

Modeling Program Predictability

Yiannakis Sazeides and James E. Smith
Department of Electrical and Computer Engineering

University of Wisconsin-Madison
1415 Engr. Dr.

Madison, WI 53706
yanos@ece.wisc.edu, jes@ece.wisc.edu

Abstract

Basic properties of program predictability – for both val-
ues and control – are defined and studied. We take the
view that program predictability originates at certain points
during a program’s execution, flows through subsequent in-
structions, and then ends at other points in the program.
These key components of predictability: generation, prop-
agation, and termination; are defined in terms of a model.
The model is based on a graph derived from dynamic data
dependences and a predictor.

Using the SPEC95 benchmarks, we analyze the pre-
dictability phenomena both separately and in combination.
Examples are provided to illustrate relationships between
model-based characteristics and program constructs. It is
shown that most predictability derives from program control
structure and immediate values, not program input data.
Furthermore, most predictability originates from a rela-
tively small number of generate points. The analysis of ob-
tained results suggests a number of ramifications regarding
predictability and its use.

1 Introduction

The need for higher levels of instruction level paral-
lelism is pushing high performance processor implementa-
tions toward widespread use of prediction and speculation.
Ultimately this could lead to substantially new processing
paradigms. However, it may be premature to start reaching
for radically new paradigms at this point – first some ba-
sic research and understanding of program predictability is
required. Data, addresses, and control interact in complex
ways, and these interactions should be understood before
prediction can be fully exploited for increased performance.

We propose a model for studying program predictability.
This model, or related models, should prove useful for:

� Understanding the underlying phenomena that lead to
predictability.

� Finding relationships among computations that may
point to more accurate and more efficient predictors.

� Identifying critical points for prediction; i.e. places
where prediction and speculation may have greater
payoff.

� Eventually identifying new microarchitecture
paradigms based on prediction rather than using it as
just an add-on.

We do not achieve all these goals in this paper – we only
take a first step. We concentrate primarily on model devel-
opment and study the first of the above items in some depth.
However, we include discussion suggesting possible direc-
tions for pursuing the others. Data value prediction is the
primary focus, but we also include control prediction be-
cause the interactions between data and control are key for
effective prediction and speculation. Further extensions to
address and dependence prediction are clearly possible, but
we do not pursue them here.

1.1 The Dynamics of Program Predictability

Because predictability is based on program behavior, we
informally introduce some of the key concepts using a code
example. Then, we make some general observations about
program behavior that will provide a basis for understand-
ing predictability phenomena.

Fig. 1 shows a frequently executed code sequence taken
from the invalidate for call function in the SPECINT95
benchmark 126.gcc. The code sequence tests bits in a mask
that correspond to 64 machine registers; consequently, it is
a loop that executes 64 iterations. Beside each instruction
is a regular expression that describes the sequence of values
produced by the instruction each time the function is called.

OpCode Operands Values Produced
0 add $6,$0,$0 0
LL1:
1 srl $2,$6,5 (0)

���
(1)

���

2 sll $2,$2,2 (0)
���

(4)
���

3 addu $2,$2,$19 (0x1002f8b0)
���

(0x1002f8b4)
���

4 lw $2,($2) (0x8000bfff)
���

(0xffffffff)
���

5 andi $3,$6,31 (0,1, .. ,31)
�

6 srlv $2,$2,$3 v � ,v � , ..,v � � ,v � �
7 andi $2,$2,1 (1) ��� (0) � (1) � (0) �	� (1)

�
�

8 beq $2,0,LL2 (NT) ��� (T) � (NT) � (T) �	� (NT)
�
�

LL2:
9 addiu $6,$6,1 1,2, .. ,64
10 slti $2,$6,64 (1) �

�
(0) �

11 bne $2,0,LL1 (T) �
�

(NT) �

Figure 1. Example Code from 126.gcc

For instruction 6 the v � correspond to values not essential to
the example. Note that the use of regular expressions is for
illustrative purposes, program sequences do not necessar-
ily have to be regular expressions – at least not compactly
represented ones.

