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ABSTRACT 
This paper performs a comprehensive investigation of dynamic 
selection for long atomic traces. It introduces a classification of 
trace selection methods and discusses existing and novel dynamic 
selection approaches – including loop unrolling, procedure in-
lining and incremental merging of traces based on dynamic bias. 
The paper empirically analyzes a number of selection schemes in 
an idealized framework. 

Observations based on the SPEC-CPU2000 benchmarks show 
that: (a) selection based on dynamic bias is necessary to achieve 
the best performance across all benchmarks, (b) the best selection 
scheme is benchmark and maximum trace-length specific, (c) 
simple selection, based on program structure information only, is 
sufficient to achieve the best performance for several benchmarks. 

Consequently, two alternatives for the trace selection mechanism 
are established: (a) a “best performance” approach relying on 
complex dynamic criteria; (b) a “value” approach that provides 
the best performance (and potentially the best power consump-
tion) based on simpler static criteria. Another emerging alternative 
advocates adaptive based mechanisms to adjust selection criteria. 

Categories and Subject Descriptors 
C.1.3 [PROCESSOR ARCHITECTURES]: Other Architecture 
Styles – pipeline processors. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Trace processors, trace cache, trace selection, trace atomicity. 

1. INTRODUCTION 
Trace caching ([27][31][23][32][12]) is a promising method for 
providing high bandwidth instruction supply at low latency. A 
trace cache enables a processor to fetch in parallel long sequence 
of instructions across basic blocks thus overcoming the sequential 
resolution of control transfer instructions. 

Although alternative techniques may be used to achieve the high 
instruction bandwidth of trace caches (e.g. the collapsing buffer 
[5], the basic block trace-cache [3] or extended basic-block cache 
[16]), trace caches possess two unique properties that make them 
more attractive: (a) the construction of traces can be done effec-
tively off the critical path, and (b) the storage of complete traces 
in a cache for reuse. 

These trace cache properties can facilitate additional important 
optimizations. In particular, trace construction may be enhanced 
with optimization functionality that can increase performance 
[10][14][25][7][36] and reduce power consumption [35][30]. This 
optimization potential can be significantly facilitated by (a) select-
ing longer traces, and (b) by treating each trace as a single atomic 
block although it may contain control transfer instructions 
[22][26]. 

Trace selection defines a set of criteria for when a consecutive 
dynamic sequence of instructions constitutes a trace. Different 
selection criteria result in the construction of a different set of 
traces and lead to the execution of a different sequence of traces, 
thus obtaining different trace length (and content) and different 
dynamic coverage. Therefore, successful trace selection is crucial 
for maximizing performance. 

In this work, we perform a comprehensive study of trace selection 
targeted at producing long atomic traces with high coverage. 
These two objectives are typically in conflict, because selecting 
long traces may result in low coverage whereas high coverage 
may require short traces. This trade-off is central to this work. The 
paper introduces a classification of trace selection methods and 
discusses how existing and novel selection schemes address this 
trade-off. An empirical analysis of a number of selection schemes 
is performed for a scenario with no trace cache misses and a large 
predictor to establish a performance limit for long atomic traces.  

One of the key results is that selection schemes that rely on dy-
namic information provide the overall best performance: With 
maximum trace length of 256 instructions, the average hot trace 
length is 156 instructions for floating point programs and 52 for 
integer, and coverage is 98% for floating point and 89% for inte-
ger programs. The results also revealed that for several bench-
marks, simpler selection schemes relying on program structure 
may be sufficient to achieve the best performance. 

At the microarchitecture design level, we identify two alternative 
approaches for the trace selection mechanism. An aggressive ap-
proach based on complex dynamic criteria with overall the best 
performance. The other approach is based on simpler static crite-
ria. Such a “value” approach can provide the best performance for 
a large set of benchmarks, and due to its design simplicity, may 
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also offer the best power consumption. A third, adaptive-based 
alternative emerges from our results. Adaptive trace-selection 
may introduce novel trade offs for microarchitecture design and 
represents an important direction for future work. 

The rest of the paper is organized as follows: the front-end model 
assumed in this work is described in Section 2. The basics of trace 
selection are described in Section 3. Section 4 introduces a classi-
fication of trace selection methods. This section also discusses a 
number of existing and novel selection schemes. The experimen-
tal framework is described in Section 5. Results are presented in 
Section 6. Related work is discussed in Section 7. Finally, Section 
8 concludes the paper and suggests directions for future work. 

2. FRONT-END MODEL 
This section describes the model used in this study. The focus of 
this work is on the front-end and therefore back-end microarchi-
tecture parameters are not discussed. This section also includes a 
discussion on performance metrics for a trace-cache driven front-
end and introduces the objective function used in this study. 

