
Improving Branch Prediction by considering
Affectors and Affectees Correlations

Yiannakis Sazeides1, Andreas Moustakas2,?, Kypros Constantinides2,?, and
Marios Kleanthous1

1 University of Cyprus, Nicosia, CYPRUS/HiPEAC
2 University of Michigan, Ann Arbor, USA

Abstract. This work investigates the potential of direction-correlations
to improve branch prediction. There are two types of direction-correlation:
affectors and affectees. This work considers for the first time their im-
plications at a basic level. These correlations are determined based on
dataflow graph information and are used to select the subset of global
branch history bits used for prediction. If this subset is small then affec-
tors and affectees can be useful to cut down learning time, and reduce
aliasing in prediction tables. This paper extends previous work explaining
why and how correlation-based predictors work by analyzing the prop-
erties of direction-correlations. It also shows that branch history selected
based on direction-correlations improves the accuracy of the limit and
realistic conditional branch predictors, that won at the recent branch
prediction contest, by up to 30% and 17% respectively. The findings in
this paper call for the investigation of predictors that can efficiently learn
correlations that may be non-consecutive (i.e. with holes between them)
from long branch history.

1 Introduction

The ever growing demand for higher performance and technological constraints
drive for many years the computer industry toward processors with higher clock
rates and more recently to multiple cores per chip. Both of these approaches
can improve performance but at the same time can increase the cycle latency
to resolve an instruction, the former due to deeper pipelines and the latter due
to inter-core contention for shared on-chip resources. Longer resolution latency
renders highly accurate conditional branch prediction a necessity because branch
instructions are very frequent in programs and need to be resolved as soon as
they are fetched in a processor to ensure continuous instruction supply.

Today, after many years of branch prediction research and the two recent
branch prediction championship contests [1, 2], the accuracies of the state of
the art predictors are high but far from perfect. For many benchmarks the O-
GEHL and L-TAGE predictors3 [3, 4] have more than five misses per thousand
? The author contributed to this work while at the University of Cyprus
3 O-GEHL won the best practice award in the 2004 branch prediction contest and

L-TAGE won the realistic track of the 2006 contest

1

instructions. Such a rate of misprediction, depending on the average branch
resolution latency and other execution overheads, can correspond to a substantial
part of the total execution time of a program. A recent study shows that the
misprediction overhead for an 8-way out-of-order processor using an 8KB O-
GEHL predictor, for SPECINT CPU2000 benchmarks, can be up to 50% and
on the average 17% of the execution time [5]. Consequently, we believe there is
still a need to further improve prediction accuracy. The challenge is to determine
how to achieve such an improvement.

In the seminal work by Evers et al. [6] it is shown that choosing more selec-
tively the correlation information can be conducive for improving branch pre-
diction. In particular, using an exhaustive search is determined for a gshare [7]
predictor that only a few, not necessarily consecutive, of the most recent branches
are sufficient to achieve best prediction accuracy. Furthermore, is demonstrated
that a correlation may exist between branches that are far apart. The same
work, introduces two reasons for why global history correlation exists between
branches: direction and in-path correlation, and divides direction-correlations
into affectors and affectees. 4 These various types of correlations can mainly be
derived by considering the data and control flow properties of branches. These
causes of correlation are only discussed qualitatively in [6] to explain what makes
two-level branch predictors work, no measurements of their frequency or quan-
tification of their importance are given.

The work by [6] motivated subsequent prediction research with goal the selec-
tive correlation from longer global history. One of the most notable is perceptron
based prediction [9] that identifies, through training, the important history bits
that a branch correlates on. The success of perceptron based prediction pro-
vides a partial justification for the claims by [6] for the importance of selective
correlation. However, it was never established that the dominant perceptron
correlations correspond to direction or in-path correlation and therefore remains
uncertain if indeed such correlations are important or whether predictors exploit
them efficiently.

One other interesting work by [8] investigated the usefulness of affectors
branches, one of the types of direction-correlation introduced by [6] . In [8] the
affector branches are selected dynamically from the global history using data de-
pendence information and are used to train an overriding tagged predictor when
a baseline predictor performs poorly. The experimental analysis, for specific mi-
croarchitectural configurations and baseline predictors, show that this idea can
potentially improve both prediction accuracy and performance. This work also
provides the first concrete evidence that the direction-correlation is an impor-
tant information for prediction. However, [8] did not examine the importance of
affectees.

In this paper we investigate the significance for improving branch prediction
accuracy using the two types of direction-correlation: affectors and affectees.

4 In [6] the two types of direction-correlations are defined but not named. In [8] they
referred to them as affectors and forerunners. In this work, for symmetry we decided
to name the forerunners as affectees.

2

Our analysis is done at a basic level because it does not consider implementation
issues for detecting affectors and affectees correlations. The primary objectives of
this paper is to establish the extent that state of the art predictors learn direction-
correlations, and determine how precise the detection of direction-correlations
needs to be for best accuracy. Our evaluation uses the two winning predictors
of the limit and realistic track of the recent championship prediction [2] and
considers their accuracy when they use the global history as is versus the global
history packed [8] to “ignore” the positions with no direction-correlation.
Contributions
The key contributions and findings of this paper are:

– A framework that explains why some branches are more important than
others to correlate on. The framework can be used to precisely determine
these branches based on architectural properties without regard to imple-
mentation.