In the example, register $6 is initialized by adding the
value 0 to itself outside the loop ($0 = 0, by definition in the
instruction set we are using). Each time through the loop,
the value in register $6 is incremented by one from instruc-
tion 9. This means that the values in register $6 form the
sequence 0,1,2,3,...64. This sequence would be predictable
by a stride predictor – i.e. the values in the sequence dif-
fer by a constant. After the second value in the sequence, a
typical stride predictor would recognize the stride and start
making correct predictions. Hence, assuming stride predic-
tion, predictability has been generated at that point. And
this predictability is propagated by each of the successive
executions of instruction 9.

Instruction 1 also uses the values in register $6. It shifts
each of these by an immediate 5. The resulting sequence of
32 zeros and 32 ones is also largely predictable by a stride
predictor (where the stride is 0). Hence, the predictability
generated by the stride one sequence at the input of the shift
(instruction 1) is propagated through to the output of the
instruction. After 32 zero values, however, the output of in-
struction 1 will change to one. At that point the predictabil-
ity terminates, but is almost immediately re-generated when
the sequence of ones is detected by the predictor. Going on,
instruction 2 shifts the result of instruction 1 by an imme-
diate 2. Hence, the outputs of instruction 2 are also pre-
dictable – the predictability generated by instruction 9 prop-
agates still further. And predictability continues to propa-
gate through instructions 3 and 4, as can be seen by their
output sequences.

Predictability is also influenced by communication be-
tween instructions. Often, there is direct communication

within a basic block. When this happens, the predictabil-
ity of values as they are produced is essentially the same as
the predictability of values when they are consumed. There
are other cases, however, where control instructions sepa-
rate the producer and consumer of a value; for example, if
a value is produced outside a loop and consumed repeat-
edly inside the loop. When control flow separates producer
and consumer, the predictability characteristics of the value
sequences may differ.

We study program predictability by considering se-
quences of values consumed and produced by instructions
as a program executes. We assume prediction mechanisms
that monitor these sequences and attempt to predict next
value(s) in the sequence based on previously observed val-
ues. Hence, when we speak of predictability, we mean the
ability of a specified finite state predictor to predict the next
value in a sequence. A related, complementary concept is
unpredictability, however we focus mainly on predictabil-
ity. We use a pragmatic definition of predictability: it is
related to specific predictors we have chosen to model.

In summary, we take the view that value sequences have
characteristic patterns that lead to predictability, and these
characteristics can be propagated through instructions and
along dependence paths. That is, predictable inputs often
lead to predictable outputs. Furthermore, predictable pat-
terns must originate somewhere, and, similarly, predictabil-
ity can be terminated. It is the relationships among genera-
tion, propagation, and termination of predictability that we
are interested in studying.

1.2 Related Work

The most successful application of prediction in com-
puter microarchitectures is for conditional branches [15,
18]. Branch prediction is used in virtually every high per-
formance processor being sold today.

Recent results suggest that instructions exhibit data lo-
cality, that is, they tend to produce values from the same
(often small) set a large fraction of the time [10]. Although
locality by itself can be insufficient for predictability, its
presence spurred the development of a number of value pre-
dictors that have accomplished increasingly higher predic-
tion accuracy and demonstrated that values can be quite pre-
dictable [7, 9, 13, 14, 17].

Value prediction thus far has been used to enable the
speculative execution of instructions, and its performance
potential has been shown to be significant in a number of
studies [7, 9, 10, 12]. However, for the potential to be
realized, it is imperative to have high prediction accuracy
and infrequent misspeculation. Misspeculation can be miti-
gated somewhat with the use of confidence mechanisms[8];
these are probably essential for effective value prediction
and speculation.