2.1. Traces and Related Notions 
A basic block (BB) is a sequence of non-CTI (control transfer 
instructions) where only the last instruction can be a CTI (this 
work does not account for potential labels inside such a block).  

A trace is a finite sequence of dynamically consecutive instruc-
tions [31]. Traces in this paper are single-exit and atomic. A trace 
is atomic if it is treated as a single instruction, or single-
entry/single-exit [19][20][26]. Single-exit atomic traces may be 
necessary when applying optimizations that do not preserve suffi-
cient information for reuse of the head of a partially correct trace, 
e.g. when instructions are reordered within the trace. 

A trace identifier (TID) is a finite sequence of basic block starting 
IPs (instruction pointers).  

A path or BB-history is a finite sequence of BB-starting IPs. 

2.2. Front-End Model 
A pictorial representation of the front-end model is shown in 
Figure 2-1. Note that this front-end model is similar to the one 
described in [32]. 

Instructions are supplied to the processor only in the form of 
traces. A trace predictor provides an identifier—a TID—that is 
used to access the trace cache. In the case of a trace cache hit the 
trace is send for execution. In the case of a miss, the TID is used 
to construct a trace from the instruction cache.  

When a trace misprediction occurs, the correct trace is built start-
ing from the IP of the first instruction in the mispredicted trace 
(this reflects the atomicity of traces). The construction is done 
using a fetch engine that can sequence at the granularity of in-
structions (regular instruction cache hierarchy and conventional 
branch prediction). The new trace is build based on trace selection 
criteria. The different selection criteria are discussed in Section 4. 
After a trace is built, the trace cache is updated and the trace is 
sent down the pipe for execution. When the build is a result of a 
misprediction the trace is also used to correct the history informa-
tion used to access the trace predictor. 

 
Figure 2-1 Front-End Model Flow 

The history information is used to index the trace prediction table 
(TPT) to read the next TID. The TPT itself is updated at retire-
ment.  

This base model is extended with advanced selection schemes as 
explained in Section 4.  

2.3. Front-End Performance Metrics 
Trace selection together with the trace predictor and trace-cache 
are the three main independent variables that influence various 
front-end performance metrics. Table 2.1 presents a number of 
metrics and shows the variables influencing each. 

The different metrics are explained below: 

Length: Average trace length for all traces. 

Unique traces: Number of unique traces created 

Unique patterns: Number of unique history patterns that were 
used to index the trace predictor. 

METRIC DEPENDS ON 

Hot/Cold Length  Selection, cache, predictor 

Unique Traces Selection 

Unique Patterns Selection, information vector 

Coverage Selection, cache, predictor 

Predictability Selection, predictor 

Builds Selection, cache, predictor 

Table 2.1 What influences front-end performance metrics 

Coverage: Percent of executed instructions in traces that were 
correctly predicted and that were found in the trace cache. 

Predictability: Number of mispredictions from the trace predictor. 
The information vector is a trace predictor related variable and 
refers to the information used to form predictor indices (number 
of history items, type of items, hashing function etc). 

Builds: Number of trace builds, performed as a result of trace 
mispredictions or trace cache misses. 
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The length metric is divided into hot and cold because ‘not all 
traces are equal’. As shown in Figure 2-2, a retired trace can be 
the result of four execution scenarios. Each scenario may have 
different cost/benefit and thus the length metric needs to reflect 
this. In this work, retired traces are divided into two categories: 
hot and cold. Hot are those traces that hit in the trace cache and 
predicted correctly, whereas the other three types of traces are 
grouped as cold. We argue that trace-cache based front-ends 
should aim to maximize hot-trace length and minimize cold-trace 
length. As shown in the results section, this is particularly impor-
tant for configurations that support very long traces. 

Henceforth unless indicated otherwise, the term trace length will 
be used to refer to the overall average trace length. 

The number of unique traces and number of unique patterns are 
meant to measure the “pressure” on the trace cache and trace pre-
dictor table resources. The higher these numbers are - the more 
likely these resources would suffer from capacity, conflict and 
cold misses.  

Coverage captures directly the effects of builds and mispredic-
tions, and, indirectly, it may capture the effects of unique traces 
and unique patterns. 

TID
Prediction

T$ Hit T$ Miss

Hot Traces Cold Traces

Incorrect
Pred

Correct
Pred

Incorrect
Pred

Correct
Pred

 
Figure 2-2 Types of Retired Traces 

2.4. Objective Function 
Two important metrics that a front-end should maximize are (a) 
length of hot traces, and (b) execution coverage from traces. 
However, the two objectives are typically in conflict, because to 
achieve long traces may require low coverage whereas high cov-
erage may require short traces. Therefore, selection should aim 
for a trade-off between the two. The following objective function 
attempts to capture this trade-off: 







 −+ C

L
C 1

1
 

In this formula L denotes the average hot trace length (it can take 
values from 1 to maximum trace length). C denotes coverage (it 
can take a value between 0 and 1).  

