
Selecting Long Atomic Traces for High Coverage
Roni Rosner*, Micha Moffie*, Yiannakis Sazeides+, Ronny Ronen*

*Microprocessor Research

Intel Labs (formerly MRL)

Haifa, Israel

{roni.rosner, micha.moffie, ronny.ronen}@intel.com

+Department of Computer Science
University of Cyprus

Nicosia, Cyprus

yanos@ucy.ac.cy

ABSTRACT
This paper performs a comprehensive investigation of dynamic
selection for long atomic traces. It introduces a classification of
trace selection methods and discusses existing and novel dynamic
selection approaches – including loop unrolling, procedure in-
lining and incremental merging of traces based on dynamic bias.
The paper empirically analyzes a number of selection schemes in
an idealized framework.

Observations based on the SPEC-CPU2000 benchmarks show
that: (a) selection based on dynamic bias is necessary to achieve
the best performance across all benchmarks, (b) the best selection
scheme is benchmark and maximum trace-length specific, (c)
simple selection, based on program structure information only, is
sufficient to achieve the best performance for several benchmarks.

Consequently, two alternatives for the trace selection mechanism
are established: (a) a “best performance” approach relying on
complex dynamic criteria; (b) a “value” approach that provides
the best performance (and potentially the best power consump-
tion) based on simpler static criteria. Another emerging alternative
advocates adaptive based mechanisms to adjust selection criteria.

Categories and Subject Descriptors
C.1.3 [PROCESSOR ARCHITECTURES]: Other Architecture
Styles – pipeline processors.

General Terms
Algorithms, Performance, Design.

Keywords
Trace processors, trace cache, trace selection, trace atomicity.

1. INTRODUCTION
Trace caching ([27][31][23][32][12]) is a promising method for
providing high bandwidth instruction supply at low latency. A
trace cache enables a processor to fetch in parallel long sequence
of instructions across basic blocks thus overcoming the sequential
resolution of control transfer instructions.

Although alternative techniques may be used to achieve the high
instruction bandwidth of trace caches (e.g. the collapsing buffer
[5], the basic block trace-cache [3] or extended basic-block cache
[16]), trace caches possess two unique properties that make them
more attractive: (a) the construction of traces can be done effec-
tively off the critical path, and (b) the storage of complete traces
in a cache for reuse.

These trace cache properties can facilitate additional important
optimizations. In particular, trace construction may be enhanced
with optimization functionality that can increase performance
[10][14][25][7][36] and reduce power consumption [35][30]. This
optimization potential can be significantly facilitated by (a) select-
ing longer traces, and (b) by treating each trace as a single atomic
block although it may contain control transfer instructions
[22][26].

Trace selection defines a set of criteria for when a consecutive
dynamic sequence of instructions constitutes a trace. Different
selection criteria result in the construction of a different set of
traces and lead to the execution of a different sequence of traces,
thus obtaining different trace length (and content) and different
dynamic coverage. Therefore, successful trace selection is crucial
for maximizing performance.

In this work, we perform a comprehensive study of trace selection
targeted at producing long atomic traces with high coverage.
These two objectives are typically in conflict, because selecting
long traces may result in low coverage whereas high coverage
may require short traces. This trade-off is central to this work. The
paper introduces a classification of trace selection methods and
discusses how existing and novel selection schemes address this
trade-off. An empirical analysis of a number of selection schemes
is performed for a scenario with no trace cache misses and a large
predictor to establish a performance limit for long atomic traces.

One of the key results is that selection schemes that rely on dy-
namic information provide the overall best performance: With
maximum trace length of 256 instructions, the average hot trace
length is 156 instructions for floating point programs and 52 for
integer, and coverage is 98% for floating point and 89% for inte-
ger programs. The results also revealed that for several bench-
marks, simpler selection schemes relying on program structure
may be sufficient to achieve the best performance.

At the microarchitecture design level, we identify two alternative
approaches for the trace selection mechanism. An aggressive ap-
proach based on complex dynamic criteria with overall the best
performance. The other approach is based on simpler static crite-
ria. Such a “value” approach can provide the best performance for
a large set of benchmarks, and due to its design simplicity, may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’03, June 23-26, 2003, San Francisco, California, USA.
Copyright 2003 ACM 1-58113-733-8/03/0006…$5.00.

2

also offer the best power consumption. A third, adaptive-based
alternative emerges from our results. Adaptive trace-selection
may introduce novel trade offs for microarchitecture design and
represents an important direction for future work.

The rest of the paper is organized as follows: the front-end model
assumed in this work is described in Section 2. The basics of trace
selection are described in Section 3. Section 4 introduces a classi-
fication of trace selection methods. This section also discusses a
number of existing and novel selection schemes. The experimen-
tal framework is described in Section 5. Results are presented in
Section 6. Related work is discussed in Section 7. Finally, Section
8 concludes the paper and suggests directions for future work.

2. FRONT-END MODEL
This section describes the model used in this study. The focus of
this work is on the front-end and therefore back-end microarchi-
tecture parameters are not discussed. This section also includes a
discussion on performance metrics for a trace-cache driven front-
end and introduces the objective function used in this study.

2.1. Traces and Related Notions
A basic block (BB) is a sequence of non-CTI (control transfer
instructions) where only the last instruction can be a CTI (this
work does not account for potential labels inside such a block).