– An experimental analysis of the potential of direction-correlations to improve
branch prediction accuracy.

– An investigation of the position and the number of direction-correlations
reveals that their behavior varies across programs. Also, is very typical for
programs to have branches with the number of correlations ranging from few
branches to several hundreds. The correlations can be clustered together but
also be very far apart, i.e. correlations may not be consecutive and can have
holes between them. Affectees are found to be more frequent than affectors.

– Demonstrate that for best accuracy both affectors and affectees correlations
are needed. Their use can provide accuracy improvements of up to 30% for
the limit predictor, and 17% for the realistic predictor

– Show that it is crucial to include in branch history direction-correlations that
are detectable by tracking dependences through memory.

– Establish a need to further study predictors that can learn correlation pat-
terns with and without holes from long branch history.

The remaining of the paper is organized as follows. Section 2 defines what af-
fectors and affectees correlations are and discusses parameters that influences
the classification of a branch as correlating. Section 3 presents the experimental
framework. Section 4 discusses the experimental results of this study and estab-
lishes the significance of affectors and affectees. Section 5 discusses related work.
Finally, Section 6 concludes the paper and provides directions for future work.

2 Affectors and Affectees

This section defines what affector and affectee branches are and provides intu-
ition as to why these are important branches to select for correlation. It also
discusses how the treatment of memory dependences influence the classification
of a branch as an affector or affectee of another branch. Finally, a discussion is
presented on how this correlation information can be used for prediction. Part
of this discussion is based on earlier work [6, 8].

3

BB5

 BRANCH

 BB0

 R7 != 0

BB1

 BRANCH

BB2

 LW R2, (R1)
 R1 = R2+4
 R6 > 0

BB3

 R3 = R1+R2
 R7 > R6

BB4

 R2 == 1

 BB6

 R4 = R5+4
 R4 > 10

BB7

 R3 == R4

N T

N T

N T

N T

N TN T

N T

N T

AFFECTEE

R5

R3==R4

R4=R5+4

R3=R1+R2

R1=R2+4

LW
R2,(R1)

(R1)

R3==R4

R5

R3==R4

R4=R5+4

R3=R1+R2

R1=R2+4

LW
R2,(R1)

(R1)

R4>10
FALSE

R2==1
TRUE

R4>10
FALSE

R2==1
TRUE

IMPLIES:
R4 is <= 10
R5 is < 7 R4 = R5 + 4

IMPLIES:
R2 is 1
R1 is 5 R1 = R2 + 4
R3 is 6 R3 = R1+ R2

AFFECTOR

AFFECTEE

AFFECTOR

AFFECTOR

Fig. 1. (a) Example control flow graph, (b) affector graph, (c) affectee graph and (d)
affector plus affectee graph

2.1 Definitions and Intuition

Affectors: A dynamic branch, A, is an affector for a subsequent dynamic branch,
B, if the outcome of A affects information (data) used by the subsequent branch
B. Affectors are illustrated using the example control flow graph in Fig. 1.a.
Assume that the (predicted) program order follows the shaded basic-blocks and
we need to predict the branch in the basic-block 7. The affector branches are
all those branches that steer the control flow to the basic-blocks that contain
instructions that the branch, in basic-block 7, has direct or indirect data depen-
dence. In our example, these correspond to the branches in basic-blocks BB0,
BB2 and BB4. Effectively, the selected affector branches can be thought of as
an encoding of the data flow graph leading to the branch to be predicted (this
affector data flow graph is shown in Fig. 1.b). Predictors may benefit by learn-
ing affector correlations because when branches repeat with the same data flow
graph they will likely go the same direction. Furthermore, affector correlations
use a more concise branch history to capture the data flow graph leading to a
branch and thus reduce learning time and table pressure for training a predictor.
Affectees: A dynamic branch, A, is affectee of a subsequent dynamic branch, B,
if A is testing the outcome of an instruction C that can trace a data dependence
to an instruction D in the data flow graph leading to B.5 The direction of an
affectee branch encodes, in a precise or imprecise manner, the values produced
5 C and D can be the same instruction.

4

or yet to be produced by D and of other instructions in the data dependence
graph from branch B to instruction D.

In the example in Fig. 1.a the branch in BB7 has two affectees, the branches in
BB4 and BB6. More specifically, the branch R2==1 in BB4 is an affectee because
it tests the outcome of the load instruction LW R2,(R1), on which the branch
R3==R4 in BB7 has an indirect data dependence (through the instructions R3
= R1 + R2 in BB3 and R1 = R2 + 4 in BB2). Since the direction of R2==1 is
taken it implies that the test condition is true and consequently the value loaded
from the load instruction LW R2,(R1) is 1, the value produced by R1 = R2 +
4 is 5 and the result of R3 = R1 + R2 is 6. Therefore, in this case the direction
of branch R2==1 in BB4 provides a precise encoding for the operand R3 of the
branch R3==R4 in BB7. On the other hand, the false condition of the affectee
branch R4>10 in BB6 is less precise and provides a range of possible values for
the second operand R4 of the branch.

