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Abstract

Several studies of speculative execution based on values
have reported promising performance potential. However,
virtually all microarchitectures in these studies were de-
scribed in an ambiguous manner, mainly due to the lack of
formalization that defines the effects of value–speculation
on a microarchitecture. In particular, the manifestations
of value–speculation on the latency of microarchitectural
operations, such as releasing resources and reissuing, was
at best partially addressed. This may be problematic since
results obtained in these studies can be difficult to reproduce
and/or appreciate their contribution.

This paper introduces a model for a methodical descrip-
tion of dynamically–scheduled microarchitectures that use
value–speculation. The model isolates the parts of a mi-
croarchitecture that may be influenced by value–speculation
in terms of various variables and latency events. This pro-
vides systematic means for describing, evaluating and com-
paring the performance of value–speculative microarchitec-
tures.

The model parameters are integrated in a simulator to
investigate the performance of several value–speculation
related events. Among other, the results show value–
speculation performance to have non-uniform sensitivity to
changes in the latency of these events. For example, fast
verification latency is found to be essential, but when mis-
speculation is infrequent slow invalidation may be accept-
able.

1 Introduction

Performance has been a driving force for microarchi-
tecture research since the advent of the computer. One of
the popular approaches used to improve performance is the
application of hardware and software transformations to a
program to increase its Instruction Level Parallelism (ILP).
Fundamentally, true dependences limit the amount of ILP
that can be extracted from a program. Two instructions ex-
hibit a true dependence, or simply are dependent, when an

output operand of one instructions is an input of another.
Dependences are typically divided into control and data

dependences. Probably, the most primitive type of control
dependence is the program counter (PC) dependence be-
cause every instruction depends on its predecessor’s output
program counter. However, most instructions modify the
PC in a trivial fashion, i.e. they increment it by the in-
struction length. This length is fixed for many architectures
(e.g. RISC) and for others is a function of the instruction
type. In either case, the instruction length can be determined
prior to execution. Processors effectively deal with the triv-
ial PC–dependences by employing instruction caches that
allow multiple consecutive instructions to be fetched simul-
taneously. This leaves control transfer instructions as the
remaining control dependence problem.

For a control transfer instructiondetermining the next PC
requires the execution of the instruction and this leads to a
serialization in the execution. Prediction and speculation
[4, 10, 36] have been proposed as a means for alleviating
the impediments of control dependences by predicting the
next PC of control transfer instructions and speculatively
executing the instructions that follow them.

In addition to control dependences through the PC, there
is also a serialization of execution due to data dependences
through register and memory locations. These dependences
were shown to be predictable [1, 22, 25] and suited to drive
speculative execution [11, 22, 25, 35].

The predictability of register dependence values (value
prediction) - the motivation for this work - and of other pro-
gram information types (such as control and memory depen-
dences) may suggest the existence of fundamental transfor-
mations that can reduce/eliminate predictable computation.
The identification of such transformations represent promis-
ing directions for research. However, until such transfor-
mations are discovered and understood the performance of
future processors may benefit by value–speculation: use of
value prediction to drive speculative execution.

There is a plethora of work that reports on the promis-
ing performance potential of value–speculation. Value–
speculation has been proposed and investigated for dynam-
ically [3, 6, 8, 11, 13, 14, 17, 18, 21, 22, 28, 31, 42] and



statically [7, 26] scheduled processors, for distributed mi-
croarchitectures [23, 27, 30, 43], and with compiler assis-
tance [12, 16, 41].

Although the above and other related work represent a
significant body of knowledge, its focus was mainly di-
rected towards higher accuracy predictors and compiler sup-
port/transformations to facilitate more effective value pre-
diction. We argue that there has been insufficient investiga-
tion of the microarchitectural implications of value specula-
tion. This is evident by the imprecision with which microar-
chitectures are described in value–speculation work. This
can be attributed to the lack of a formalization for describing
such microarchitectures. What’s more, the implications of
value–speculation on the latency of microarchitectural op-
erations such as releasing resources and reissue, are rarely
addressed. This can be problematic because the obtained
results may be difficult to reproduce and assess their signif-
icance. Although ambiguity is expected for a new research
subject, the amount of research invested for value specula-
tion justifies the need for formalization.

This paper introduces a model (the central theme of
the paper) for a systematic description of dynamically–
scheduled microarchitectures that use value–speculation.
The model defines the design space of the microarchitec-
ture influenced by value–speculation in terms of various
variables and latency events. The model can therefore pro-
vide a method for accurate evaluation and comparison of the
performance of value–speculative microarchitectures. The
model parameters are integrated in a microarchitectural sim-
ulator to evaluate the performance with value–speculation
for several latency events.

1.1 Motivation

The most problematic issue with value–speculation work
is the timing of microarchitectural events. In general, to
avoid unnecessary stalls in a pipelined processor, future
events are scheduled based on (expected) deterministic la-
tencies of currently executing events. For example, when
a register–to–register add instruction is issued, the control
logic of a processor anticipates that this operation will com-
plete within a deterministic latency. Consequently, instruc-
tions dependent on the add can be scheduled (and possibly
issued) prior to the completion of the add. The anticipation
approach is employed almost in every stage of a pipelined
processor. Meeting the timing constraints for anticipation
at each stage is a critical design issue since uncertainty can
compromise correct functionality and long paths can slow
down clock. In practice, when the timing can not be met
this may result in an additional pipe stage or a pipeline stall.

