases
by 1.3X for our approach. Nevertheless, such increase
is largely below that of the faulty baseline 16.9X.
Thus, as long as some instructions hit in L1 or the

VC/MSHR/EB/WCB in theWCET estimation, our ap-
proach provides benefits. As shown, those benefits are
huge in general.

4.3 Performance
Although set up for reliability purposes, the extra

VC/MSHR/EB/WCB entries can be either turned off
or used for increased performance during fault-free op-
eration. If used for performance purposes, results show
a modest average speedup of 0.5% (up to 1.8% for mcf).

8

Overhead w.r.t. L1+MSHR

0,0%
0,2%
0,4%
0,6%
0,8%
1,0%
1,2%
1,4%
1,6%
1,8%
2,0%

Energy access Energy/cycle idle Area

8KB+MSHR 6 entries
16KB+MSHR 6 entries
32KB+MSHR 6 entries

Figure 8: Overhead of the 2 extra MSHR entries
with respect to the L1+MSHR cache system (L1
is 4-way 64byte/line 1 R/W port, MSHR has 4
entries)

This makes sense because otherwise would mean that
the MSHR was underdesigned. We have also evaluated
a 2-entry MSHR, but several programs (fma3d, gzip,
lucas, mcf and swim) experience slowdowns above 5%
with respect to the 4-entry MSHR, so a 4-entry MSHR
is the best configuration as baseline. Nevertheless, both
choices, using the extra entries for performance purposes
or keeping them turned off during fault-free operation,
are valid and it is up to the designer choosing the most
suitable one for the target applications.

4.4 Power and Area
We have studied the impact in power, area and de-

lay of the extra entries in the VC/MSHR/EB/WCB re-
quired by our approach. In particular, we have evalu-
ated the impact of adding 2 extra entries in a 4-entry
MSHR. As expected, the impact in delay is negligible.
Moreover, since the delay of those structures is largely
below the cycle time dictated by the L1 cache, there
is no impact in terms of cycle time. In terms of power
and area, there is an overhead 11% and 9% respectively.
However, such overhead is very low in absolute num-
bers. In order to put those results in perspective, we
depict the overhead of those extra MSHR entries with
respect to the total power and area of the L1 and the
MSHR together since those extra entries deal with faulty
cache lines in both structures. Results are shown in Fig-
ure 8. As shown, dynamic power overhead ranges be-
tween 0.5% and 1.5% for different L1 cache sizes when
an access is performed. Idle power overhead is negligi-
ble as the extra number of SRAM cells is very small.
Finally, area is impacted between 0.5% and 2% mostly
because of the routing and peripheral logic of the in-
creased MSHR.

5. RELATED WORK
Several approaches have been proposed to deal with

hard errors due to defects and degradation. The most
relevant approaches consider alternative memory cell
designs which offer higher robustness [9, 10]. However,
those memory cells require larger area, and hence, the
effective cache space reduces for a given area budget.

Moreover, even if those memory cells are employed large
cache arrays are still the most error-prone blocks in pro-
cessors.
Error correction and detection schemes for memory

blocks have been widely deployed in the past. The
most popular approaches are parity, SECDED (single
error correction double error detection) and DECTED
(double error correction triple error detection) [5]. Typ-
ically, such techniques are used for soft error detection
and correction. Data is served when read and, in par-
allel, error detection and correction is performed. If
errors are detected, then some actions are taken to stop
execution and provide the correct data. This process
is expensive, but given that soft errors are seldom, its
impact in performance is irrelevant. However, if those
techniques (SECDED and DECTED) are set up to deal
with hard errors, data cannot be served until they are
corrected. Thus, there is an impact in the data access
latency. Moreover, some degree of protection for other
errors is sacrificed permanently. For instance, a soft er-
ror cannot be corrected if correction capabilites are used
to deal with hard errors. Thus, in general, faulty storage
is disabled or replaced.
Some approaches have focused on disabling faulty stor-

age to keep operating despite of the failures. In some
cases spare storage is set up to replace faulty one [7,13].
Unfortunately, such storage occupies large area for the
fuses required to configure it. Additionally, hardware
re-routing signals to the spare storage and wire delay
make spares affordable only for slow structures such as
L2 and L3 caches, where latency is not critical. Some
recent work [6] uses a somewhat similar idea to ours
by setting up some redundant storage, which is used
to replace the slowest cache entries to improve binning.
While this extra storage can be used also to replace
faulty storage as our approach does, the authors do not
show the implications of their approach on the WCET
or how to deal with faults on the redundant storage it-
self. Other approaches require a level of indirection to
replace faulty storage [4], which has an impact in terms
of WCET and performance even if the system is fault-
free. Other techniques have been devised to disable
faulty storage without replacement at different granu-
larities [1, 2, 12, 21, 26]. While purely storage disabling
techniques have been shown to be very efficient in terms
of average power and performance, they do not offer any
type of performance guarantee required for WCET es-
timation.
Some works have addressed issues related with time

analyzability in systems with cache memories assum-
ing fault-free caches during the static analysis [8,17,27].
None of these works considers the potential impact of
faults in caches. Some recent work has provided means
to obtain safe and tight WCET estimation in multi-
cores with shared cache memories by enabling cache
partition [18]. This approach follows the same spirit
as ours by enabling hardware features to provide time
analyzability. However, it does not support faults in
caches. To the best of our knowledge there is only one
related work providing some time predictability in faulty
caches [1]. Unfortunately, this technique provides nei-

9

ther time analyzability nor any performance guarantee,
as required by WCET estimation in real-time systems.