A trace is a finite sequence of dynamically consecutive instruc-
tions [31]. Traces in this paper are single-exit and atomic. A trace
is atomic if it is treated as a single instruction, or single-
entry/single-exit [19][20][26]. Single-exit atomic traces may be
necessary when applying optimizations that do not preserve suffi-
cient information for reuse of the head of a partially correct trace,
e.g. when instructions are reordered within the trace.

A trace identifier (TID) is a finite sequence of basic block starting
IPs (instruction pointers).

A path or BB-history is a finite sequence of BB-starting IPs.

2.2. Front-End Model
A pictorial representation of the front-end model is shown in
Figure 2-1. Note that this front-end model is similar to the one
described in [32].

Instructions are supplied to the processor only in the form of
traces. A trace predictor provides an identifier—a TID—that is
used to access the trace cache. In the case of a trace cache hit the
trace is send for execution. In the case of a miss, the TID is used
to construct a trace from the instruction cache.

When a trace misprediction occurs, the correct trace is built start-
ing from the IP of the first instruction in the mispredicted trace
(this reflects the atomicity of traces). The construction is done
using a fetch engine that can sequence at the granularity of in-
structions (regular instruction cache hierarchy and conventional
branch prediction). The new trace is build based on trace selection
criteria. The different selection criteria are discussed in Section 4.
After a trace is built, the trace cache is updated and the trace is
sent down the pipe for execution. When the build is a result of a
misprediction the trace is also used to correct the history informa-
tion used to access the trace predictor.

Figure 2-1 Front-End Model Flow

The history information is used to index the trace prediction table
(TPT) to read the next TID. The TPT itself is updated at retire-
ment.

This base model is extended with advanced selection schemes as
explained in Section 4.

2.3. Front-End Performance Metrics
Trace selection together with the trace predictor and trace-cache
are the three main independent variables that influence various
front-end performance metrics. Table 2.1 presents a number of
metrics and shows the variables influencing each.

The different metrics are explained below:

Length: Average trace length for all traces.

Unique traces: Number of unique traces created

Unique patterns: Number of unique history patterns that were
used to index the trace predictor.

METRIC DEPENDS ON

Hot/Cold Length Selection, cache, predictor

Unique Traces Selection

Unique Patterns Selection, information vector

Coverage Selection, cache, predictor

Predictability Selection, predictor

Builds Selection, cache, predictor

Table 2.1 What influences front-end performance metrics

Coverage: Percent of executed instructions in traces that were
correctly predicted and that were found in the trace cache.

Predictability: Number of mispredictions from the trace predictor.
The information vector is a trace predictor related variable and
refers to the information used to form predictor indices (number
of history items, type of items, hashing function etc).

Builds: Number of trace builds, performed as a result of trace
mispredictions or trace cache misses.

3

The length metric is divided into hot and cold because ‘not all
traces are equal’. As shown in Figure 2-2, a retired trace can be
the result of four execution scenarios. Each scenario may have
different cost/benefit and thus the length metric needs to reflect
this. In this work, retired traces are divided into two categories:
hot and cold. Hot are those traces that hit in the trace cache and
predicted correctly, whereas the other three types of traces are
grouped as cold. We argue that trace-cache based front-ends
should aim to maximize hot-trace length and minimize cold-trace
length. As shown in the results section, this is particularly impor-
tant for configurations that support very long traces.

Henceforth unless indicated otherwise, the term trace length will
be used to refer to the overall average trace length.

The number of unique traces and number of unique patterns are
meant to measure the “pressure” on the trace cache and trace pre-
dictor table resources. The higher these numbers are - the more
likely these resources would suffer from capacity, conflict and
cold misses.

Coverage captures directly the effects of builds and mispredic-
tions, and, indirectly, it may capture the effects of unique traces
and unique patterns.

TID
Prediction

T$ Hit T$ Miss

Hot Traces Cold Traces

Incorrect
Pred

Correct
Pred

Incorrect
Pred

Correct
Pred

Figure 2-2 Types of Retired Traces

2.4. Objective Function
Two important metrics that a front-end should maximize are (a)
length of hot traces, and (b) execution coverage from traces.
However, the two objectives are typically in conflict, because to
achieve long traces may require low coverage whereas high cov-
erage may require short traces. Therefore, selection should aim
for a trade-off between the two. The following objective function
attempts to capture this trade-off:







 −+ C

L
C 1

1

In this formula L denotes the average hot trace length (it can take
values from 1 to maximum trace length). C denotes coverage (it
can take a value between 0 and 1).

The objective function value is intended to capture the speedup
potential of a microarchitecture with trace-cache based optimiza-
tions over a single-issue microarchitecture. The fraction of execu-
tion covered by the trace-cache, C, is assumed to be optimized to
have parallelism equal to L.

It is noteworthy that the above function is an adaptation of Am-
dahl’s Law [1]. This indicates that the objective function assigns a

lot of significance on coverage. Therefore, unless C is high
enough the performance potential will be small.

This objective function, together with some of the other metrics,
is used in subsequent sections to assess the performance of differ-
ent selection heuristics. We recognize that other objective func-
tions could have been used and that the ultimate metric is actual
performance, however, the above enables for comparison of dif-
ferent selection schemes without full microarchitectural simula-
tion and independent of specific implementation.

3. PHILOSOPHY OF TRACE SELECTION
Trace selection defines the set of criteria for when a consecutive
dynamic sequence of instructions constitutes a trace. It is evident
from Table 2.1 that trace selection influences all front-end met-
rics, considered in this work, and thus may be crucial to trace-
cache performance.