Value–speculation may increase the critical path of one or
more anticipation mechanisms in a pipeline. Although one
can be optimistic about how value–speculation influences

these latencies, it is important to study the performance as
the latencies change. This view is not adopted in most pre-
vious value–speculation work since nearly all latencies are
fixed. For instance, most papers assume one cycle mini-
mum latency between misprediction and reissue. Further-
more, vague explanations are given for the assumptions and
implications of the one cycle latency.

We believe it is paramount to establish how sensitive
value–speculation performance is to the latency of various
events and then consider mechanisms to achieve or approx-
imate the desired performance. For motivation consider the
example in Fig. 1 showing the pipelined execution of three
instructions - 1, 2 and 3 - with correct and incorrect pre-
diction (the example is discussed in more detail in Section
4). Three execution models are considered - Super, Great
and Good - each with different latencies for various events.
The (in)sensitivity to the changing latencies is evident. This
underlines the need for a methodical investigation of the
microarchitectural events influenced by value–speculation:
wakeup, selection, verification, invalidation, resource re-
leasing, branch resolution and memory resolution. This
paper attempts to propose a systematic framework for doing
such exploration and examines the effect on performance
for most of these events.

1.2 Outline

The microarchitecture used in the paper is described in
Section 2. Section 3 discusses the design space of value
speculation and reviews related work. Section 4 introduces a
model for describing value–speculative microarchitectures.
The experimental framework is outlined in Section 5. Re-
sults are discussed in Section 6. The conclusions are pre-
sented in Section 7.

2 Microarchitecture

This section describes a base-microarchitecture and then
introduces the value–speculation microarchitecture used in
the paper.

2.1 Base Microarchitecture

For baseline microarchitecture we consider an out-of-
order superscalar processor based on the Register Update
Unit [39] which unifies issue resources (reservation stations
[40]) and retirement resources (reorder buffer entries [37]).
In the text will refer to the unified issue/retirement struc-
ture as the instruction window. An entry in the instruction
window will be referred as reservation station(RS).

As instructions are fetched, they are assigned entries in
the instruction window according to the dynamic program
order and remain in the window until they can be retired.



Figure 1. Execution example based on differ-
ent Speculative Models

Values in this organization can exist in the following lo-
cations: register file, instruction window and functional
units. The register file maintains architected state and is
only updated when instructions retire. Instructions read any
available input values from the register file before entering
a reservation station in the instruction window. Instructions
can also receive values through a bypassing network from
predecessors in the window. Instructions with unresolved
dependences monitor the results bus and capture their source
operands as the producing instructionsfinish execution. The
result of an executed instruction is also written in a field in
its RS. When an instruction is the oldest in the window, it
can commit its result in the register file or memory and re-
lease its entry in the window.
The important fields in a RS are shown below:

In1Ready In1Tag In1Value
In2Ready In2Tag In2Value
OutValue Issued Executed

The ready fields are used to indicate whether an input
operand is available (valid or invalid). The tags are used
to specify which results an instruction is waiting for. The
value field holds the actual input value. The outvalue stores
the output of an instruction that is eventually used for up-
dating the processor state when the instruction retires. The
two binary fields issued and executed are used to guide issue
and retirement.

Wakeup and selection logic, in the instruction win-
dow, determines the instructions that get issued each cycle.
Wakeup determines which instructionscan be considered for
issue in the next cycle. An instruction can wakeup when its
ready fields are valid and has not issued already. Selection
chooses which of these instructions to issue in the next cy-
cle. The selection scheme used in this paper gives priority
to branches and loads and then to the oldest instruction.

Memory instructions consist of two operations: address
generation and memory access. Loads are executed when
all preceding store addresses in the instruction window are
known and hence no memory dependence violations can
occur. A perfect load cache hit predictor is assumed, i.e.
load dependent instructions are not issued when a load will
miss in the cache. The only source of misspeculation in
the base-processor is due to branch misprediction: when
a branch is mispredicted all subsequent instructions in the
window are squashed and fetching starts from the new target
address.

2.2 Microarchitecture with Value Speculation

The base-processor is augmented with value–speculation
as shown in Fig. 2. This is a similar microarchitecture to the
one proposed in [21]. Essential to a processor supporting
speculation are mechanisms that: (a) provide predictions
(and confidence estimation for predictions), (b) verify pre-
dictions, and (c) invalidate misspeculated instructions. The
integration of these mechanisms in a superscalar processor
pipeline can lead to pervasive changes in the functionality
and/or latency of different microarchitectural events.

One such change regards the handling of various values
types. In particular, the use of value prediction introduces
two additional types of values in the processor: predicted
and speculative. A value is predicted if it is obtained directly
from the value predictor, and is speculative if it is the result
of computation(s) that included a predicted value. An input
value is valid if it is read from the architected file or is
the result of a computation that involved only valid inputs.
Therefore, with value–speculation, an input operand may
be: speculative, predicted, valid, and invalid.