The objective function value is intended to capture the speedup 
potential of a microarchitecture with trace-cache based optimiza-
tions over a single-issue microarchitecture. The fraction of execu-
tion covered by the trace-cache, C, is assumed to be optimized to 
have parallelism equal to L.  

It is noteworthy that the above function is an adaptation of Am-
dahl’s Law [1]. This indicates that the objective function assigns a 

lot of significance on coverage. Therefore, unless C is high 
enough the performance potential will be small. 

This objective function, together with some of the other metrics, 
is used in subsequent sections to assess the performance of differ-
ent selection heuristics. We recognize that other objective func-
tions could have been used and that the ultimate metric is actual 
performance, however, the above enables for comparison of dif-
ferent selection schemes without full microarchitectural simula-
tion and independent of specific implementation.  

3. PHILOSOPHY OF TRACE SELECTION 
Trace selection defines the set of criteria for when a consecutive 
dynamic sequence of instructions constitutes a trace. It is evident 
from Table 2.1 that trace selection influences all front-end met-
rics, considered in this work, and thus may be crucial to trace-
cache performance.  

It can be deduced from previous work ([23][32]) that two general 
principles should guide the choice of selection criteria: capturing 
as much of the determinism in the control flow of the program 
and avoid thrashing table resources for the trace cache and trace 
predictor. 

The first principle – capture determinism – usually translates to 
criteria that do not terminate a trace when there is high determin-
ism for what the next instruction will be. Therefore it is crucial to 
have criteria whose coverage is rather insensitive to increasing 
trace length. 

The second principle – avoid trashing – is partially covered by the 
first. By terminating traces when there is low determinism thrash-
ing can be prevented. However, it is possible even when there is 
high determinism in the control flow to create a lot of unique 
traces and patterns that may thrash resources. Thus, a throttling 
mechanism may be needed to terminate traces even in the pres-
ence of biased behavior. 

In the next section, a classification of trace selection methods is 
introduced and a discussion on how different selection schemes 
address the above principles is presented. 

4. CLASSIFICATION OF TRACE SELECTION 
Trace selection methods can be classified into one or combination 
of the following four categories, according to the information 
used during the trace construction to decide when to terminate a 
trace: 

• Capacity – based on hardware constraints 
• Local – based on single instruction 
• Global – based on all instructions in a trace 
• Dynamic – based on dynamic behavior  

The following sections describe for each category specific selec-
tion algorithms and discuss in what way they address the issues of 
control flow determinism and thrashing (Section 3). We empha-
size that in this work we only considered run time trace selection 
schemes. 

4.1. Capacity 
Trace capacity limitations can be viewed as the most basic type of 
selection. Capacity refers to termination that occurs when no more 
information can be stored per trace. Examples of such information 
are maximum number of instructions and maximum number of 
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CTIs. The former limitation reflects the storage limitations for the 
trace content, while the later reflects the need to limit the size of 
trace identifiers used for trace indexing in various structures such 
as the trace cache and trace predictor. It is apparent that capacity 
selection has the “highest priority” among all schemes and need to 
be considered in combination with any other selection scheme. 

4.2. Local 
For this class of heuristics the decision to terminate a trace is 
taken by using mainly information about the “current” instruction 
(provided capacity selection is not forcing a trace to be termi-
nated). Typically, this means to examine if the instruction type 
satisfies a trace-termination condition. This examination does not 
require any global state about the trace. Table 4.1 shows different 
types of control transfer instructions (CTI) that can terminate a 
trace.  

CF   conditional forward branch 

CB   conditional backward branch 

DJ   unconditional direct jump 

IJ   unconditional indirect jump 

DC   unconditional direct call 

IC   unconditional indirect call 

RET   Return 

Table 4.1 Code Names for CTI 

Local selection criteria attempt to capture control flow determin-
ism derived from either instruction semantics or typical program 
behavior. Example criteria from previous work [31] are (a) not 
terminating on direct unconditional branches because their target 
is always deterministic, (b) not terminating on backward branches 
because they tend to be more taken, and (c) terminating on returns 
because functions can be called from several points in a program 
and thus their continuation may not always be the same. 

In this work, several local schemes were considered. Each row in 
Table 4.2 defines a unique selection scheme. The types of instruc-
tions that terminate a trace are denoted by shaded boxes while 
those that do not terminate a trace by white boxes. 
B: Select traces that are only basic blocks – terminates on all 

CTI types. 
F:  Traces may contain forward branches. 
FJ: Traces may contain forward branches and jumps. 
UB: Allow loops without any CTI in their bodies to be unrolled 

into a trace. 
UF: Allow for loops with only forward branches in their bodies 

to be unrolled into a trace 
P:  Traces do not cross function boundaries 
ND: Terminates traces on CTI with high determinism, while 

including non-deterministic CTIs. 
NU: Terminates traces only on backward branches. 
C:  Does not terminate on any CTI.  
Note that all schemes terminate traces on exceptions, traps and 
hardware interrupts. 
 