It can be deduced from previous work ([23][32]) that two general
principles should guide the choice of selection criteria: capturing
as much of the determinism in the control flow of the program
and avoid thrashing table resources for the trace cache and trace
predictor.

The first principle – capture determinism – usually translates to
criteria that do not terminate a trace when there is high determin-
ism for what the next instruction will be. Therefore it is crucial to
have criteria whose coverage is rather insensitive to increasing
trace length.

The second principle – avoid trashing – is partially covered by the
first. By terminating traces when there is low determinism thrash-
ing can be prevented. However, it is possible even when there is
high determinism in the control flow to create a lot of unique
traces and patterns that may thrash resources. Thus, a throttling
mechanism may be needed to terminate traces even in the pres-
ence of biased behavior.

In the next section, a classification of trace selection methods is
introduced and a discussion on how different selection schemes
address the above principles is presented.

4. CLASSIFICATION OF TRACE SELECTION
Trace selection methods can be classified into one or combination
of the following four categories, according to the information
used during the trace construction to decide when to terminate a
trace:

• Capacity – based on hardware constraints
• Local – based on single instruction
• Global – based on all instructions in a trace
• Dynamic – based on dynamic behavior

The following sections describe for each category specific selec-
tion algorithms and discuss in what way they address the issues of
control flow determinism and thrashing (Section 3). We empha-
size that in this work we only considered run time trace selection
schemes.

4.1. Capacity
Trace capacity limitations can be viewed as the most basic type of
selection. Capacity refers to termination that occurs when no more
information can be stored per trace. Examples of such information
are maximum number of instructions and maximum number of

4

CTIs. The former limitation reflects the storage limitations for the
trace content, while the later reflects the need to limit the size of
trace identifiers used for trace indexing in various structures such
as the trace cache and trace predictor. It is apparent that capacity
selection has the “highest priority” among all schemes and need to
be considered in combination with any other selection scheme.

4.2. Local
For this class of heuristics the decision to terminate a trace is
taken by using mainly information about the “current” instruction
(provided capacity selection is not forcing a trace to be termi-
nated). Typically, this means to examine if the instruction type
satisfies a trace-termination condition. This examination does not
require any global state about the trace. Table 4.1 shows different
types of control transfer instructions (CTI) that can terminate a
trace.

CF conditional forward branch

CB conditional backward branch

DJ unconditional direct jump

IJ unconditional indirect jump

DC unconditional direct call

IC unconditional indirect call

RET Return

Table 4.1 Code Names for CTI

Local selection criteria attempt to capture control flow determin-
ism derived from either instruction semantics or typical program
behavior. Example criteria from previous work [31] are (a) not
terminating on direct unconditional branches because their target
is always deterministic, (b) not terminating on backward branches
because they tend to be more taken, and (c) terminating on returns
because functions can be called from several points in a program
and thus their continuation may not always be the same.

In this work, several local schemes were considered. Each row in
Table 4.2 defines a unique selection scheme. The types of instruc-
tions that terminate a trace are denoted by shaded boxes while
those that do not terminate a trace by white boxes.
B: Select traces that are only basic blocks – terminates on all

CTI types.
F: Traces may contain forward branches.
FJ: Traces may contain forward branches and jumps.
UB: Allow loops without any CTI in their bodies to be unrolled

into a trace.
UF: Allow for loops with only forward branches in their bodies

to be unrolled into a trace
P: Traces do not cross function boundaries
ND: Terminates traces on CTI with high determinism, while

including non-deterministic CTIs.
NU: Terminates traces only on backward branches.
C: Does not terminate on any CTI.
Note that all schemes terminate traces on exceptions, traps and
hardware interrupts.

 CF CB DJ IJ DC IC RET

B

F

FJ

UB

UF

P

ND

NU

C

Table 4.2 Criteria for Local Selection

The B and C schemes represent the end-points in the spectrum of
selection schemes as far as trace length. B is expected to produce
the shortest traces and the highest coverage. C is expected to pro-
duce the longest traces but suffer for most non-determinism and
therefore low coverage.

Why Local Selection may not be Sufficient?
Local selection may work well for small trace lengths. However,
the uniform treatment of instructions based on their type and not
their behavior may be insufficient for longer traces.
For example, the likelihood of a trace to be correctly predicted
usually decreases as more CTIs are included. Thus, correct predic-
tion and coverage may decrease with longer traces. This is not
always the case, e.g., a return from a function called only from
one caller should not terminate a trace because its continuation is
always the same.
These limitations motivate selection schemes that rely on global
and dynamic information which are discussed in the next sections.

4.3. Global
For global selection schemes, the decision to terminate a trace
may be based on information about other instructions in the trace.
Such information can include the relation between two distant
instructions, recurring patterns, or other structural characteristics
that cannot be observed with the perspective of a single instruc-
tion. Below we discuss two such heuristics.

Loop Unrolling (LU): a trace selection heuristic aiming to ex-
ploit the regularity in the iterative control flow of a program. Spe-
cifically, during the construction of a trace, if a taken backward
branch (or jump) is detected and its target is already in the trace
then the loop gets unrolled. Effectively, loop unrolling aims to
improve local schemes that do not terminate on backward
branches by reducing their non-determinism.

The following LU selection schemes were considered:
• LUNB: Disallow intermediate branches between target and

backward branch,
• LUB: Allow intermediate branches,
• LUH: Require the target to be the first instruction in the

trace. This was examined in conjunction with intermediate
branches (LUHB) and without them (LUHNB)

5

Loop unrolling needs to be considered in combination with a local
scheme that terminates traces on conditional backward branches.
The local schemes F and FJ (see Section 4.2) terminate traces on
backward branches. These local schemes were evaluated in com-
bination with the above LU configurations, resulting in eight
unique configurations.