Virtually all papers agree about the treatment of pre-
dicted, valid and invalid values, however there are two ap-
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Figure 2. Pipeline With Value Prediction

proaches towards speculative values: one does not support
forwarding of speculative values [31] whereas the other al-
lows propagation of speculative values(the latter being the
typical assumption in value speculation work). Although
no forwarding can offer an implementation advantage, in
this paper we choose to allow the forwarding of speculative
values because it may represent the method with the highest
potential.

To accommodate the new value types in the proposed
microarchitecture, the ready fields in the RS are expanded
to two bits. Another required change is for checking the cor-
rectness of output predictions: a field is added in the RS to
indicate whether the outputof an instruction is predicted and
another field is used to contain the predicted output value.
The modified RS incorporating the above changes is shown
below (this is similar to the changes suggested by [31]):

In1Ready In1Tag In1Value
In2Ready In2Tag In2Value
OutValue Issued Executed
Predicted Value Predicted

The following section discusses the design space of various
value speculation mechanisms and expands on the way the
different RS flags can be used to guide various policies.

Although the rest of the paper emphasizes issues rele-
vant to the microarchitecture outlined in this section, the
discussion will often have a broader scope.

3 Design Space and Related Work

Value–speculation was proposed independently by Li-
pasti et al. and Gabbay and Mendelson [11, 22] as a per-
formance enhancing method exploiting the predictability of
values. Since then value–speculation has been a subject of
a number papers. Although it is difficult to categorize pub-
lished work, we divide value–speculation papers into two
categories: those that address microarchitectural issues and
those that do not. For example, a paper that introduces a
value predictor may do so in a microarchitectural indepen-
dent fashion. More relevant to this work are papers that

made microarchitectural contributions or were conducive in
better understanding the microarchitectural implications of
value speculation.

The fundamental microarchitectural contributions related
to value speculation were made by Lipasti et al. [20, 21, 22].
The authors introduced all basic microarchitectural func-
tions required by value–speculation, namely: providingpre-
dictions, verifying correctness and invalidating in case of
misspeculation. The notion of selective invalidation was
also introduced in their work. In addition some of the ef-
fects of value–speculation on the microarchitecture were
described.

Follow-ups to the above work helped define the design
space of value speculation more accurately. However, the
microarchitectures were described in an ad-hoc manner with
little justification for the choice of various parameters. We
realize that simulation models in previous work may have
been detailed enough, what this paper contends is that their
descriptions were not.

Statically scheduled processors can also employ value–
speculation [7, 26]. And such microarchitectures may be
less problematic to describe because value–speculation re-
lated operations can be done in software. Issues related to
statically scheduled value–speculation are beyond the scope
of this paper.

The following sections consider the design space of
value–speculation. The purpose of the discussion is to
elucidate possible misconceptions, identify subtle to de-
scribe/distinguish microarchitectural features and give di-
rection for future research. Several issues related to predic-
tion and predictors, such as prediction model, tables con-
figuration, number of ports, hash functions and replacement
are not discussed due to limited space. The interested reader
can consult [2, 6, 18, 20, 31, 32].

3.1 Invalidation

Invalidation is responsible for informing the direct or
indirect successors of a mispredicted instruction that they



have received incorrect operands. This is essential to recover
from side effects caused by a misprediction. Invalidation
latency can be crucial because it can determine how quickly
a misspeculated instruction reissues. There are two basic
invalidation models to consider: complete and selective.

Complete invalidation treats a value misprediction simi-
lar to a branch misprediction. Few papers [8, 41] compared
the performance of selective and complete invalidation and
observed smaller but still positive potential for complete
invalidation. Complete invalidation may be practical to im-
plement and beneficial in terms of performance if value mis-
predictionsare rare and/or the potential of value–speculation
is large. Value mispredictions can be made rare using con-
fidence estimation[2, 8, 15].

Most papers adopt a hierarchical selective invalidation,
that is an instructioncan only invalidate its direct successors.
The invalidated successors then invalidate their own succes-
sors. This process is repeated until all successors receive
the invalidation. This may be build on top of the exist-
ing(or similar) tag broadcasting mechanism used to wakeup
instructions[22, 30, 31, 42]. So far the only proposed design
for selective invalidation requires instructions with specu-
lative/predicted operands to remain in their reservation sta-
tions after they issue. This may be necessary as it is unclear
how to perform selective actions in a pipeline otherwise.
The following discussion assumes that invalidation is selec-
tive and all instructions with predicted/speculative operands
remain in their RS after they are issued.

The invalidation mechanism with the highest perfor-
mance potential is one that invalidates in parallel all direct
and indirect successors. Selective parallel invalidation is ef-
fectively a flattened–hierarchical invalidation scheme. The
model described in Section 4 considers invalidation as a dis-
tinct event that forces a misspeculated instruction to reissue.

3.2 Verification

When an instruction is predicted correctly, verification is
responsible for informing the instruction’s direct and indi-
rect successors that their input operand(s) are valid. Since
a verification mechanism has almost identical functionality
with a selective–invalidation mechanism (Section 3.1), one
mechanism may be sufficient to implement both.

Considering that an instruction may need to hold a re-
source until all its input operands become valid, then fast
verification can be decisive for improving performance.
Verification directly influences the release of issue re-
sources (reservation stations) and retirement resources (re-
order buffer entries).