 CF CB DJ IJ DC IC RET 

B        

F        

FJ        

UB        

UF        

P        

ND        

NU        

C        

Table 4.2 Criteria for Local Selection  

The B and C schemes represent the end-points in the spectrum of 
selection schemes as far as trace length. B is expected to produce 
the shortest traces and the highest coverage. C is expected to pro-
duce the longest traces but suffer for most non-determinism and 
therefore low coverage. 

Why Local Selection may not be Sufficient? 
Local selection may work well for small trace lengths. However, 
the uniform treatment of instructions based on their type and not 
their behavior may be insufficient for longer traces.  
For example, the likelihood of a trace to be correctly predicted 
usually decreases as more CTIs are included. Thus, correct predic-
tion and coverage may decrease with longer traces. This is not 
always the case, e.g., a return from a function called only from 
one caller should not terminate a trace because its continuation is 
always the same.  
These limitations motivate selection schemes that rely on global 
and dynamic information which are discussed in the next sections. 

4.3. Global 
For global selection schemes, the decision to terminate a trace 
may be based on information about other instructions in the trace. 
Such information can include the relation between two distant 
instructions, recurring patterns, or other structural characteristics 
that cannot be observed with the perspective of a single instruc-
tion. Below we discuss two such heuristics. 

Loop Unrolling (LU): a trace selection heuristic aiming to ex-
ploit the regularity in the iterative control flow of a program. Spe-
cifically, during the construction of a trace, if a taken backward 
branch (or jump) is detected and its target is already in the trace 
then the loop gets unrolled. Effectively, loop unrolling aims to 
improve local schemes that do not terminate on backward 
branches by reducing their non-determinism. 

The following LU selection schemes were considered: 
• LUNB: Disallow intermediate branches between target and 

backward branch,  
• LUB: Allow intermediate branches, 
• LUH: Require the target to be the first instruction in the 

trace. This was examined in conjunction with intermediate 
branches (LUHB) and without them (LUHNB) 
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Loop unrolling needs to be considered in combination with a local 
scheme that terminates traces on conditional backward branches. 
The local schemes F and FJ (see Section 4.2) terminate traces on 
backward branches. These local schemes were evaluated in com-
bination with the above LU configurations, resulting in eight 
unique configurations.  

The trace length of a selection scheme that combine LU with 
F(FJ) cannot exceed that of the local schemes UF(P), because (a) 
the schemes UF and P never terminate on backward branches, and 
(b) UF is inclusive of F and P of FJ. The expectation is that LU 
unrolling will have higher trace length than the local schemes that 
terminate on backward branches and higher coverage than 
schemes that always include conditional backward branches in 
traces.  

The amount of unrolling is another important design parameter. 
This design dimension is not discussed due to space limitation. 
The LU results in this paper were obtained with maximum unroll-
ing of ten. 

Continue Beyond Returns (IN): in most previous work, trace 
selection schemes terminate a trace on a return instruction to pre-
vent the creation of large number of unique traces. Not terminat-
ing a trace on a return instruction can lead to building several 
traces because functions are usually called from several locations 
in a program. However, when the return and its corresponding call 
instruction appear in the same trace then not terminating on a 
return may be desirable because the next address is unique (and 
deterministic). This type of selection tries to keep together the 
caller and callee code, resembling the effect of procedure in-
lining. Consequently, this selection is denoted by IN. 

The IN global selection needs to be combined with a local selec-
tion scheme that does not terminate on function calls (IC and DC) 
and returns (RET). The C local selection scheme (see Section 
4.2) does not terminate on any CTI, thus it is expected to suffer 
from low coverage due to non-determinism. The combination of 
C with the IN global selection (IN+C) will terminate a trace on a 
return instruction when its corresponding call instruction is not in 
the current trace. The expectation is that global selection (IN+C) 
as compared to C, will increase the coverage at the expense of 
shorter traces. In the worst case, the trace length may be as short 
as that of the local selection scheme that terminates traces on 
function boundaries (scheme P). 

4.4. Partial Ordering of Local and Global 
Selection Methods 

It should be evident by the discussion so far that local and global 
selection heuristics can be ordered according to inclusion of ter-
mination criteria. The ordering for the various schemes considered 
in this work is shown in Figure 4-1. For example, scheme B in-
cludes scheme F, because B contains all termination criteria of F. 
Virtually always, a scheme that is included in another scheme, say 
X, will produce longer traces than X, since it has fewer conditions 
for terminating traces. Thus, scheme F is likely to produce longer 
traces than B. However, the relative performance of schemes that 
do not have inclusion relation (e.g. P and ND) will be determined 
by the distribution of instruction types. 