Essentially, affectees provide an encoding for values consumed or produced in
the dataflow graph leading to the branch to be predicted. The affectee value en-
codings for the example in Fig. 1.a are shown in Fig. 1.c. Note that a branch can
be both affector and affectee of another branch depending on its dependences.
An example of such branch is R2==1 in BB4 in Fig. 1.a.
Combo: It is evident that the combination of affectors and affectees can be
more powerful than either correlation alone since affectees can help differentiate
between branches with the same data affector data flow graphs but different in-
put values. Similarly, affectors can help distinguish between same affectee graphs
that correspond to different affector graphs. The combined affector and affectee
data flow graph of our running example is shown in Fig. 1.d.

Section 4 investigates how the above types of correlations affect branch pre-
diction accuracy. We believe that existing predictor schemes are able to learn
data flow graphs, as those shown in Fig. 1, but they do this inefficiently using
more history bits than needed. Therefore, they may suffer from cold effects and
more table pressure/aliasing. Our analysis will establish how much room is there
to improve them.

2.2 Memory Dependences

For accurate detection of the direction-correlations data dependences need to
be tracked through memory. That way a branch that has a dependence to a
load instruction can detect correlation to other branches through the memory
dependence. Although, tracking dependences through memory may be important
for developing a better understanding for the potential and properties of affectors
and affectees correlations, it may be useful to know the extent that such precise
knowledge is necessary. Thus may be interesting to determine how well predictors
will work if direction-correlations detected through memory dependences are
approximated or completely ignored.

We consider two approximations of memory dependences. The one tracks the
dependence of address operands of a load instruction ignoring the dependence

5

for the data. And the other does not consider any dependences past a load in-
struction, i.e. limiting a branch to correlations emanating from the most recent
load instructions leading to the branch. These two approximations of memory
dependences need to track register dependences whereas the precise scheme re-
quires maintaining dependences between stores and load through memory. We
will refer to the precise scheme of tracking dependences as Memory, and to the
two approximations as Address, and NoMemory. In Section 4 we will compare
the prediction accuracy of the various schemes to determine the importance of
tracking accurately correlations through memory.

For the Memory scheme we found that is better to not include the address
dependences of a load when a data dependence to a store is found (analysis
not presented due to limited space). This is reasonable because the correlations
of the data encode directly the information affecting the branch whereas the
address correlations are indirect and possibly superfluous.

Recall that our algorithm for detecting direction-correlations does not con-
sider implementation constraints. It is based on analysis of the dynamic data
dependence graph of a program. The intention of this work is to establish if
there is potential from using more selective correlation.

2.3 How to use Affectors and Affectees for Prediction

Based on the findings of this paper one can attempt to design a predictor
grounds-up that exploits the properties exhibited by affectors and affectees cor-
relations. That is also our ultimate goal and hopefully this paper will serve as a
stepping stone in that direction. This, however, may be a non-trivial effort and
before engaging in such a task may be useful to know its potential.

Therefore, in this paper we decided to determine the potential of affectors and
affectees using unmodified existing predictors. We simply feed these predictors
with the complete global history and with the history selected using affectors and
affectees and compare their prediction accuracy. If this analysis reveals that the
selective correlations have consistently and substantially better accuracy then
may be worthwhile to design a new predictor.

The only predictor design space option we have is how to represent the se-
lected bits in the global history register. In [8] they were confronted with a
similar problem and proposed the use of zeroing and packing. Zeroing means
set a history bit to zero if it is not selected while branches retain their original
position in the history register. Packing moves all the selected bits to the least
significant part of the history register while other bits are set to zero. Therefore,
in packing selected branches lose their original position but retain their order.
Our experimental data (not shown due to space constraints) revealed that pack-
ing had on average the best accuracy and is the representation we used for the
results reported in Section 4.

Our methodology for finding the potential of affectors and affectees may be
suboptimal because it uses an existing predictor without considering the prop-
erties exhibited in the global history patterns after selection. Another possible
limitation of our study has to do with our definition of affectors and affectees.

6

Table 1. Benchmarks

SPECINT CPU2000 bzip200, crafty00, eon00, gap00, gcc00, gzip00,
mcf00, perlbmk00, twolf00, vortex00, vpr00

SPECFP CPU2000 ammp00, equake00, fma3d00, galgel00, mesa00
mgrid00 sixtrack00, wupwise00

SPECINT CPU95 gcc95, go95, ijpeg95

Alternative definitions may lead to even more selective and accurate correla-
tions. For instance by considering only affectees that trace dependences to load
instructions. These and other limitations to be found may lead to increased po-
tential and thus the findings of this study should be viewed as the potential
under the assumptions and constraints used in the paper.

3 Experimental Framework

To determine the potential of affectors and affectees to increase branch prediction
accuracy we used a functional simulation methodology using a simplescalar [10]
derived simulator. A subset of SPEC2000 and three SPEC95 benchmarks, listed
in Table 1, are used for our analysis. For the SPEC2000 benchmarks the early
regions, of 10-100 million instructions, identified by sim-point [11] are used,
whereas for SPEC95 complete runs of modified reference inputs are executed.
Some SPEC2000 benchmarks are not included because they required large mem-
ory and/or long simulation time to track dependences, affectors and affectees.
The selected SPEC95 benchmarks exhibit the higher misprediction rates with a
32KB L-Tage predictor among integer SPEC95 benchmarks.