The trace length of a selection scheme that combine LU with
F(FJ) cannot exceed that of the local schemes UF(P), because (a)
the schemes UF and P never terminate on backward branches, and
(b) UF is inclusive of F and P of FJ. The expectation is that LU
unrolling will have higher trace length than the local schemes that
terminate on backward branches and higher coverage than
schemes that always include conditional backward branches in
traces.

The amount of unrolling is another important design parameter.
This design dimension is not discussed due to space limitation.
The LU results in this paper were obtained with maximum unroll-
ing of ten.

Continue Beyond Returns (IN): in most previous work, trace
selection schemes terminate a trace on a return instruction to pre-
vent the creation of large number of unique traces. Not terminat-
ing a trace on a return instruction can lead to building several
traces because functions are usually called from several locations
in a program. However, when the return and its corresponding call
instruction appear in the same trace then not terminating on a
return may be desirable because the next address is unique (and
deterministic). This type of selection tries to keep together the
caller and callee code, resembling the effect of procedure in-
lining. Consequently, this selection is denoted by IN.

The IN global selection needs to be combined with a local selec-
tion scheme that does not terminate on function calls (IC and DC)
and returns (RET). The C local selection scheme (see Section
4.2) does not terminate on any CTI, thus it is expected to suffer
from low coverage due to non-determinism. The combination of
C with the IN global selection (IN+C) will terminate a trace on a
return instruction when its corresponding call instruction is not in
the current trace. The expectation is that global selection (IN+C)
as compared to C, will increase the coverage at the expense of
shorter traces. In the worst case, the trace length may be as short
as that of the local selection scheme that terminates traces on
function boundaries (scheme P).

4.4. Partial Ordering of Local and Global
Selection Methods

It should be evident by the discussion so far that local and global
selection heuristics can be ordered according to inclusion of ter-
mination criteria. The ordering for the various schemes considered
in this work is shown in Figure 4-1. For example, scheme B in-
cludes scheme F, because B contains all termination criteria of F.
Virtually always, a scheme that is included in another scheme, say
X, will produce longer traces than X, since it has fewer conditions
for terminating traces. Thus, scheme F is likely to produce longer
traces than B. However, the relative performance of schemes that
do not have inclusion relation (e.g. P and ND) will be determined
by the distribution of instruction types.

Inclusion is trivial to determine across local selection schemes
(based on Table 4.2). The inclusion relation of a global scheme
can be defined with respect to local schemes that have less or
more constraints. For instance, scheme LUNB+F is included in F,

since F always terminates on backward branches. Scheme
LUNB+F includes UB because UB never terminates on backward
branches. Recall that LUNB+F always terminates when the target
is not in the trace.

B

F

UB

FJ

ND

C

UF

P

IN+
C

IN

LUHNB
+FJ

LUNB
+FJ LUHB

+FJ

LUB
+FJ

LUHNB
+F

LUNB
+F LUHB

+F

LUB
+F

LULU

NU

Figure 4-1 Partial Ordering of Local and Global Selection

Methods

It is possible that interactions between trace selection and maxi-
mum trace length to cause violation of the inclusions with respect
to the trace length. Nevertheless, the inclusion graph was found to
be usually correct and useful in understanding the relations and
potential of various selection schemes we considered.

4.5. Dynamic Selection and Trace Merging
Local and global schemes rely mainly on information in the static
program structure. Dynamic selection is intended to capture run-
time program behavior. In this respect, dynamic selection is
closely related to well-known microarchitectural techniques such
as caching and history-based prediction.

The dynamic information considered in this study is the bias of
instructions [24][26]. Qualitatively, bias measures the likelihood
of a transition from a CTI instruction to one of its possible targets.
A biased instruction will tend to have the same successor. Conse-
quently, biased information can be used to prolong a trace that
would otherwise terminate.

The notion of bias can be naturally extended to the bias between
larger segments of code such as basic-blocks and traces. This is
“natural” when combining local and global selection schemes
with dynamic. The non-dynamic criteria can be viewed as base
schemes upon which dynamic selection can improve. Local and
global selection criteria are used in the construction of traces from

6

instructions while dynamic selection is used to merge previously
created traces into newer, longer traces. This improvement proc-
ess is incremental, and may be repeated several times. In this
work bias is considered at the granularity of traces and is used for
merging traces. In previous work bias was considered only be-
tween basic blocks [26].

There are two types of bias information that can be considered:
the in-bias and out-bias. In-bias refers to the likelihood of a trace
to be preceded by another one, whereas the out-bias refers to the
tendency of a trace to be followed by a second trace. If a trace
does not exhibit in-bias, it may be a good point to start a new trace
because otherwise it may lead to the construction of multiple
traces. Similarly, a trace not exhibiting out-bias may be a good
point to terminate a trace.

The decision to merge traces can be taken upon one of the follow-
ing bias combinations, represented as a Boolean formula:
• In: In-bias only
• Out: Out-bias only
• In&Out: In-bias AND out-bias
• In|Out: In-bias OR out-bias

Bias Predictor
Bias based schemes require a predictor. This is a table that can
contain in each entry a TID and a count that indicate whether a
trace is biased and towards what trace. In [24][25][26] two op-
tions are presented for indexing the bias predictor: IP or path
based.