Inclusion is trivial to determine across local selection schemes 
(based on Table 4.2). The inclusion relation of a global scheme 
can be defined with respect to local schemes that have less or 
more constraints. For instance, scheme LUNB+F is included in F, 

since F always terminates on backward branches. Scheme 
LUNB+F includes UB because UB never terminates on backward 
branches. Recall that LUNB+F always terminates when the target 
is not in the trace.  

B

F

UB

FJ

ND

C

UF

P

IN+
C

IN

LUHNB
+FJ

LUNB
+FJ LUHB

+FJ

LUB
+FJ

LUHNB
+F

LUNB
+F LUHB

+F

LUB
+F

LULU

NU

 
Figure 4-1 Partial Ordering of Local and Global Selection 

Methods 

It is possible that interactions between trace selection and maxi-
mum trace length to cause violation of the inclusions with respect 
to the trace length. Nevertheless, the inclusion graph was found to 
be usually correct and useful in understanding the relations and 
potential of various selection schemes we considered. 

4.5. Dynamic Selection and Trace Merging 
Local and global schemes rely mainly on information in the static 
program structure. Dynamic selection is intended to capture run-
time program behavior. In this respect, dynamic selection is 
closely related to well-known microarchitectural techniques such 
as caching and history-based prediction. 

The dynamic information considered in this study is the bias of 
instructions [24][26]. Qualitatively, bias measures the likelihood 
of a transition from a CTI instruction to one of its possible targets. 
A biased instruction will tend to have the same successor. Conse-
quently, biased information can be used to prolong a trace that 
would otherwise terminate. 

The notion of bias can be naturally extended to the bias between 
larger segments of code such as basic-blocks and traces. This is 
“natural” when combining local and global selection schemes 
with dynamic. The non-dynamic criteria can be viewed as base 
schemes upon which dynamic selection can improve. Local and 
global selection criteria are used in the construction of traces from 
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instructions while dynamic selection is used to merge previously 
created traces into newer, longer traces. This improvement proc-
ess is incremental, and may be repeated several times. In this 
work bias is considered at the granularity of traces and is used for 
merging traces. In previous work bias was considered only be-
tween basic blocks [26]. 

There are two types of bias information that can be considered: 
the in-bias and out-bias. In-bias refers to the likelihood of a trace 
to be preceded by another one, whereas the out-bias refers to the 
tendency of a trace to be followed by a second trace. If a trace 
does not exhibit in-bias, it may be a good point to start a new trace 
because otherwise it may lead to the construction of multiple 
traces. Similarly, a trace not exhibiting out-bias may be a good 
point to terminate a trace. 

The decision to merge traces can be taken upon one of the follow-
ing bias combinations, represented as a Boolean formula: 
• In: In-bias only 
• Out: Out-bias only 
• In&Out: In-bias AND out-bias 
• In|Out: In-bias OR out-bias 

Bias Predictor 
Bias based schemes require a predictor. This is a table that can 
contain in each entry a TID and a count that indicate whether a 
trace is biased and towards what trace. In [24][25][26] two op-
tions are presented for indexing the bias predictor: IP or path 
based. 

This work considers tables for in and out bias indexed with a TID. 
Alternatively, a BB path or a sequence of TIDs could have been 
used. Exploring different information vectors to index the bias 
table may represent important direction for future work.  

Bias counters are incremented when a trace is biased to its succes-
sor (predecessor) and reset on at most two consecutive unbiased 
events. The bias predictor is updated at retirement. It is consulted 
at retirement to decide according to a threshold whether to merge 
traces. When a merge takes place both the TPT and trace cache 
are updated. 

In the experimental section, dynamic selection is considered in 
combination with the local selection schemes presented in Section 
4.2. This produces 36 combinations (4 dynamic x 9 local). The 
dynamic selection schemes are evaluated for several thresholds. 

5. SIMULATION FRAMEWORK 
Trace driven simulation is used to empirically study the perform-
ance of various selection schemes. The simulator models only the 
front end; it does not model pipeline latency effects. Front-end 
simulation is considerably faster and enables larger design space 
exploration. Future work should consider full microarchitectural 
simulation that includes the timing effects of various trace related 
functions.  

The trace cache has no misses. The TPT is path based [13], con-
tains 64K-tagged entries and is fully associative. The predictor is 
indexed using a path register 35 IPs long. The in-bias and out-bias 
tables have both 64K entries, are fully associative and tagged. 

LRU replacement is used with all tables and individual entries are 
updated using one bit hysteresis. Fully associative tables were 
chosen to eliminate interference from collisions. 