6. CONCLUSIONS
Technology scaling and decreased Vcc lead to higher

SRAM faulty bit rates, especially in cache memories.
This issue is particularly relevant for critical real-time
embedded systems where unpredictable latency of mem-
ory accesses leads to non deterministic systems or unaf-
fordable WCET estimates.

In this paper we propose a mechanism to provide tight
and safe WCET estimations in the presence of faulty
caches. To the best of our knowledge it is the first ap-
proach dealing with this issue. Our approach introduces
small extensions either in the VC, the MSHR, the EB or
the WCB to replace faulty entries in both cache mem-
ory and this structure itself, while still keeping timing
analyzable. We show how the WCET is not increased at
all (when cache and VC/MSHR/EB/WCB are accessed
in parallel) or is slightly increased (when cache and
VC/MSHR/EB/WCB are accessed sequentially) with
our approach. Conversely, a faulty baseline cache sys-
tem may experience a large WCET increase. Our ex-
periments show that the WCET increases by more than
17X for some scenarios for the baseline, whereas our ap-
proach keeps the WCET within 1.0X and 1.3X that of
the fault-free baseline at the expense of 1.1% power and
1.2% area increase at most for the cache system.

Acknowledgments
This work has been partially supported by the Spanish
Ministry of Education and Science under grant TIN2007-
60625 and Beatriu Pinós 2009 BP-B 00260.

7. REFERENCES
[1] J. Abella et al. Low vccmin fault-tolerant cache

with highly predictable performance. In MICRO,
2009.

[2] J. Abella et al. The split register file. In DATE,
2010.

[3] A.J. Bhavnagarwala, T. Xinghai, and J.D.
Meindl. The impact of intrinsic device fluctuations
on CMOS SRAM cell stability. IEEE Journal of
Solid-State Circuits, 36(4):658–665, 2001.

[4] F.A. Bower et al. Tolerating hard faults in
microprocessor array structures. In DSN, 2004.

[5] C.L. Chen and M.Y. Hsiao. Error-correcting codes
for semiconductor memory applications: A state
of the art review. IBM Journal of Research and
Development, 28(2):124–134, 1984.

[6] A. Das et al. Evaluating the effects of cache
redundancy on profit. In MICRO, 2008.

[7] T.P. Haraszti. A novel associative approach for
fault-tolerant MOS RAMs. IEEE Journal of
Solid-State Circuits, 17(3):539–546, 1982.

[8] D. Hardy and I. Puaut. WCET analysis of
multi-level non-inclusive set-associative
instruction caches. In RTSS, 2008.

[9] M. Ishida et al. A novel 6T-SRAM cell technology
designed with rectangular patterns scalable
beyond 0.18 µm generation and desirable for ultra
high speed operation. In IEDM, 1998.

[10] S.K. Jain and P. Agarwal. A low leakage and
SNM free SRAM cell design in deep sub micron
CMOS technology. In VLSID, 2006.

[11] N.P. Jouppi. Improving direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffers.
SIGARCH Comput. Archit. News, 18(3a), 1990.

[12] C.-K. Koh et al. Tolerating process variations in
large, set-associative caches: The buddy cache.
ACM Trans. Archit. Code Optim., 6(2):1–34, 2009.

[13] I. Koren and Z. Koren. Defect tolerance in vlsi
circuits: techniques and yield analysis.
Proceedings of the IEEE, 86(9):1819–1838, 1998.

[14] H. Lee, S. Cho, and B.R. Childers. Performance of
graceful degradation for cache faults. In ISVLSI,
2007.

[15] MERASA. Multi-core execution of hard-real-time
applications supporting analysability. In FP7
project. http://www.merasa.org, 2007-2010.

[16] N. Muralimanohar, R. Balasubramonian, and N.P.
Jouppi. CACTI 6.0: A tool to understand large
caches. HP Tech Report HPL-2009-85, 2009.

[17] F. Nemer et al. Inter-task WCET computation for
a-way instruction caches. In SIES, 2008.

[18] M. Paolieri et al. Hardware support for WCET
analysis of hard real-time multicore systems. In
ISCA, 2009.

[19] A.F. Pour and M.D. Hill. Performance
implications of tolerating cache faults. IEEE
Trans. Comput., 42(3):257–267, 1993.

[20] J. Reineke et al. A definition and classification of
timing anomalies. In WCET, 2006.

[21] D. Roberts, N.S. Kim, and T. Mudge. On-chip
cache device scaling limits and effective fault
repair techniques in future nanoscale technology.
In DSD, 2007.

[22] G.S. Sohi. Cache memory organization to enhance
the yield of high performance vlsi processors.
IEEE Trans. Comput., 38(4):484–492, 1989.

[23] SPEC. Standard Performance Evaluation
Corporation. SPEC CPU benchmark suite.
http://specbench.org/osg/cpu2000, 2000.

[24] S. Thoziyoor, N. Muralimanohar, and N.P.
Jouppi. CACTI 5.0. HP Tech Report
HPL-2007-167, 2007.

[25] O.S. Unsal et al. Impact of parameter variations
on circuits and microarchitecture. IEEE Micro,
26(6):30–39, 2006.

[26] C. Wilkerson et al. Trading off cache capacity for
reliability to enable low voltage operation. In
ISCA, 2008.

[27] J. Yan and W. Zhang. WCET analysis for
multi-core processors with shared L2 instruction
caches. In RTAS, 2008.

10