Fast verification latency may also be relevant when it
is desirable to resolve branch or memory instructions only
with valid values. The problem with resolving branches
using predicted/speculative values is that value prediction

may be less accurate than branch prediction and hence may
lead to additional branch mispredictions. Similarly, load
instructions may be preferable to access memory with valid
addresses to avoid store-load dependence violations. Slow
verification may translate in a longer misprediction penalty
for both branches and values.
There are at least four approaches for performing verifica-
tion:
Hierarchical–Verification
With hierarchical–verification a correctly predicted instruc-
tion can validate only its direct successors. The verified
successors will then verify their own successors. This
process will be repeated until all successors get verified.
Hierarchical–verification can be implemented using the ex-
isting, or similar, tag broadcasting mechanism used by
processors to wakeup instructions. This verification ap-
proach can provide a performance improvement provided
there are separate dependence chains in the instruction win-
dow. Otherwise, the increased execution parallelism from
value–speculation will be nullified by the serialization in
verification.
Retirement–Based Verification
It can be demonstrated that the retirement mechanism, used
in dynamically–scheduled superscalar processor, can be
used to verify in parallel multiple instructions. That is,
verification can be overloaded to retirement. However, this
approach may have two pitfalls:
(a) for each cycle only the w oldest instructions in the in-
struction window can be validated, where w is the retirement
bandwidth of the processor. This may be undesirable if a
younger instruction is otherwise valid but forced to hold
needlessly a resource.
(b) the additional functionality may stress the critical path
of the anticipation mechanism for releasing retirement re-
sources. In particular, the condition for committing a value–
predicted instruction requires an additional compare oper-
ation. If the latency of the comparison is on the critical
path then resources may be freed with at least an extra cycle
delay.
Hybrid Retirement–Based and Hierarchical Verification
This approach attempts to build on the strengths of the two
previous approaches. Retirement–based verification is used
for releasing resources faster whereas hierarchical verifi-
cation is intended for faster detection of mispredictions.
Flattened–Hierarchical Verification
In this scheme all direct and indirect successors of a correctly
predicted instruction are validated in parallel. This is analo-
gous to flattened–hierarchical invalidation. The flattened–
hierarchical verification represents the verification method
with the highest performance potential, however it is also
likely to be the method with the highest implementation
cost.

It is noteworthy that a microarchitecture may require a



different verification approach depending on: (a) whether
the issue and retirement resources are unified, and (b)
whether branch and memory instructions are resolved with
speculative/predicted values. Due to space limitations we
do not elaborate on this important topic.

This work considers a microarchitecture with unified is-
sue and retirement resources. Branches and memory in-
structions are allowed to execute only with valid operands.
For verification(and invalidation) the functionality of a
flattened–hierarchical tag broadcasting scheme is assumed.
It is also assumed that at any given point any number of
instructions can verify/invalidate their successors. This is
referred as the verification network.

Although the functionality of the verification network
is intuitive to understand, its implementation may present
a significant challenge. The objective of this work is to
assess whether such mechanism is essential to achieve high
performance with value–speculation. It is unclear if any pre-
vious work considers such a scheme. The proposed model
(Section 4) will be used to determine how important fast
verification(invalidation) is and how critical it is to inform
quickly branch and memory instructions about the state of
their input operands (e.g. when predicted or speculative
operands become valid).

Parallel–verification was assumed in a number of pa-
pers, however, no previous work discussed it in detail.
Hierarchical–verification is explained in [31]. The first work
to explore the effects of value–speculation on branches was
presented by Sodani and Sohi [38]. The authors compared
the performance when branches are resolved with specula-
tive/predicted values and when resolved only with valid val-
ues. That work also considered the effects of 0 and 1 cycle
validation latency. However, it is unclear how the assumed
latencies affect various processor events (such as releasing
resources). Also, it is unclear whether additional latency, to
the verification latency, is considered when branches are not
allowed to be resolved with speculative/predicted values.
In previous work [19, 21, 29, 30] branches were resolved
out-of-order only when their operands were known to be
non-speculative. A third option for dealing with branches
is to combine the two approaches examined in [38] based
on confidence [9]. A recent study [28] considered the com-
bination of address, value and dependence prediction for
resolving speculative loads.

The above suggest that evaluation and design of different
verification mechanisms present interesting directions for
future research.

3.3 Equality

Equality is responsible for determining whether a value
is predicted correctly or incorrectly. Equality can be per-
formed by comparing the predicted value against the actual

value (value–equality). As far as we know, value-equality
is the approach used for checking predictions by all pro-
posals that rely on prediction and speculation. Alternatives
that do not require strict equality have been suggested but
have not been explored[20, 32]. In the proposed microar-
chitecture (see Fig. 2) value-equality is performed in the
write/verification stage using comparators (denoted EQ).

The latency for performing value–equality can be on the
critical path of many microarchitectural operations, such as
recovery from misspeculation and releasing resources, and
hence is an important performance parameter. The pro-
posed model (Section 4) considers the effects with increas-
ing value–equality latency.

3.4 WakeUp

Without value–speculation an instruction can wakeup
when it has not issued already and has received the tags
for all its input operands – indicated by the ready fields
being valid in its RS.