This work considers tables for in and out bias indexed with a TID.
Alternatively, a BB path or a sequence of TIDs could have been
used. Exploring different information vectors to index the bias
table may represent important direction for future work.

Bias counters are incremented when a trace is biased to its succes-
sor (predecessor) and reset on at most two consecutive unbiased
events. The bias predictor is updated at retirement. It is consulted
at retirement to decide according to a threshold whether to merge
traces. When a merge takes place both the TPT and trace cache
are updated.

In the experimental section, dynamic selection is considered in
combination with the local selection schemes presented in Section
4.2. This produces 36 combinations (4 dynamic x 9 local). The
dynamic selection schemes are evaluated for several thresholds.

5. SIMULATION FRAMEWORK
Trace driven simulation is used to empirically study the perform-
ance of various selection schemes. The simulator models only the
front end; it does not model pipeline latency effects. Front-end
simulation is considerably faster and enables larger design space
exploration. Future work should consider full microarchitectural
simulation that includes the timing effects of various trace related
functions.

The trace cache has no misses. The TPT is path based [13], con-
tains 64K-tagged entries and is fully associative. The predictor is
indexed using a path register 35 IPs long. The in-bias and out-bias
tables have both 64K entries, are fully associative and tagged.

LRU replacement is used with all tables and individual entries are
updated using one bit hysteresis. Fully associative tables were
chosen to eliminate interference from collisions.

The following thresholds were considered in conjunction with
dynamic selection: 4, 8, 16, 32, 64, 128, 256, 512, 1024, and
4096. The same threshold was used for in and out bias for con-
figurations that consider both.

Figure 5-1 Dynamic distribution of CTI

The evaluation workload consists of traces from the SPEC-
CPU2000 suite: (integer benchmarks): bzip, crafty, eon, gcc, gzip,
perl, vortex and vpr, (floating point benchmarks): ammp, art, apsi
and swim. These benchmarks were selected after a cursory analy-
sis indicated they were representative of SPEC-CPU2000 behav-
ior. The benchmarks were compiled and run on the IA32 architec-
ture. Each trace is approximately 30 million instructions. The
dynamic contribution of CTI for each benchmark is depicted in
Figure 5-1.

6. RESULTS
6.1. Overall Best Performance
Table 6.1 summarizes the best selection performance, according
to our objective function, for each benchmark. The results are
divided into three categories according to the proposed selection
classification: Local, Global and Dynamic. For each category,
results are further divided according to maximum trace length
(MTL): 64 and 256 (results for MTL 16 are only shown for the
local category). Dynamic schemes were not considered with MTL
16, because non-dynamic schemes leave small room for im-
provement. For each subcategory and benchmark – represented as
a cell in the table – the table contains the configuration that
achieved the highest objective function value. Therefore, each
row contains the best performing selection schemes for each se-
lection category and maximum trace length. For each benchmark
(row), the configuration that achieved the best performance for
MTL 64 across all categories is marked with light shadowing.
Similarly, dark shadowing marks the configuration that achieved
the best performance for MTL 256. When there is no clear advan-
tage of one configuration over another, both were shadowed. Fi-
nally, each benchmark has a table cell with bold border marking
the selection scheme that achieved the highest objective function
value across all categories (irrespective of MTL).

7

Local Global Dynamic

16 64 256 64 256 64 256

Eon ND P P LUB+FJ LUB+FJ Out_4+UB Out_32+B

Vortex ND UF UF LUB+F LUB+F Out_4+UB Out_32+B

Vpr UF UB UB LUB+F LUNB+F In&Out_64+B Out_1024+B

Gcc ND F F LUHB+F LUHNB+F Out_8+B Out_16+B

Gzip UB UB UB LUNB+F LUNB+F Out_64+UB Out_64+UB

Ammp ND F F LUB+F LUHNB+F Out_32+B Out_128+B

Art P UF P IN+C LUB+FJ In|Out_16+UB In|Out_4+B

Perl ND ND NU IN+C LUNB+NU Out_4+ND Out_16+B

Apsi P P P IN+C IN+C Out_256+P Out_4+P

Swim UF UF UF IN+C LUHNB+FJ Out_8+UB Out_16+F

Crafty ND F F LUNB+F LUNB+F Out_16+UB Out_128+UB

Bzip ND F F LUHNB+F LUHNB+F Out_256+B Out_256+B

Table 6.1 Summary of best selection schemes according to category and maximum trace length.

We explain the table contents with benchmark swim. The selec-
tion schemes with the highest objective function value for MTL
64 are local-UF and dynamic-Out_8+UB. These two configura-
tions have roughly equal performance. For MTL 256 the best
performance comes from global-LUHNB+FJ. Across all catego-
ries, irrespective of MTL, the highest objective function value is
provided by the configuration global-LUHNB+FJ.

Several observations can be made from the table. Overall, the best
performing category is dynamic. This is true for both MTL 64 and
MTL 256. Nevertheless, the data also suggest that simple schemes
from local and global configurations may suffice with MTL 64 for
six benchmarks (bzip, crafty, swim, apsi, perl, and art) and for
four benchmarks (bzip, crafty, swim, and apsi) with MTL 256.

Another observation from the data (by examining columns) is that
the best performing selection scheme is benchmark specific. This
is particularly prevalent for local and global selection. For exam-
ple, six different selection schemes provide the best performance
for local MTL 64. For the dynamic category there is less variance:
selection based on out bias seems to be the best choice for most
benchmarks. However, there is variation with respect to the local
scheme to use in combination with bias information and the
threshold value. The above suggests that trace selection may need
to be enhanced with adaptive mechanisms to achieve the best
performance. Analysis, not shown here, suggests that a mecha-
nism that can effectively adapt a bias threshold is most promising.