Two predictors are used in the experimentation: a 32KB L-TAGE [12] pre-
dictor with maximum history length of 400 bits, and the GTL [4] predictor with
400 maximum history length for the GEHL component and 100000 maximum
history length for the TAGE component.

For the experiments where selective correlation is used, the selection is ap-
plied to the 400 bit global history of the L-TAGE predictor and to the 400 bit
history used to access the GEHL component of the GTL predictor. Selection
was not used for the TAGE component of GTL because the memory required
to track affectors and affectees for a 100000 global history were extremely large
and beyond the memory capacities of todays servers.

The detection of affectors and affectees is done on-line using the dynamic
data flow graph of a program. Unless stated otherwise, the default policy is to
track correlations through memory dependences.6

6 In the conference version of the paper [13] the term oracle was used to signify the
precise tracking of memory dependences assumed for obtaining some of the results.
The same assumption is used for this paper but the term is omitted to avoid confusion
with an oracle off-line analysis for detecting affectors and affectees.

7

The algorithm used to determine affectors is the simple approximation pro-
posed in [8]. A dynamic branch is an affector, of a branch to be predicted, if
it is the last, in the dynamic program order, branch that executed before an
instruction in the dataflow graph of the branch to be predicted.

The algorithm that detects affectees tracks the sources for each unique state,
register or memory location, updated during a program’s execution. Sources are
the roots in the dynamic data dependence graph of each dynamic instruction.
Sources are either dynamic instances of instructions with no inputs, like a move
immediate, or locations with program data input, i.e. locations read but not
updated by a program instruction. Each unique source contains a bit vector
with n bits. Every time an instruction executes it computes the union of its input
operand sources to produce the set of sources to be written in its destination.
Every time a conditional branch executes all sources shift their bit vector by
one.7 Also, the sources of the branch set their least significant bit to indicate
that this branch can trace a dependence to this source. The above imply that
when bit i of a source is set then the ith most recent branch has a dependence
to this source. To determine the affectees of a branch we determine the union of
its operands sources and bitwise-or these sources bit vectors. All the positions
that are set in the resultant bit vector correspond to the global branch history
positions with a correlation.

4 Results

We present three sets of results, the first analyzes the properties of affectors and
affectees, the second discusses the accuracy of the GTL predictor, and the third
shows the accuracy of the L-TAGE predictor

4.1 Characterization of Affectors and Affectees

Fig. 2 and 3 show the cumulative distribution of dynamic branches according
to the number of affector and affectee correlations they have. The number of
correlations can not exceed 400 since we consider only correlations from the
400 most recent branches. We decided to analyze the behavior for the 400 most
recent branches since the two predictors used in the study use a 400 entry global
branch history register.

The results reveal that branches usually have much fewer affectors than af-
fectees. For most benchmarks 80% of the branches have at most 30 affectors.
According to the definition of affectors, this means that the computation that
determines the outcome of a branch can be found in less than 30 out of the most
recent 400 basic blocks preceded by a conditional branch. The outlier is gcc00
where many branches have large number of affectors. The data about affectees
7 A key optimization is to not shift all sources every time a branch executes but only

the sources of the branch. The shift amount is determined based on the distance in
branches between the current branch instruction and the last branch that updated
the particular source.

8

0

10

20

30

40

50

60

70

80

90

100

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

33
6

35
2

36
8

38
4

40
0

Number of Correlations (Affectors)

C
um

ul
at

iv
e

D
yn

am
ic

 B
ra

nc
he

s
(%

)

ammp00 bzip200
crafty00 eon00
equake00 fma3d00
galgel00 gap00
gcc00 gcc95
go95 gzip00
ijpeg95 mcf00
mesa00 mgrid00
perlbmk00 sixtrack00
twolf00 vortex00
vpr00 wupwise00

Fig. 2. Affectors distribution

0

10

20

30

40

50

60

70

80

90

100

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

33
6

35
2

36
8

38
4

40
0

Number of Correlations (Affectees)

C
um

ul
at

iv
e

D
yn

am
ic

 B
ra

nc
he

s
(%

)

ammp00 bzip200
crafty00 eon00
equake00 fma3d00
galgel00 gap00
gcc00 gcc95
go95 gzip00
ijpeg95 mcf00
mesa00 mgrid00
perlbmk00 sixtrack00
twolf00 vortex00
vpr00 wupwise00

Fig. 3. Affectees distribution

9

0

10

20

30

40

50

60

70

80

90

100

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

33
6

35
2

36
8

38
4

40
0

Number of Correlations (Affectors + Affectees)

C
um

ul
at

iv
e

D
yn

am
ic

 B
ra

nc
he

s
(%

)

ammp00 bzip200
crafty00 eon00
equake00 fma3d00
galgel00 gap00
gcc00 gcc95
go95 gzip00
ijpeg95 mcf00
mesa00 mgrid00
perlbmk00 sixtrack00
twolf00 vortex00
vpr00 wupwise00

Fig. 4. Combined Affectors and Affectees distribution

correlations show clearly that for most programs 50% of the branches have 30
or more affectees. This means that a branch frequently checks information that
directly or indirectly has been tested by at least 30 other out of the 400 most
recent branches. The data also show few benchmarks, bzip00, galgel00, gcc00,
and mgrid00, to have 300 or more affectee correlations.