The use of value–speculation introduces additional
choices for instruction wakeup. Wakeup may be useful
to be seen as a filter that selects instructions for speculative
execution. In particular, the wakeup function can consider
the following information for an instruction: (a) the ready
state of its inputs (ready fields of a RS), (b) issued state
(issued field of a RS), (c) predicted state (predicted field of
a RS), and (d) the speculative “state” of its inputs (this is a
value that comes from the verification network and roughly
corresponds to the next ready state for an input operand).

The options described above imply a number of possibil-
ities as to when to wakeup instructions. Only one wakeup
function is considered in this paper and allows for an instruc-
tion to wakeup only when its inputs are either valid and/or
speculative and the instruction has not yet issued. Due to
space limitation we do not report the precise function used.

Wakeup serves another purpose: nullifying the effects
of a misprediction. The semantics for nullification are: (a)
remove the effects of previous execution of an instruction,
and (b) enable a future wakeup of the instruction. This is
achieved by resetting the issued field in the RS whenever an
instruction gets invalidated.

Note that the above policies ensure that instructions with-
out predicted or speculative operands can wakeup as fast as
on the base-processor.

Sodani and Sohi [38] performed a comparison of two
wakeup schemes: wakeup each time a new value is reach-
ing an instruction[30] or limiting the wakeup of an instruc-
tion to at most two executions[22]. The two approaches
have a subtle but important difference, the former effec-
tively ignores speculative status of the operands and hence
may reissue faster a misspeculated instruction. This also
implies that instructions may issue needlessly when they are



not misspeculated.
Considering the numerous possibilities that exist for

wakeup functions, future work should investigate their per-
formance and design.

3.5 Selection

Selection with speculative execution presents new trade-
offs since instructions can be candidates for issue with: pre-
dicted, speculative and/or valid inputs. Therefore selection
needs to consider additional information such as, how many
speculative inputs an instructions has, confidence in those
inputs and whether the instruction is on the critical path.
Selection of which value–speculative instructions get issued
based on confidence and critical path information was pro-
posed by Calder et al.[8]. This was also addressed more
recently by Larson and Austin[16].

A selection scheme combined with accurate confidence
estimation can ignore the speculative state information of
an operand since most of the time predictions will be cor-
rect. Alternatively, a selection with a poor confidence es-
timator may assign higher priority to all instructions with
valid inputs and then consider instructions with speculative
operands.

In this work we consider a selection scheme that assigns
highest priority to branch and load instructions and priori-
tizes the rest based on dynamic program order - oldest first.
Non-speculative instructions are preferred over speculative.
Selection for speculative execution is an important research
subject not explored in this paper.

3.6 Confidence

Accurate confidence estimation[15] may be necessary
to reduce value misspeculation. A number of interesting
possibilities for confidence estimation for value prediction
are discussed in [2, 8]. Calder et al.[8] explored the use
of confidence levels (low, medium and high) for resetting
counters. They also proposed propagation of confidence to
dependent instructions. They have shown that speculating
on predictions with low confidence that lie on the critical
path can improve performance. Bekerman et al.[2] sug-
gested to associate with a mispredicted instruction part of
the control flow history that lead to it. In the case of future
match, a prediction is assigned low confidence. In this pa-
per we compare the performance with oracle and realistic
confidence (Section 6).

4 Model for Value Speculative Microarchitec-
tures

The norm in previous work is to describe ambiguously
the microarchitectural implications of value–speculation. It

is also common not to state assumptions or offer rationale
for a value of a design parameter. The discussion in Sec-
tion 3 illustrated that value–speculation may cause pervasive
changes on a microarchitecture. Furthermore, subtle to de-
scribe but distinct microarchitectural features - with possibly
different cost and complexity - may represent quite different
or similar performance points (Section 6). We interpret this
as a call for more formalized approach for describing value
speculation microarchitectures.

We propose the combining of different microarchitectural
mechanisms(variables) that influence speculative execution
under a single model called speculative-execution model.
Consequently, when describing a speculative execution the
following information should be provided:

� a specific list of variables and their values, and
� manifestations of speculative execution in terms of

latency between different microarchitectural events.

Below we summarize the design space of speculative ex-
ecution models in terms of model variables and some of
their possible values. The value(s) determine a method for
implementing the mechanism corresponding to a variable.

Model Variable Values
WakeUp ready fields, issue flag,

predicted-state, confidence
Selection ready fields, instruction type,

confidence
Branch Resolution speculative or valid operands
Memory Resolution speculative or valid operands
Invalidation complete, selective (hierarchical

or parallel)
Verification hierarchical, parallel (based on

retirement or dedicated network)

A model manifests itself in terms of at least the following la-
tency variables that describe the latency required between
microarchitectural events influenced by speculative execu-
tion. The latency variables are defined from the end of the
first event to the end of the second event and should be given
in terms of cycles:
Execution – Equality, latency required to determine if the
prediction and a computed value are equal assuming equal-
ity is performed immediately after an instruction finishes
execution.
Equality – Invalidation, latency required for an instruction
to be invalidated after it was determined that a predecessor’s
prediction was incorrect. This may not be a fixed number
of cycles (for example, the latency of selective serial invali-
dation is a function of the dependence chain invalidated).
Equality – Verification, similar to the previous but for cor-
rect predictions.
Verification – Free issue resource, latency after an instruc-
tion is verified before it can release its reservation station



entry.
Verification – Free retirement resource, latency after an
instruction is verified before it can release its reorder buffer
entry.
Invalidation – Reissue, latency after an instruction is inval-
idated before it can reissue.
Verification – Branch, latency after verification of the in-
puts of a branch before a branch can issue.
Verification Address – Memory Access, latency after ver-
ification of a speculative address generation before issue to
memory.