The following thresholds were considered in conjunction with 
dynamic selection: 4, 8, 16, 32, 64, 128, 256, 512, 1024, and 
4096. The same threshold was used for in and out bias for con-
figurations that consider both. 

 
Figure 5-1 Dynamic distribution of CTI 

The evaluation workload consists of traces from the SPEC-
CPU2000 suite: (integer benchmarks): bzip, crafty, eon, gcc, gzip, 
perl, vortex and vpr, (floating point benchmarks): ammp, art, apsi 
and swim. These benchmarks were selected after a cursory analy-
sis indicated they were representative of SPEC-CPU2000 behav-
ior. The benchmarks were compiled and run on the IA32 architec-
ture. Each trace is approximately 30 million instructions. The 
dynamic contribution of CTI for each benchmark is depicted in 
Figure 5-1. 

6. RESULTS 
6.1. Overall Best Performance 
Table 6.1 summarizes the best selection performance, according 
to our objective function, for each benchmark. The results are 
divided into three categories according to the proposed selection 
classification: Local, Global and Dynamic. For each category, 
results are further divided according to maximum trace length 
(MTL): 64 and 256 (results for MTL 16 are only shown for the 
local category). Dynamic schemes were not considered with MTL 
16, because non-dynamic schemes leave small room for im-
provement. For each subcategory and benchmark – represented as 
a cell in the table – the table contains the configuration that 
achieved the highest objective function value. Therefore, each 
row contains the best performing selection schemes for each se-
lection category and maximum trace length. For each benchmark 
(row), the configuration that achieved the best performance for 
MTL 64 across all categories is marked with light shadowing. 
Similarly, dark shadowing marks the configuration that achieved 
the best performance for MTL 256. When there is no clear advan-
tage of one configuration over another, both were shadowed. Fi-
nally, each benchmark has a table cell with bold border marking 
the selection scheme that achieved the highest objective function 
value across all categories (irrespective of MTL). 
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Local Global Dynamic  

16 64 256 64 256 64 256 

Eon ND P P LUB+FJ LUB+FJ Out_4+UB Out_32+B 

Vortex ND UF UF LUB+F LUB+F Out_4+UB Out_32+B 

Vpr UF UB UB LUB+F LUNB+F In&Out_64+B Out_1024+B 

Gcc ND F F LUHB+F LUHNB+F Out_8+B Out_16+B 

Gzip UB UB UB LUNB+F LUNB+F Out_64+UB Out_64+UB 

Ammp ND F F LUB+F LUHNB+F Out_32+B Out_128+B 

Art P UF P IN+C LUB+FJ In|Out_16+UB In|Out_4+B 

Perl ND ND NU IN+C LUNB+NU Out_4+ND Out_16+B 

Apsi P P P IN+C IN+C Out_256+P Out_4+P 

Swim UF UF UF IN+C LUHNB+FJ Out_8+UB Out_16+F 

Crafty ND F F LUNB+F LUNB+F Out_16+UB Out_128+UB 

Bzip ND F F LUHNB+F LUHNB+F Out_256+B Out_256+B 

Table 6.1 Summary of best selection schemes according to category and maximum trace length.

We explain the table contents with benchmark swim. The selec-
tion schemes with the highest objective function value for MTL 
64 are local-UF and dynamic-Out_8+UB. These two configura-
tions have roughly equal performance. For MTL 256 the best 
performance comes from global-LUHNB+FJ. Across all catego-
ries, irrespective of MTL, the highest objective function value is 
provided by the configuration global-LUHNB+FJ. 

Several observations can be made from the table. Overall, the best 
performing category is dynamic. This is true for both MTL 64 and 
MTL 256. Nevertheless, the data also suggest that simple schemes 
from local and global configurations may suffice with MTL 64 for 
six benchmarks (bzip, crafty, swim, apsi, perl, and art) and for 
four benchmarks (bzip, crafty, swim, and apsi) with MTL 256. 

Another observation from the data (by examining columns) is that 
the best performing selection scheme is benchmark specific. This 
is particularly prevalent for local and global selection. For exam-
ple, six different selection schemes provide the best performance 
for local MTL 64. For the dynamic category there is less variance: 
selection based on out bias seems to be the best choice for most 
benchmarks. However, there is variation with respect to the local 
scheme to use in combination with bias information and the 
threshold value. The above suggests that trace selection may need 
to be enhanced with adaptive mechanisms to achieve the best 
performance. Analysis, not shown here, suggests that a mecha-
nism that can effectively adapt a bias threshold is most promising. 

The benchmark behavior comes in several flavors. For crafty and 
bzip there is no benefit going to longer traces, MTL 16 is suffi-
cient to achieve the best performance. As shown in the next sub-
section, for these two benchmarks coverage decreases with in-
creasing MTL while their hot-trace length is not increasing. The 
low coverage of bzip is the result of low prediction rate due to 
data driven control in this benchmark. 