The above observations suggest that the dynamic dataflow graphs of branch
instructions are usually small and shallow (implied by the small number of af-
fectors), and branches often share part of their dynamic data flow graphs with
other branches (indicated by the large number of affectees).

The graph in Fig. 4 shows the distribution of the branches when we consider
both affectors and affectees correlations. Overall, the data show that there are
more correlations when we consider affectors and affectees in combination (com-
pare Fig. 4 against Fig. 2 and 3). Nonetheless, the results for ALL benchmarks
reveal that there are many branches that have much less than maximum number
correlations. Therefore, if: (a) affectors and affectees are the dominant types of
correlation that predictors need to learn, and (b) existing predictors are unable
to use only the relevant part of history, then these data suggest that there may
be room for improving prediction.

In Fig. 5 we attempt to give more insight by presenting the dominant patterns
of correlation when we consider the combination of affectors and affectees. The
figure shows for six benchmarks, twolf00, bzip00, ammp00, crafty00, perlbmk00
and equake00 what are the most frequent 1000 patterns of correlations. To help
the reader we present these top patterns sorted from top to bottom according to

10

100% 75% 50% 25% 0% 100% 75% 50% 25% 0% 100% 75% 50% 25% 0%

(a) (b) (c)
100% 75% 50% 25% 0% 100% 75% 50% 25% 0% 100% 75% 50% 25% 0%

(d) (e) (f)

Fig. 5. Most frequent correlation patterns for (a) twolf00, (b) bzip00, (c) ammp00, (d)
crafty00, (e) perlbmk00, and (f) equake00

11

Table 2. Representative Benchmarks for Correlation Patterns

Benchmark Representative of Benchmarks

twolf00 vpr00, gcc95 and go95
bzip00 gcc00, gzip00, mcf00 and ijpeg95
ammp00 galgel00, mgrid00 and sixtrack00
crafty00 mesa00
perlbmk00 eon00, fma3d00, gap00, vortex00 and wupwise00
equake00 -

the oldest position with a correlation (i.e. the most recent correlation position is
to the right). The curve that cut-across each graph represents from top to bottom
the cumulative branch distribution of the patterns. This line is not reaching 100%
since we only display the top 1000 patterns. A given pattern has a gray and white
part representing the bit positions with and without correlations. To help the
reader we present patterns with 100 positions where each position corresponds to
4 bits (a position is set to one if any of its corresponding four bits is set). These
six graphs are representative of the remaining benchmarks we considered in this
paper as shown in Table 2. Benchmark equake00 has a unique behavior with
very few dominant correlations patterns. For the following discussion we define
the length of a correlation pattern to be the oldest position with a correlation.

One of the main observation from these data is that branch correlations
are not always consecutive, there are holes between correlated branches. These
holes can be of any size and a given correlation pattern can have one or more
holes. The hole behavior varies across benchmarks, for twolf00 and crafty00 like
benchmarks is dominant whereas for bzip00 like benchmarks they occur less
frequently. Within a benchmark there can be both sparse and dense patterns.

More specifically, the results indicate that virtually always correlation pat-
terns include at least few of the most recent branches (for each benchmark almost
all patterns have at the right end - most recent branches - few positions set).
Also, it is observed across almost all benchmarks that for a given correlation
length the pattern with all positions set is very frequent. However, for twolf00
like benchmarks many patterns have correlations that occur at the beginning
and at the end of the pattern with all the branches in the middle being uncor-
related. Benchmark crafty00 exhibits similar behavior with twolf00 except that
some correlations may exist in the middle. Another remark for bzip00, ammp00
and equake00 like benchmarks, is that they have many branches with correlations
distributed over all 100 positions (bottom pattern in Fig. 5 for bzip00, ammp00
and equake00 accounts for over 40% of the patterns). Finally, perlbmk00 like
benchmarks are distinct because of few but often long correlation patterns.

Provided it is important to predict by learning precisely the above corre-
lations, the results suggest that there is a need for predictors that can learn
efficiently patterns with holes.

Another key observation from Fig. 5 is that correlation patterns occur usually
across all history lengths. These underlines the need for predictors to be capable

12

0

1

2

3

4

5

6

7

ammp
00bzip20

0
crafty0

0eon00fma3d
00 gcc95 go95gzip00ijpeg9

5mcf00mesa0
0
twolf0

0 vpr00

M
is
se
s/
K
I

GTL
Affectees
Affectors
Combo

Fig. 6. GTL accuracy with selective correlation

of predicting with variable history length. The distribution of patterns according
to length is similar to the distribution in Fig. 4. Assuming is important to learn
precisely the correlation patterns, the exponential like cumulative distributions
of correlation lengths, for most benchmarks, suggests that most prediction re-
sources should be devoted to capture correlations with short history length and
incrementally use less resources for longer correlations. This observation clearly
supports the use of geometric history length predictors [14].

The above observations may represent a call for predictors that can handle
both geometric history length and holes. As far as we know no such predictor
exists today. In the next section we attempt to establish the potential of such a
predictor using two existing geometric history length predictors that are accessed
with selected history, with holes, using affectors and affectees correlations. In
the remaining paper we only present data for the benchmarks that exhibited at
least 0.25 misses per one thousand instructions. The other benchmarks displayed
minimal sensitivity to the predictor used and for the sake of graph clarity are
omitted.