The benchmark behavior comes in several flavors. For crafty and
bzip there is no benefit going to longer traces, MTL 16 is suffi-
cient to achieve the best performance. As shown in the next sub-
section, for these two benchmarks coverage decreases with in-
creasing MTL while their hot-trace length is not increasing. The
low coverage of bzip is the result of low prediction rate due to
data driven control in this benchmark.

For one benchmark, ammp, performance degrades when going to
longer traces. Two benchmarks, gcc and gzip, do not benefit from

increasing the MTL form 64 to 256. As shown in the next section,
this is caused by low coverage and/or insignificant increase in hot
trace length. Recall that the only events in the experimental
framework that influence coverage are trace mispredictions. For
benchmarks swim, apsi, perl, art, vpr, vortex and eon there is
potential with long traces (the best overall performance is
achieved with MTL 256). These benchmarks should exhibit rea-
sonable coverage and hot trace length and potentially could bene-
fit from even MTL longer than 256.

Another general trend, across benchmarks, is that for local selec-
tion with increasing MTL the local scheme that performs best has
the same or more criteria (more restrictive) as compared to the
selection scheme for a smaller MTL. For example, for perl the
best local selection with MTL 16 and 64 is ND, however, for 256
it is NU. As displayed in Figure 4-1, NU is inclusive of the ND
criteria. This trend should be expected since as MTL increases
local selection would prefer to keep traces shorter since the non-
determinism increases with trace length. The same phenomenon
for the same reasons occurs for global schemes. For example, for
vpr with MTL 64 the best performing scheme is LUB+F whereas
for MTL 256 is LUNB+F. The LUB allows intermediate
branches whereas LUNB does not.

The next section presents different performance metric values for
the configurations in Table 6.1.

6.2. Objective Function and Performance
Metrics for Best Configurations

Figure 6-1 to Figure 6-4 show the objective function and various
performance metrics for the benchmarks and configurations in
Table 6.1. The ratio of hot to cold trace-length is presented in
Figure 6-5. The results in these figures are useful for establishing
the performance potential with different trace selection schemes,
identifying correlations and understanding the causes of different
benchmark behavior. Due to limited space, we only elaborate on
some of these issues.

8

Figure 6-1 shows the value of the objective function and Figure
6-2 shows the normalized objective function values. The normali-
zation is computed separately for each benchmark. The data in
these figures show that benchmarks can be divided into two cate-
gories: those with high performance potential, defined to have at
least one configuration with objective function value greater than
20 (art, perl, vortex, apsi, swim, eon and ammp), and those with
low potential, (bzip, crafty, gcc, gzip and vpr). bzip exhibits the
worst performance due to low predictability caused by data driven
control flow.

Figure 6-1 Best objective-function per category/length

Figure 6-2 Normalized objective-function

Figure 6-3 and Figure 6-4 can be used to explain the dichotomy
observed in the benchmarks objective function behavior. It can be
seen in Figure 6-3 that the coverage for benchmarks with high
potential is virtually insensitive to the trace length and the selec-
tion scheme used, and that coverage is typically higher than 95%.

Figure 6-4 shows that the hot trace length for benchmarks with
high potential is typically 40 instructions or above for several
configurations. Furthermore, for benchmarks with high potential
we observe that (a) within a given selection category, hot trace
length increases with increasing MTL, and (b) hot traces tend to
be longer than the cold ones (see Figure 6-5).

On the other hand, benchmarks with low potential have low cov-
erage and display more sensitivity to the information used for
selection. Typically, their coverage is lower than 90%. These
benchmarks have short trace length, typically less than 30, and the
ratio of hot/cold length trace is less than one.

Figure 6-3 Coverage

The latter underlines the importance of selecting traces so that
mispredictions and misses are isolated in short traces.

Figure 6-4 Hot-trace length

From Figure 6-3 and Figure 6-4 it can also be observed that over-
all the average coverage is 98% for floating point programs and
88% for integer programs, these numbers are the same with
maximum trace length 64 and 256. The average hot trace length
for MTL 64 is 57 IA32 instructions for FP programs and 28 in-
structions for integer programs, whereas for MTL of 256 it is 156
instructions for floating point and 52 for integer programs.

Figure 6-5 Ratio Hot/Cold Trace Length

9

Figure 6-5, presents the ratio of hot trace length to cold trace
length. We focus on the most interesting behavior that is around
ratio of one, therefore the graph does not show maximum values
for few benchmarks that exceed 4. It can be observed that across
all benchmarks only the dynamic selection provides significantly
longer hot than cold traces (usually at least twice as long).

6.3. Performance of Different Selection
Schemes in Same Category

The analysis of results so far was done macroscopically by con-
sidering only the best selection scheme from each category.
Figure 6-6 provides data for comparing selection schemes in the
same category. Due to limited space, only the normalized average
and range of objective function values across all benchmarks is
shown for MTL 64. Objective function averages are computed
separately for each scheme, and then averages are normalized
across all selection schemes. For LU and dynamic selection the
best combination with a local scheme is shown. The best local
selection with MTL 16 is shown for reference.