These latencies are not all relevant to every speculative
execution model. The latency for branch and memory in-
structions is pertinent if these instruction types are not al-
lowed to be resolved based on speculative values. The ver-
ification – free issue resource latency is not relevant when
instructions issued with predicted and/or speculative values
do not retain their reservation station. We note that the laten-
cies for the events need not be given separately, for example
instead of reporting Execution – Equality and Equality –
Verification with two separate values they can be combined
as Execution – Equality – Verification and described by a
single value.

It is worthwhile to note that no previous work identified
all of these microarchitectural events. To our best knowl-
edge, this is the first paper that breaks misspeculation into
three events: Execution – Equality, Equality – Invalida-
tion, Invalidation – Reissue. Typically, misspeculation was
treated as a single event with one cycle latency. In gen-
eral, previous work may have overlooked value speculation
events that may be performance critical.

Although we do not claim that the above are complete
for describing speculative execution precisely, we believe
that this is a more systematic approach that can mitigate
the problems mentioned before. In the next section, we
present several speculative execution models and vary some
parameters to illustrate how they influence execution.

4.1 Example Speculative Execution Models

This section considers few speculative execution models
with the following values for the model variables: instruc-
tions can wakeup based on id-tags and state-tags; selection
is based on instruction types and dynamic order and con-
siders speculative state (i.e. considers whether operands
are predicted/speculative or valid); branches are always re-
solved based on valid values; memory instructions are not
allowed to access memory with speculative addresses;verifi-
cation/invalidationis based on the verification network. The
specific choices were described with more detail in Section
3.

Three models, denoted super, great, and good are con-
sidered and defined as follows:

Latency Variable Super Great Good
Execution – Equality – Invalidation 0 0 1
Execution – Equality – Verification 0 0 1
Verification – Free Issue Resource 1 1 1
Verification – Free Retirement Res. 1 1 1
Invalidation – Reissue 0 1 1
Verification – Branch 0 1 1
Verification Address – Mem. Access 0 1 1

When computation does not include predicted values, all
models have behavior identical to the base-processor. Re-
call that because we have a unified issue/retirement structure,
the latency to free(release) issue and retirement resources is
the same. Also note that in the proposed microarchitecture,
resources cannot be free earlier than a cycle following the
completion of an instruction.

The super model is the most optimistic and the good
model the most pessimistic. The difference between the
good and the great is in verification/invalidation latency,
from one to zero cycle. The super model has zero cycle
verification/invalidation, zero cycle reissue latency - that
can enable mispredicted instructions to execute early - and
zero cycle latency to inform branch and memory instructions
when their inputs become valid.

Fig. 1 illustrates the pipelined execution of three instruc-
tions using the three speculative execution models with cor-
rect and incorrect prediction. The figure also shows the
execution without value speculation. For all seven scenar-
ios the common initial condition is that the three instructions
are in the instruction window. The various pipeline latency
events are defined in the figure (EX for execution, W for
write to RS etc). The three instructions, labeled 1, 2 and 3,
form a dependence chain: 2 depends on 1 and 3 depends on
2.

The base processor requires 5 cycles to retire all instruc-
tions. For the misprediction scenario it is assumed that
the outputs of 1 and 2 are mispredicted. The figure shows
that the more optimistic a model is the more activities are
packed in a cycle. For instance, for the Super model, at
the beginning of cycle t+1 it is detected (effectively with
zero latency) that the outputs of instructions 1 and 2 were
mispredicted. At the same time the successors of the two
instructions get invalidated (that will be instructions 2 and
3). Also at t+1, instruction 2 that consumes the output of
instruction 1 is scheduled for reissue and starts executing.
Instruction 3 wakes-up at t+1 and is scheduled during cycle
t+1 to execute at t+2. In contrast, the good model detects
the mispredictions early in cycle t+1 and instructions 2 and
3 get invalidated by the end of the cycle. During t+2 is
determined that instruction 2 can reissue. Instruction 2 gets
executed during cycle t+3. At t+3 instruction 3 wakes up
and is scheduled to execute at t+4.

The most important observation from the example is that
execution behavior appears to be sensitive to the model
event-latencies. Note that for the good model, unlike super
and great models, instructions with predicted outputs, but



not predicted or speculative inputs, still need to go through
verification.

The models represent a spectrum of designs with variable
degree of optimism regarding the different latencies and are
only a few of numerous possible models. We believe that
exploring the design space of different speculative execution
models and understanding their requirements is essential for:
(a) better comprehending how to design value–speculative
processors, and (b) focusing research effort on performance
critical issues. We evaluate the performance of the super,
great and good models in Section 6.