4.2 GTL Results

Fig. 6 shows the accuracy of the GTL predictor when accessed with full global
history, only with affectors correlations, only with affectees, and with the combi-

13

0

10

20

30

40

50

60

70

80

90

100

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

33
6

35
2

36
8

38
4

40
0

Correlations (Affectors and Affectees)

N
or

m
al

iz
ed

 C
um

ul
at

iv
e

A
cc

ur
ac

y
Im

pr
ov

em
en

t

crafty00
gcc95
go95
ijpeg95
twolf00
vpr00

Fig. 7. Number of Correlations vs Accuracy Improvement

nation of affectors and affectees. The data show that the combination of affectors
and affectees provides the best performance. It is always the same or better than
GTL and almost always better than each correlation separately. The exception
are gzip00 and vpr00 where the combination does slightly worse than using only
affectees and affectors respectively. This can happen when the one type of cor-
relation is sufficient to capture the program behavior and the use of additional
information is detrimental. The improvement provided by combining affectors
and affectees is substantial for several benchmarks. In particular, for crafty00,
gcc95, go95, ijpeg95, twolf00, and vpr00 it ranges from 15% to 30%. The data
clearly support the claim by [6] that direction-correlation is one of the basic types
of correlations in programs that predictors need to capture. For the remaining
paper we present results for experiments that combine affectors and affectees
since they provide the best overall accuracy.

Fig. 7 shows the normalized cumulative improvement in prediction accuracy
when using affectors and affectees over GTL as a function of the number of
correlations. This is shown only for the benchmarks that experienced the largest
accuracy improvement when using affectors and affectees. To illustrate how to
interpret the graph consider crafty00. The Combo configuration in Fig. 6 reduces
mispredictions of crafty by 20%. The data in Fig. 7 indicate that 90% of this
improvement is due to correlations patterns that include less than 75 affectors
and affectees. In general, the data in Fig. 7 reveal that most of the improvement
from selective correlation is due to better prediction accuracy for the branches
that have fewer than 100 branch correlations. This may indicate that the GTL

14

0

1

2

3

4

5

6

7

ammp
00bzip20

0
crafty0

0eon00fma3d
00gcc95 go95gzip00ijpeg9

5mcf00mesa0
0
twolf0

0 vpr00

M
is
se
s/
K
I

GTL

NoMemory

Address

Fig. 8. Significance of Memory Dependences

predictor may be slow to learn or using more table resources than necessary
for such branches. For all benchmarks there is little improvement for branches
with over 300 correlations. This may suggest that the more bits in a correlation
pattern the closer the resemblance to the global history register and thus little
room for improvement from selective correlation.

Fig. 8 shows the prediction accuracy when we combine affectors and affectees
but with no correlations through memory. For each benchmark we present three
results, the GTL predictor with full history, the affectors and affectees with
no correlations past load instructions (NoMemory), and with correlations past
load instructions using their address dependences (Address). The data show
that there is very little improvement to gain when we do not consider correla-
tions through memory dependences. The data indicate that an approximation
of memory dependences using addresses dependences offers very little improve-
ment. This underlines that important correlations from the data predecessors of
load instructions are needed for improved accuracy.

The data show that selective correlation using the combination of affectors
and affectees can provide substantial improvement in prediction accuracy. The
results also show that correlations past memory instructions are important and
that address dependences provide a poor approximations of the data dependence
correlations. Overall, we believe the data suggest that may be worthwhile inves-

15

0

1

2

3

4

5

6

7

8

9

10

11

12

ammp
00bzip20

0
crafty0

0eon00fma3d
00 gcc95 go95gzip00ijpeg9

5mcf00mesa0
0
twolf0

0 vpr00

M
is
se
s/
K
I

L-TAGE
Combo

Fig. 9. L-TAGE accuracy with selective correlation

tigating the development of a predictor that is capable of learning correlations
from long history with holes. These conclusions are true for GTL an unreal-
istically large predictor that demonstrate that the improvements are not mere
accident but due to basic enhancements in the prediction process. However, we
are interested to know if these observations hold for a realistic predictor. Next
we consider selective correlation for a 32KB L-TAGE predictor.

4.3 L-TAGE Results

Fig. 9 shows the prediction accuracy for a 32KB L-TAGE when accessed us-
ing the complete global history (L-TAGE) and with selective history using the
combination of affectors and affectees (Combo). The results show that selective
correlation with affectors and affectees can also improve the accuracy of the L-
TAGE predictor at a realistic size. The amount of improvement is significant for
several benchmarks. In particular, for gcc95, ijpeg95, and vpr00 is above 15% (for
vpr 17%). We believe that these improvements call for the design of a predictor
that can exploit direction-correlations.

The amount of improvements for L-TAGE are smaller as compared to GTL.
However, one should recall that GTL is a completely different predictor not
simply a bigger L-TAGE predictor. We also performed analysis of the importance
of correlations through memory and the data suggest, similarly to GTL, that it
is necessary to include such correlations for better accuracy.