For one benchmark, ammp, performance degrades when going to 
longer traces. Two benchmarks, gcc and gzip, do not benefit from 

increasing the MTL form 64 to 256. As shown in the next section, 
this is caused by low coverage and/or insignificant increase in hot 
trace length. Recall that the only events in the experimental 
framework that influence coverage are trace mispredictions. For 
benchmarks swim, apsi, perl, art, vpr, vortex and eon there is 
potential with long traces (the best overall performance is 
achieved with MTL 256). These benchmarks should exhibit rea-
sonable coverage and hot trace length and potentially could bene-
fit from even MTL longer than 256. 

Another general trend, across benchmarks, is that for local selec-
tion with increasing MTL the local scheme that performs best has 
the same or more criteria (more restrictive) as compared to the 
selection scheme for a smaller MTL. For example, for perl the 
best local selection with MTL 16 and 64 is ND, however, for 256 
it is NU. As displayed in Figure 4-1, NU is inclusive of the ND 
criteria. This trend should be expected since as MTL increases 
local selection would prefer to keep traces shorter since the non-
determinism increases with trace length. The same phenomenon 
for the same reasons occurs for global schemes. For example, for 
vpr with MTL 64 the best performing scheme is LUB+F whereas 
for MTL 256 is LUNB+F. The LUB allows intermediate 
branches whereas LUNB does not.  

The next section presents different performance metric values for 
the configurations in Table 6.1. 

6.2. Objective Function and Performance 
Metrics for Best Configurations 

Figure 6-1 to Figure 6-4 show the objective function and various 
performance metrics for the benchmarks and configurations in 
Table 6.1. The ratio of hot to cold trace-length is presented in 
Figure 6-5. The results in these figures are useful for establishing 
the performance potential with different trace selection schemes, 
identifying correlations and understanding the causes of different 
benchmark behavior. Due to limited space, we only elaborate on 
some of these issues. 
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Figure 6-1 shows the value of the objective function and Figure 
6-2 shows the normalized objective function values. The normali-
zation is computed separately for each benchmark. The data in 
these figures show that benchmarks can be divided into two cate-
gories: those with high performance potential, defined to have at 
least one configuration with objective function value greater than 
20 (art, perl, vortex, apsi, swim, eon and ammp), and those with 
low potential, (bzip, crafty, gcc, gzip and vpr). bzip exhibits the 
worst performance due to low predictability caused by data driven 
control flow. 

 
Figure 6-1 Best objective-function per category/length 

 
Figure 6-2 Normalized objective-function 

Figure 6-3 and Figure 6-4 can be used to explain the dichotomy 
observed in the benchmarks objective function behavior. It can be 
seen in Figure 6-3 that the coverage for benchmarks with high 
potential is virtually insensitive to the trace length and the selec-
tion scheme used, and that coverage is typically higher than 95%.  

Figure 6-4 shows that the hot trace length for benchmarks with 
high potential is typically 40 instructions or above for several 
configurations. Furthermore, for benchmarks with high potential 
we observe that (a) within a given selection category, hot trace 
length increases with increasing MTL, and (b) hot traces tend to 
be longer than the cold ones (see Figure 6-5).  

On the other hand, benchmarks with low potential have low cov-
erage and display more sensitivity to the information used for 
selection. Typically, their coverage is lower than 90%. These 
benchmarks have short trace length, typically less than 30, and the 
ratio of hot/cold length trace is less than one.  

 
Figure 6-3 Coverage 

The latter underlines the importance of selecting traces so that 
mispredictions and misses are isolated in short traces. 

 
Figure 6-4 Hot-trace length 

From Figure 6-3 and Figure 6-4 it can also be observed that over-
all the average coverage is 98% for floating point programs and 
88% for integer programs, these numbers are the same with 
maximum trace length 64 and 256. The average hot trace length 
for MTL 64 is 57 IA32 instructions for FP programs and 28 in-
structions for integer programs, whereas for MTL of 256 it is 156 
instructions for floating point and 52 for integer programs. 

 
Figure 6-5 Ratio Hot/Cold Trace Length 
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Figure 6-5, presents the ratio of hot trace length to cold trace 
length. We focus on the most interesting behavior that is around 
ratio of one, therefore the graph does not show maximum values 
for few benchmarks that exceed 4. It can be observed that across 
all benchmarks only the dynamic selection provides significantly 
longer hot than cold traces (usually at least twice as long).  