Regarding actual sources of value predictability, rela-
tively little has been done. Some anecdotal causes of pre-
dictability are given in [10], for example, but the relative
importance of each is not quantified.

There are a number of other hardware and software tech-
niques that exploit value locality in some form. One of these
is instruction reuse[16]. Instruction reuse exploits the local-
ity of both the inputs and outputs of an instruction by using
a table to look up results computed with the same inputs at
some time in the past. The concept of reuse is similar to
memoization [1], a software technique that can be used to
eliminate redundant computation by storing precomputed
results[2]. Other software approaches that can take advan-
tage of value behavior are specialization by static or dy-
namic compilation[4] and software speculation[6] extended
to values.

1.3 Paper Overview

The paper is organized as follows: Section 2 introduces
the model for predictability. Section 3 describes the sim-
ulation methodology. Predictability definitions for genera-
tion, propagation, and termination and simulations results
are presented in Section 4. In Section 5, the model is used
to study relationships between data and branch predictabil-
ity. Section 6 summarizes the results and concludes with a
discussion of possible ramifications.

2 Predictability Model

Thus far, we have discussed predictability and value be-
havior in terms of static program representations, with se-
quences of values flowing through the static representation;
e.g. the static code and value sequences in Fig. 1. One
could continue this approach and define a model based on
the static program image. If this is done, however, evalu-
ation of “predictability” becomes difficult, because the av-
erage prediction accuracy for the sequence generated by a
static instruction falls somewhere between 0 and 1. And
one must decide at what level of accuracy a static instruc-
tion becomes “predictable”. By using a dynamic model,
each instance of an instruction is either predictable or not.
So in terms of the dynamic instances there is no ambigu-
ity regarding predictability. And, by collecting statistics for
the entire dynamic execution, we are in effect achieving an
averaging over the program.

The dynamic predictability model has two principal
components, a predictor and a dynamic prediction graph
(DPG). We discuss the DPG in this section and describe
specific predictors in Section 3.

The DPG is an acyclic directed graph derived from the
dynamic dependence graph. Most nodes in the DPG corre-
spond to instances of executed instructions, and a static in-

struction appears in the DPG as many times as the number
of times it executes. A second node type is used to represent
input data values. That is, values that are not directly com-
puted by the program; these could be statically allocated
or be the result of a program input operation. To simplify
figures, we generically label these nodes with a D for data.
Immediate values specified in an instruction are considered
to be part of the instruction; they are not passed in as data
values and are therefore never predicted. However, when
collecting data, we keep track of instructions using imme-
diate data because these affect predictability significantly.

A directed arc connects nodes u and v if there is a true
data dependence from dynamic instruction u to v. The in-
degree of a node is determined by the number of instruction
source operands, whereas the out-degree of a node is deter-
mined by the number of its dependent instructions. Note
that for a load instruction the in-degree is the number of ad-
dress operands plus the number of stores the load depends
on.

The predictor component of the model is used to predict
the result (output) of an instruction at the time it is produced
and predict instruction inputs at the time they are consumed.
Note that a result value that is fanned out to the sources of
many dynamic instructions is predicted once when it is pro-
duced and many times when it is later consumed. Each arc
in the graph is labeled with a pair � x,y � , x,y ��� p,n � . The
first element of the pair is associated with the tail of the
arc and indicates whether the producing instruction’s result
was predicted (p) or not predicted (n) correctly. The sec-
ond element of the pair indicates whether the consuming
instruction’s source operand was predicted correctly.

D (data) nodes only have output arcs. By definition, all
out-arcs from data nodes are labeled � n,y � , y ��� p,n � ; i.e.
an initial data item is inherently not predictable. But it may
be predicted correctly when used as an input operand by
other instructions.