16

5 Related Work

Since Smith [15] proposed the first dynamic table based branch predictor, inno-
vation in the field of prediction has been sporadic but steady. Some of the key
milestones are: correlation-based prediction [16] that exploits the global and or
local correlation between branches, hybrid prediction [7] that combines different
predictors to capture distinct branch behavior, variable history length [17] that
adjusts the amount of global history used depending on program behavior, the
use of perceptrons [9] to learn correlations from long history, geometric history
length prediction [14] that employs different history lengths that follow a geo-
metric series to index the various tables of a predictor, and partial tagging [18]
of predictor table entries to better manage their allocation and deallocation. The
above innovations have one main theme in common: the correlation information
used to predict a branch is becoming increasingly more selective. This facilitates
both faster predictor training time and less destructive aliasing. Our paper ex-
tends this line of work and shows that there is room for further improvement if
we could select correlations with holes out of long history.

The importance for selective correlation is first established in the work by
Evers et al. [6]. In that paper it is shown that a predictor that selectively cor-
relates on few bits from the global history register can outperform a predictor
that correlates on the entire global history register. The paper argues that the
improvement is due to a reduction in the number of correlation patterns that
need to learned which leads to faster training and less aliasing. However, the
findings in [6] are based on an off-line oracle analysis. Fern et al. [19] proposed
a possibly implementable on-line predictor based on the principles of dynamic
decision trees capable of learning and correlating on a subset of history bits.
An initial evaluation of this predictor revealed comparable performance to equal
sized Gap [16] and Pap [16] predictors.

A return-history-stack [20] is a method that can introduce holes in the branch
history. In broad terms, a return history stack pushes in a stack the branch
history register on a call and recovers it on a return, thus introducing holes in the
history. A return history stack is shown to be useful for a trace predictor [20] and
offers modest improvements for a direction branch predictor [21]. This suggests
that there are many cases where branches executed in a function are often no
significant to correlate on for the branches that execute after the function return.

In two recently organized branch prediction championships [1, 2] researchers
established the state of the art in branch prediction. In 2006, the L-TAGE global
history predictor [12] was the winner for a 32KB budget. L-TAGE is a multi-table
predictor with partial tagging and geometric history lengths that also includes
a loop predictor. In the 2006 championship limit contest the GTL predictor [4]
provided the best accuracy. GTL combines GEHL [14] and L-TAGE predictors
using a meta-predictor. The GEHL global history predictor [14] employs multiple
components indexed with geometric history length. Our paper uses the L-TAGE
and GTL predictors to examine our ideas to ensure that observations made are
not accidental but based on basic principles. The use of longer history is central

17

to these two predictors and the analysis in this paper confirmed the need and
usefulness for learning geometrically longer history correlations.

Several previous paper explored the idea of improving prediction by encoding
the data flow graphs leading to instructions to be predicted. They use informa-
tion from instructions in the data flow graph [22–26], such as opcodes, immediate
values, and register names, to train a predictor. Effectively these papers are im-
plementing variations of predictors that correlate on affector branches. In [26],
they consider using the live in values of the dataflow graphs when they become
available and in [23] they examined the possibility of predicting such values. The
inclusion of actual or predicted live-in values is analogous to the correlation on
affectee branches of such values, since the predicted or actual outcome of affectee
branches represents an encoding of the live-in values.

Mahlke and Natarajan [27] performed profiling analysis to determine simple
correlation functions between register values and branch outcomes. Instructions
are inserted in the code by the compiler to dynamically compute the branch di-
rection according to the derived functions. In our view, this work also attempts
to implement a variation of affectees correlation since the functions supply anal-
ogous information to what can be provided by affectee branches.

6 Conclusions and Future Work

In this paper we investigate the potential of selective correlation using affectors
and affectees branches to improve branch prediction. Experimental analysis of
affectors and affectees revealed that many branches have few correlations and
often the correlations have holes between them. Prediction using selective corre-
lation, based on affectors and affectees, is shown to have significant potential to
improve accuracy for a both a limit and a realistic predictor. The analysis also
shows that correlations past memory instruction are needed for best accuracy.
Overall, our study suggests that may be worthwhile to consider the design of
a realistic predictor that can exploit the properties exhibited by affectors and
affectees correlation patterns by learning correlations with and without holes
from long history.

A possible venue for future work is to train the tables of TAGE like predictors,
that contain multiple prediction tables, with branch history with holes. The
challenge is to decide what are going to be the holes in the branch history
since different benchmarks have different hole patterns. To design efficiently such
scheme it may be useful to first investigate and determine what is the relation
between dynamic program properties and holes.

One other direction of work is to focus on difficult to predict branches and
investigate their correlation patterns with increasingly longer history. Such an
analysis will reveal the importance of selective correlation to distant correlations.

Another possible direction of future work, is to investigate which affectors
and affectees are more important. A decision-tree based approach [5, 19] can be
used to establish such classification. Such an analysis can be useful for better

18

understanding and hopefully further reduce the correlations required for best
prediction.

Finally, the approach proposed in this paper can be applied to static branch
prediction, and to other types of predictors, such as value and dependence pre-
dictors.

Acknowledgments This work is partially supported by an Intel research grant
and the University of Cyprus. Yiannakis Sazeides would like to thank Ronny
Ronen, Roni Rosner, Avi Mendelson, Pierre Michaud, Hans Vandierendonck
and Veerle Desmet for their encouragement and feedback on earlier versions of
this work. The authors like also to thank the anonymous reviewers for their
constructive critique and suggestions that helped improve the presentation of
this manuscript.