6.3. Performance of Different Selection 
Schemes in Same Category 

The analysis of results so far was done macroscopically by con-
sidering only the best selection scheme from each category. 
Figure 6-6 provides data for comparing selection schemes in the 
same category. Due to limited space, only the normalized average 
and range of objective function values across all benchmarks is 
shown for MTL 64. Objective function averages are computed 
separately for each scheme, and then averages are normalized 
across all selection schemes. For LU and dynamic selection the 
best combination with a local scheme is shown. The best local 
selection with MTL 16 is shown for reference. 

 
Figure 6-6 Normalized average and range of Objective Func-

tion for MTL 64 

As observed in previous sections, dynamic selection provides the 
best performance across all categories and benchmarks. The data 
in Figure 6-6 shows that the dynamic selection scheme with the 
best performance is out-bias. On the average, out-bias is 10% 
better than any other scheme for MTL 64. Analysis, not shown 
here, also revealed that out-bias is always within 95% of the best 
performing scheme.  

For global selection, the best performance is obtained by LUB 
and LUHB, whereas for local selection it is obtained by UF and 
ND. The average performance of dynamic schemes is the highest. 
The results for MTL 256 are similar, however, the difference 
between out-bias and the next best selection scheme is larger. 

7. RELATED WORK 
The notion of identifying frequently executed paths (traces) across 
basic blocks for optimization has been prevalent for the software-
based schemes reported in [8][18][6][2][11] and more recently for 
hardware based schemes [21][22][26][25][7][15]. The various 
proposals mainly differ in one or more of the following: the meth-
odology and resources used for detecting the hot paths, the struc-
ture and address space used for storing the hot paths, and the tim-
ing and resources used for optimization. The common characteris-
tic in all these schemes is the use of run time (dynamic) informa-
tion for selecting hot paths. 

This paper draws from previous work in trace-caches 
[27][31][23]. The original proposals of selection for trace caches 
were local and for short traces. As shown in this work such an 
approach may provide sufficient coverage for short traces but not 
with increasing maximum trace length. The first paper to consider 
dynamic information in conjunction with traces promoted biased 
branches to assertions [24]. 

The work closest to this paper is [26]. The goals in that paper are 
similar to these in this work. [26] considers path-based out-bias 
information to merge basic blocks. Our paper builds on the idea 
for dynamic criteria for trace selection and atomic traces [19][20]. 

This work is distinguished from the study reported in [26] in sev-
eral aspects. Our goal is to maximize trace length while preserv-
ing a high degree of coverage. We quantify this tradeoff using an 
objective function that combines the effect of coverage and hot 
trace length that emphasizes the importance of coverage. [26] 
appears to have more emphasis on increasing trace length. 

We provide a framework that combines different types of dynamic 
information (in, out, in or out and in-out) in conjunction with 
different local schemes, and merging at trace granularity. In pre-
vious work, only the out bias was considered and merging was 
done at the granularity of basic blocks. 

Furthermore, in this work the trace sequencing is done with a 
predictor whereas in [26] an ideal next fetch address predictor was 
assumed. In a follow-up work, [7], a real path-predictor was em-
ployed. 

The biased scheme used in this work is TID-based whereas in 
previous work it was path based. The two could possibly be com-
bined but we did not explore that option. As far as we know, the 
global schemes considered here have not been considered else-
where for trace selection. Analogous concepts exist for the selec-
tion of hot paths that can be stored in memory [22]. 

8. CONCLUSIONS AND FUTURE WORK 
This paper presents a comprehensive study of selection schemes 
for long atomic traces. The paper introduces a classification of 
trace selection methods based on the information used to select 
traces. Existing and novel selection methods are discussed. New 
selection methods considered include loop unrolling, procedure 
in-lining and incremental merging of traces based on different 
types of dynamic bias. 

The paper includes an empirical analysis of various selection 
schemes with increasing trace length in an idealized framework. 
Several observations are made using benchmarks from the SPEC-
CPU2000 suite. Selection based on dynamic bias information is 
necessary to achieve the best performance across all benchmarks. 
However, simple selection schemes relying on program structure 
are sufficient to achieve the best performance for half the bench-
marks when maximum trace length is 64 instructions. Another 
observation is that adaptive trace selection may be needed because 
the best selection scheme depends on the benchmark and maxi-
mum trace length used.  

Two alternatives for the trace selection mechanism are estab-
lished: (a) a “best performance” approach relying on complex 
dynamic criteria; (b) a “value” approach that provides the best 
performance (and potentially the best power consumption) based 
on simpler static criteria. Another emerging alternative advocates 
adaptive based mechanisms to adjust selection criteria. 
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This work points to several directions for future work. Enhancing 
trace selection with adaptive mechanisms is one that appears very 
promising. Future work, should investigate the performance with 
a complete microarchitectural model for specific selection 
schemes. Such a study should address trace-specific phenomena 
such as trace cache miss penalty, and provide detailed perform-
ance and power analysis. Another direction of research is to con-
sider selection for long but non-atomic traces.  
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