Figure 6-6 Normalized average and range of Objective Func-

tion for MTL 64

As observed in previous sections, dynamic selection provides the
best performance across all categories and benchmarks. The data
in Figure 6-6 shows that the dynamic selection scheme with the
best performance is out-bias. On the average, out-bias is 10%
better than any other scheme for MTL 64. Analysis, not shown
here, also revealed that out-bias is always within 95% of the best
performing scheme.

For global selection, the best performance is obtained by LUB
and LUHB, whereas for local selection it is obtained by UF and
ND. The average performance of dynamic schemes is the highest.
The results for MTL 256 are similar, however, the difference
between out-bias and the next best selection scheme is larger.

7. RELATED WORK
The notion of identifying frequently executed paths (traces) across
basic blocks for optimization has been prevalent for the software-
based schemes reported in [8][18][6][2][11] and more recently for
hardware based schemes [21][22][26][25][7][15]. The various
proposals mainly differ in one or more of the following: the meth-
odology and resources used for detecting the hot paths, the struc-
ture and address space used for storing the hot paths, and the tim-
ing and resources used for optimization. The common characteris-
tic in all these schemes is the use of run time (dynamic) informa-
tion for selecting hot paths.

This paper draws from previous work in trace-caches
[27][31][23]. The original proposals of selection for trace caches
were local and for short traces. As shown in this work such an
approach may provide sufficient coverage for short traces but not
with increasing maximum trace length. The first paper to consider
dynamic information in conjunction with traces promoted biased
branches to assertions [24].

The work closest to this paper is [26]. The goals in that paper are
similar to these in this work. [26] considers path-based out-bias
information to merge basic blocks. Our paper builds on the idea
for dynamic criteria for trace selection and atomic traces [19][20].

This work is distinguished from the study reported in [26] in sev-
eral aspects. Our goal is to maximize trace length while preserv-
ing a high degree of coverage. We quantify this tradeoff using an
objective function that combines the effect of coverage and hot
trace length that emphasizes the importance of coverage. [26]
appears to have more emphasis on increasing trace length.

We provide a framework that combines different types of dynamic
information (in, out, in or out and in-out) in conjunction with
different local schemes, and merging at trace granularity. In pre-
vious work, only the out bias was considered and merging was
done at the granularity of basic blocks.

Furthermore, in this work the trace sequencing is done with a
predictor whereas in [26] an ideal next fetch address predictor was
assumed. In a follow-up work, [7], a real path-predictor was em-
ployed.

The biased scheme used in this work is TID-based whereas in
previous work it was path based. The two could possibly be com-
bined but we did not explore that option. As far as we know, the
global schemes considered here have not been considered else-
where for trace selection. Analogous concepts exist for the selec-
tion of hot paths that can be stored in memory [22].

8. CONCLUSIONS AND FUTURE WORK
This paper presents a comprehensive study of selection schemes
for long atomic traces. The paper introduces a classification of
trace selection methods based on the information used to select
traces. Existing and novel selection methods are discussed. New
selection methods considered include loop unrolling, procedure
in-lining and incremental merging of traces based on different
types of dynamic bias.

The paper includes an empirical analysis of various selection
schemes with increasing trace length in an idealized framework.
Several observations are made using benchmarks from the SPEC-
CPU2000 suite. Selection based on dynamic bias information is
necessary to achieve the best performance across all benchmarks.
However, simple selection schemes relying on program structure
are sufficient to achieve the best performance for half the bench-
marks when maximum trace length is 64 instructions. Another
observation is that adaptive trace selection may be needed because
the best selection scheme depends on the benchmark and maxi-
mum trace length used.

Two alternatives for the trace selection mechanism are estab-
lished: (a) a “best performance” approach relying on complex
dynamic criteria; (b) a “value” approach that provides the best
performance (and potentially the best power consumption) based
on simpler static criteria. Another emerging alternative advocates
adaptive based mechanisms to adjust selection criteria.

10

This work points to several directions for future work. Enhancing
trace selection with adaptive mechanisms is one that appears very
promising. Future work, should investigate the performance with
a complete microarchitectural model for specific selection
schemes. Such a study should address trace-specific phenomena
such as trace cache miss penalty, and provide detailed perform-
ance and power analysis. Another direction of research is to con-
sider selection for long but non-atomic traces.

9. REFERENCES
[1] G.M. Amdahl, “Validity of the single-processor approach to

achieving large scale computing capabilities”, in AFIPS vol.
30, pp. 483-485, 1967.

[2] V. Bala, E. Duesterwald and S. Banerjia, “Transparent Dy-
namic Optimization: The Design and Implementation of Dy-
namo”, TR HPL-1999-78, HP Labs.

[3] B. Black, B. Rychlik and J. Shen, “The Block-based Trace
Cache”, in ISCA26, May 1999.

[4] P.P. Chang and W.W. Hwu, “Trace selection for compiling
large C application programs to microcode” in MICRO21,
pp. 188-198, Nov. 1988.

[5] T. M. Conte, K. N. Menezes, P. M. Mills and B. A. Patel,
“Optimization of instruction fetch mechanisms for high issue
rates”,in ISCA22, Jun. 1995.

[6] K. Ebcioglu and E.R. Altman, “DAISY: Dynamic Compila-
tion for 100% Architectural Compatibility”, in ISCA24, pp.
26-37, 1997.

[7] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung,
S.J. Patel and S.S. Lumetta, “Permormance Characterization
of a Hardware Mechanism for Dynamic Optimization”, MI-
CRO34, Dec. 2001.

[8] J.A. Fisher, “Trace Scheduling: A technique for Global Mi-
crocode Compaction”, in IEEE Transactions on Computers,
30(7), pp. 478-490, July 1981.