5 Simulation Methodology

5.1 Parameters

To evaluate the performance of the different speculative
execution models, a simulation study was performed for
the microarchitecture presented in Section 2. The various
model events were integrated in an out-of-order simulator.
Provided the simulator is accurate, it offers the means to
evaluate and compare the performance for various specula-
tive execution models.

The simulator used in this work is a modified version of
the out-of-order simplescalar simulator[5]. A gshare branch
predictor[24] is used that hashes 16 bits of global branch his-
tory with the 16 lower bits of the branch PC to index a 64K
prediction table. The branch predictor is updated with cor-
rect information following each prediction. Unconditional
and direct jumps are always predicted correctly. Conditional
branch targets are assumed to be predicted correctly as long
as the branch direction is correct. The L1 instruction cache
contains 64KB of instructions, with 32B per block, is 4-way
associative and a hit requires 1 cycle. An ideal fetch engine
is assumed: provided instruction references hit in the cache
and branches are predicted correctly, then the fetch engine
can read and align from multiple basic blocks in the same
cycle. The L1 data cache has the same configuration as the
instruction cache, however, has as many ports as half the
issue width of the processor under consideration and its hit
time is 2 cycles. A unified L2 cache that can hold 1MB
of data and instructions is used. This L2 cache is 4-way
associative, with 64B per block, 12 cycle hit and 36 cycle
miss time. A load/store queue with size equal to the in-
struction window is used. Loads can receive a value from a
preceding store in the queue in a single cycle. Wrong path
instructions are executed and their side effects are modeled.
There are no resource constraints except limited number of
data cache ports. All simple integer instructions require one
cycle to execute. Complex integer operations and floating
point operations, depending on the type, require from 2 to
24 cycles.

Simulations were performed for all integer SPEC95

Benchmark Input Dynamic Instructions
Flags Instr (mil) Predicted (%)

compress 400000 e 2231 103 70.5
gcc gcc.i 203 67.3
go 9 9 132 78.7
ijpeg specmun.ppm 129 82.0
m88ksim scrabbl.in 120 70.6
perl modified train 40 63.9
vortex modified train 101 61.9
xlisp 7 queens 202 61.7

Table 1. Benchmark Characteristics

benchmarks(Table 1). The benchmarks were compiled us-
ing the simplescalar gcc compiler with -O3 optimization.
Speedup was calculated as a ratio of the performance of
a configuration with value prediction to an identical con-
figuration without value prediction. For average speedup
calculation harmonic mean was used. Arithmetic mean was
used for reporting average prediction rates so each bench-
mark effectively contributes the same number of predictions.

5.2 Value Predictor and Confidence Estimation

This work considered the performance of value–
speculation with a context-based value predictor[33, 34].
The predictor uses two tables. The first level (or history ta-
ble) is indexed with the PC of the predicted instruction. An
entry in the history table maintains the context - a hash of the
most recent 4 values produced by the instructions that map
to the entry. The context is used to index into the second
table - prediction table - and read out a 32 bit prediction.
We used direct mapped 64K entry history table and a 64K
entry prediction table. Entries in the history table are always
updated whereas the prediction table uses a one bit counter
to guide replacement.

In addition to the tables used for prediction, a table is
used for providing confidence estimation. A confidence
table is indexed using the PC of the predicted instruction
and contains resetting counters that are incremented by 1 on
correct predictions and reset to 0 on incorrect predictions.
A prediction is considered confident when the confidence
value is at maximum. In the simulations we compare the
performance of real confidence based on a confidence table
and that of an oracle confidence. When real confidence
is employed we assume a table with 64K entries with 3
bit resetting counters in each entry. No attempt is made
to optimize the realistic confidence mechanism[2, 8], the
intention is to observe general trends when in use. Future
work should consider confidence in more detail.

One other predictor dimension considered is the effects
of update timing on prediction. Results are presented when
the value predictor is update immediately (I) after prediction



with the correct value, or delay updated at retirement (D).
When delayed updating is used, the history table of the
predictor is updated speculatively with the prediction.

6 Results

This section reports on the performance of three specu-
lative execution models: good, great and super discussed in
Section 4.1. The performance of the models was measured
for three processor configurations with issue width/window
size: 4/24, 8/48 and 16/96. Each configuration was studied
for real (R) and oracle (O) confidence using delayed (D) and
immediate (I) update timing (D/R, I/R, D/O and I/O). We
report averages and do not show the individual benchmark
behavior due to space limitations - the individualbenchmark
behavior is similar to the overall.

Fig. 3 shows the average speedup for the various mod-
els and different configurations. As expected, and shown
in a number of previous studies, value speculation has the
potential to improve performance. The benefits are increas-
ing with larger issue width and window size. As it was
argued in[13], wider processors expose more dependences
and hence increase the potential of value–speculation.

Several importantobservations can be made: (a) the good
model behaves significantly worse as compared to the great
and super models; in some cases having worse performance
than the base configuration, (b) there is no significant differ-
ence between the great and super models, (c) performance
is much more sensitive to confidence than to the timing of
updates.