References

1. Wilkerson, C., Stark, J.: Introduction to JILP’s Special Edition for Finalists of the
Championship Branch Prediction (CBP1) Competition. Journal of Instruction-
Level Parallelism 7 (2005)

2. Jiménez, D.A.: The Second Championship Branch Prediction Competition. Jour-
nal of Instruction-Level Parallelism 9 (2007)

3. Seznec, A.: Genesis of the O-GEHL Branch Predictor. Journal of Instruction-Level
Parallelism 7 (2005)

4. Seznec, A.: The Idealistic GTL Predictor. Journal of Instruction-Level Parallelism
9 (2007)

5. Desmet, V.: On the Systematic Design of Cost-Effective Branch Prediction. (PhD
Thesis, University of Ghent, Belgium 2006)

6. Evers, M., Patel, S.J., Chappel, R.S., Patt, Y.N.: An Analysis of Correlation
and Predictability: What Makes Two-Level Branch Predictors Work. In: 25th
International Symposium on Computer Architecture. (June 1998)

7. McFarling, S.: Combining Branch Predictors. Technical Report DEC WRL TN-36,
Digital Western Research Laboratory (June 1993)

8. Thomas, R., Franklin, M., Wilkerson, C., Stark, J.: Improving Branch Prediction
by Dynamic Dataflow-based Identification of Correlated Branches from a Large
Global History. In: 30th International Symposium on Computer Architecture.
(June 2003) 314–323

9. Jimenez, D.A., Lin, C.: Dynamic Branch Prediction with Perceptrons. In: 7th In-
ternational Symposium on High Performance Computer Architecture. (Feb. 2001)

10. Burger, D., Austin, T.M., Bennett, S.: Evaluating Future Microprocessors: The
SimpleScalar Tool Set. Technical Report CS-TR-96-1308, University of Wisconsin-
Madison (July 1996)

11. Perelman, E., Hamerly, G., Biesbrouck, M.V., Sherwood, T., Calder, B.: Using
SimPoint for Accurate and Efficient Simulation. In: International Conference on
Measurement and Modeling of Computer Systems. (2003)

12. Seznec, A.: The L-TAGE Branch Predictor. Journal of Instruction-Level Paral-
lelism 9 (2007)

19

13. Sazeides, Y., Moustakas, A., Constantinides, K., Kleanthous, M.: The Significance
of Affectors and Affectees Correlations for Branch Predicion. In: International
Conference on High Performance Embedded Architectures and Compilers. (Jan-
uary 2008) 243–257

14. Seznec, A.: Analysis of the O-GEometric History Length branch predictor. In:
32nd International Symposium on Computer Architecture. (2005)

15. Smith, J.E.: A Study of Branch Prediction Strategies. In: 8th International Sym-
posium on Computer Architecture. (May 1981) 135–148

16. Yeh, T.Y., Patt, Y.N.: Two-Level Adaptive Branch Prediction. In: 24th Interna-
tional Symposium on Microarchitecture. (November 1991) 51–61

17. Juan, T., Sanjeevan, S., Navarro, J.J.: Dynamic History-Length Fitting: A third
level of adaptivity for branch prediction. In: 25th International Symposium on
Computer Architecture. (June 1998) 155–166

18. Michaud, P.: A PPM-like, Tag-based Predictor. Journal of Instruction-Level Par-
allelism 7 (2005)

19. Fern, A., Givan, R., Falsafi, B., Vijaykumar, T.N.: Dynamic feature selection for
hardware prediction. Journal of Systems Architecture 52(4) (2006) 213–234

20. Jacobson, Q., Rottenberg, E., Smith, J.E.: Path-Based Next Trace Prediction. In:
30th International Symposium on Microarchitecture. (December 1997) 14–23

21. Gao, F., Sair, S.: Exploiting Intra-function Correlation with the Global History.
In: SAMOS. (2005)

22. Farcy, A., Temam, O., Espasa, R., Juan, T.: Dataflow analysis of branch mis-
predictions and its application to early resolution of branch outcomes. In: 31st
International Symposium on Microarchitecture. (December 1998) 59–68

23. Thomas, R., Franklin, M.: Using Dataflow Based Context for Accurate Value
Prediction. In: 2001 International Conference on Parallel Architectures and Com-
pilation Techniques. (September 2001) 107–117

24. Sazeides, Y.: Dependence Based Value Prediction. Technical Report CS-TR-02-00,
University of Cyprus (February 2002)

25. Constantinides, K., Sazeides, Y.: A Hardware Based Method for Dynamically
Detecting Instruction Isomorphism and its Application to Branch Prediction. In:
2nd Value Prediction Workshop. (2004)

26. Chen, L., Dropsho, S., Albonesi, D.H.: Dynamic Data Dependence Tracking and
its Application to Branch Prediction. In: 9th International Symposium on High
Performance Computer Architecture. (February 2003) 65–76

27. Mahlke, S., Natarajan, B.: Compiler Synthesized Dynamic Branch Prediction. In:
29th International Symposium on Microarchitecture. (December 1996) 153–164

20