[9] D. Friendly, S. Patel and Y. Patt, “Alternative Fetch and
Issue Policies for the Trace Cache Fetch Mechanism”, in
MICRO30, Dec. 1997.

[10] D. Friendly, S. Patel and Y. Patt, “Putting the Fill Unit to
Work: Dynamic Optimizations for Trace Cache Microproc-
essors”, in MICRO31, Nov. 1998.

[11] M. Gschwind, E.R. Altman, S. Sathaye, P. Ledak and D.
Appenzeller, “Dynamic and Transparent Binary Transla-
tion”, in IEEE Computer Magazine 33(3), pp. 54-59, 2000.

[12] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A.
Kyker and P. Roussel, “The Microarchitecture of the Pen-
tium® 4 Processor”, in Intel Technology Journal, 2001.

[13] Q. Jacobson, E. Rotenberg and J.E. Smith, “Path-Based Next
Trace Prediction”, in MICRO30, 1997.

[14] Q. Jacobson and J.E. Smith, “Instruction Pre-Processing in
Trace Processors”, in HPCA5, 1999.

[15] Q. Jacobson and J.E. Smith, “Trace Preconstruction”, in
ISCA27, pp. 37-46, May 2000.

[16] S. Jourdan, L. Rappoport, Y. Almog, M. Erez, A. Yoaz, and
R. Ronen, “eXtended Block Cache”, in HPCA6, Jan. 2000.

[17] T. Juan, S. Sanjeevan and J.J. Navarro, “Dynamic History-
Length Fitting: A Third Level of Adaptivity for Branch Pre-
diction”, in ISCA25, pp 155-166, 1998.

[18] S.A. Mahlke and D.C. Lin and W.Y. Chen and R.E. Hank
and R.A. Bringmann, “Effective Compiler Support for Predi-
cated Execution using the Hyperblock”, in MICRO25, 1992.

[19] S.W. Melvin and Y.N. Patt, “Performance Benefits of Large
Execution Atomic Units in Dynamically Scheduled Ma-
chines”, in Proc. ICS’3, pp. 427-432, 1989.

[20] S. Melvin and Y Patt, “Enhancing Instruction Scheduling
with a Block-Structured ISA”, in Intern. Journal of Parallel
Prog., 23(3) pp 221-243, Jun. 1995

[21] M.C. Merten, A.R. Trick, C.N. George, J. Gyllenhaal, and
W.W. Hwu, “A Hardware-Driven Profiling Scheme for Iden-
tifying Program Hot Spots to Support Runtime Optimiza-
tion”, in ISCA26, 1999.

[22] M.C. Merten, A.R. Trick, E. M. Nystrom, R.D. Barnes and
W. Mwu, “A Hardware Mechanism for Dynamic Extraction
and Relayout of Program Hot Spots”, in ISCA27, May 2000.

[23] S. Patel, D. Friendly and Y. Patt, “Critical Issues Regarding
the Trace Cache Fetch Mechanism”, Univ. of Michigan
Technical Report CSE-TR-335- 97

[24] S. Patel, M. Evers and Y. Patt, “Improving Trace Cache Ef-
fectiveness with Branch Promotion and Trace Packing”, in
ISCA25, June 1998.

[25] S. Patel and S. Lumetta, “rePlay: A Hardware Framework for
Dynamic Optimization”, in IEEE Trans. on Computers,
50(6), pp 590-608, June 2001

[26] S. Patel, T. Tung, S Bose and M. Crum, “Increasing the Size
of Atomic Instruction Blocks using Control Flow Asser-
tions”, in MICRO33, 2000.

[27] A. Peleg and U. Weiser. “Dynamic Flow Instruction Cache
Memory Organized Around Trace Segments Independent of
Virtual Address Line”, U.S. Patent 5,381,533, Jan. 1995.

[28] M. Postiff, G. Tyson and T. Mudge, “Performance Limits of
Trace Caches”, in Journal of ILP, vol. 1, Oct. 1999.

[29] A. Ramírez, J. L. Larriba-Pey, C. Navarro, J. Torrellas and
M. Valero, “Software trace cache”, in Proc. ICS13, pp. 119–
126, 1999.

[30] R. Rosner, A. Mendelson and R. Ronen, “Filtering Tech-
niques to Improve Trace-Cache Efficiency”, in PACT’01,
Sept. 2001.

[31] E. Rotenberg, S. Bennett and J.E. Smith, “Trace Cache: a
Low Latency Approach to High Bandwidth Instruction
Fetching”, in MICRO29, Dec. 1996.

[32] E. Rotenberg, S. Bennett and J. Smith, “A trace cache mi-
croarchitecture and evaluation”, in IEEE Trans. on Com-
puters, 48(2), pp 111–120, Feb. 1999

[33] E. Rotenberg, Q. Jacobson, Y. Sazeides and J.E. Smith,
“Trace Processors”, in MICRO30, Dec. 1997.

[34] E. Rotenberg and J.E. Smith, “Control Independence in
Trace Processors”, in MICRO32, Nov. 1999.

[35] B. Solomon, R. Ronen, D. Orenstien, Y. Almog and A.
Mendelson “Micro-Operation Cache: A Power Aware Fron-
tend for Variable Instruction Length ISA”, in ISLPED’01,
Aug. 2001.

[36] B. Slechta et al, “Dynamic Optimizations of Micro-
Operations”, in HPCA9, Feb. 2003.

11