The first observation underlines the importance of fast
verification latency. The verification latency for the good
model was 1 cycle whereas for the great and super models
was 0. If 0 cycle verification is infeasible, is imperative to
explore speculative execution models where verification can
be varied between 1 and 0. The criticality of fast verification
latency is underlined by the fact that even under immediate
update and oracle confidence the performance can be lower
than the base.

The small performance difference between the super and
great models indicates that a cycle delay (a) for inform-
ing speculative branches and memory instructions that their
inputs are (not)valid, and (b) for reissuing following mis-
speculation, are not critical to performance. Recall that
branch and memory instructions are not allowed to resolve
speculatively. The reason that the cycle delay may not be
so detrimental is that when these types of instructions are
predicted correctly they enable useful speculative execution
of other instructions and hence their additional delay is not
usually exposed. Also, the real confidence method used in
this study, as we show next, allows very few misspecula-
tions. Thus the quick reissue provided by the great model
is underutilized. An interesting direction of future research
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Figure 3. Speculative Execution Models Aver-
age Speedup

will be to study the above models with different confidence
mechanisms. Specifically, we expect that with more fre-
quent misspeculations, the relative difference of the great
model will be more significant.

Another way to interpret the small performance differ-
ence between the great and super models is that accurate
confidence can reduce the need for fast (and possibly com-
plex) mechanisms for informing quickly speculative branch
and memory instructions about the validity of their inputs.
Recall that one of the reasons for using the verification net-
work was to communicate quickly to the branch and memory
instructions the speculative state (state-tag) of their inputs.
The results indicate that this may not be important to per-
formance. This fact, however, does not demonstrate that the
verification network is not needed at all as it is also used to
perform selective invalidation. An interesting direction of
future research will be to investigate the relative importance
of different verification schemes and determine how much
additional benefit is provided by the verification network.
Examples of schemes that can approximate the verification
network include (in)validatingsuccessors up to a certain de-
pendence chain depth, limiting the number of instructions
that participate in a given (in)validation transaction, or lim-
iting the period an instruction is not verified.

The data seem to support that confidence is a very sig-
nificant performance parameter because moving from real
confidence (X/R) to oracle confidence (X/O) provides a
large performance increase (higher than the improvement
achieved by immediate over delayed updating). This may
indicate that either a lot of incorrect predictions are assigned
high confidence and hence a lot of misspeculation, or many
correct predictions are assigned low confidence and perfor-
mance opportunityis lost. Prediction accuracy is considered
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Figure 4. Average Prediction Accuracy

subsequently and reveals that the scheme based on 3–bit re-
setting counters performs poorly. This also suggests that one
of the keys for realizing the potential of value prediction is
accurate confidence predictors.

As for the effects of delayed updating on performance, the
results suggest that more performance is lost, as compared
to immediate updates, with increasing width/window. The
reason is reduced prediction accuracy (discussed next).

Fig. 4 shows the average prediction accuracy for the
great model. Predictions are divided into four sets, the set
of predictions that were correct with high confidence (CH),
correct predictions with low confidence (CL), incorrect pre-
dictions with high confidence (IH), and incorrect predictions
with low confidence (IL). The total number of correct pre-
dictions is the sum of sets CH and CL. The results show
that on the average 63% – 71% of the predictions are cor-
rect depending on the timing model and configuration used.
The results suggest that context-based prediction is sensitive
to timing and width/window size. Also it can be observed
that with delayed updates and increasing width/window size
prediction rate decreases.

One of the main reasons for lower accuracy, with increas-
ing window size, is less constructive sharing of the predic-
tion table among multiple instructions. With immediate
updating, when two or more instructions produce identical
sequences, one of the instructions can be mispredicted but
is able to train the predictor immediately and, as a result, the
other instructions get predicted correctly. Another reason
for the sensitivity to update timing is any instruction that
produces “almost” repeating sequences. Many of the cor-
rect predictions using context-based predictors are caused
by instructions that are not 100% predictable. Immediately
updating a predictor in the case of such instructions enables
the context to point back to the correct sequence faster.

More interest to this work is the observation that the
confidence method is successful in minimizing misspecula-
tion (IH size is less than 1%), however this is done at the

expense of a large set of correct predictions with low con-
fidence (CL size is 20%–25% depending on the timing and
configuration). This explains the large performance differ-
ence between real and oracle confidence and reinforces the
importance of accurate confidence estimation for value pre-
diction.

7 Conclusion

In this paper we argued that previous work did not de-
scribe systematically the effects of value speculation on a
microarchitecture due to the lack of a formalized frame-
work. We offer a discussion on the design space of value
speculation to distinguish between subtle but possibly im-
portant design options, clarify misconceptions and provide
research directions. The discussion is also used to underline
the pervasive changes value speculation may require when
integrated in a microarchitecture.

A model was introduced for a methodical description of
microarchitectures that use value–speculation. The model
isolates the parts of the microarchitecture that may be influ-
enced by value speculation: wakeup, selection, verification,
invalidation and resource releasing. The model describes
the effect of value speculation on these parts of a microar-
chitecture in terms of various microarchitectural operations.

The model was integrated in a simulator that was used
to investigate the performance of value–speculation. The
results show value–speculation performance to have non-
uniform sensitivity to changes in the latency of some events.
For example, fast verification latency is found to be essential,
but when misspeculation is infrequent slow invalidationmay
be acceptable.
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