Generation, propagation, and termination of predictabil-
ity can all be defined in terms of the DPG; this is most easily
done pictorially (in Fig. 2). We show immediate values (i)
inside nodes, as they are part of the instruction. Arc behav-
ior is self-evident. Predictability is generated by a node if
it has no correctly predicted inputs, yet the output is pre-
dicted correctly. Predictability is propagated by a node if it
has at least one correctly predicted input and the output is
predicted correctly. Predictability is terminated by a node
if its output is not predicted correctly, but at least one of its
inputs is. Immediate values may or may not be present in
any of these cases.

To illustrate the parts of the prediction model defined
thus far, Fig. 3 contains a portion of the DPG for the first
three iterations of the example code in Fig. 1 with the arcs
labeled using a stride predictor.

Instruction 1 has an immediate value 5 and takes a value

n

p

p
Generation:

p

Propagation:

Termination:

p

i

p

n

Node Arc

i

p

p

p

n

n

p

p

p p,n

i

p

nn

i

n

pp,n

i

Figure 2. Predictability Definitions

from instruction 0 via register $6. In the first instance of
instruction 1, its output is predicted incorrectly – the pre-
dictor’s state is such that it does not recognize a pattern in
the input values. The first instance of instruction 2 is simi-
lar; non-immediate input and output are both predicted in-
correctly. However, after the first instance, the inputs and
outputs of both instructions become predictable because of
generation on the arc between instructions 9 and 1, propa-
gation through instruction 1, and propagation along the arc
between instructions 1 to 2.

To illustrate memory operations, instruction 4 is a load
instruction that reads a value that was stored earlier. Note
that the value being read from memory is considered an in-
put value to the load; the value placed in the result register
is considered to be an output.

The model as presented does not directly capture the in-
fluence of control instructions on predictability (for exam-
ple, branch and some jump instructions do not have any data
dependent successors). Control instructions are important,
however, and we attempt to model them – albeit in an ad hoc
way. For branch and jump instructions, we depart slightly
from a proper graph model by providing output arcs for
branch directions and target PCs. However, these arcs do
not connect to other nodes. This allows us to determine the
influence of data predictability on control predictability.

To model the influence of control on data predictabil-
ity, we focus on the way control flow affects the passing of
data values between instructions. Because of control flow
structures such as loops, a particular instance of a static in-
struction (corresponding to a single node in the DPG) may
pass the same data value to multiple nodes in the DPG that
all correspond to the same static instruction. When this hap-
pens, all such arcs passing the same data value are defined
to be repeated-use arcs. If there is only one arc passing a
value from a node to the instances of a given static instruc-
tion, then it is defined to be a single-use arc.

+

lw

>>

+

lw

>>

+

lw

>>

sw

0x8000bfff0x1002f8b0

+

(data)
0x1002f8b0
(address)

Single Loop Iteration

&1

beq 0

<<2

+1

slti 64

bne 0

0+0

>>5

<<2

&31

bne 0

slti 64

+1

&1

beq 0

>>5

>>5

<<2

+1

slti 64

bne 0

&31

&31

&1

beq 0

p

p

p

p p

p

n

n
n n
n

n

n

nn

n
n

n

n

n
n

n

n
n

p

p

n

p

p

p

p

p
p

p
p

p

p
pp

p p
p

p

n
n

p
p

p

p
p

p
p

p

p

p
p

p

p
pp

p
p p

p

p

n
n

p
p

p

p

p
p

p
p

p

(output value)

0

1

2

3

4 5

6

7

8

9

10

11

1

2

3

4

6

7

8

1

2

3

4

6

7

8

9

10

11

9

10

11

Figure 3. DPG for code in Fig. 1

3 Simulation Methodology

Trace driven simulation was used to build the DPGs for
some of the SPEC95 benchmark programs (all integer and
representative floating point.) The simulator is based on the
SimpleScalar toolset [3]. Benchmarks were compiled using
the gcc compiler provided with the toolset using -O3 opti-
mization.

DPG statistics are shown in Table 1. We note that the
ratio of edges to nodes is about 1.5 for integer benchmarks
and about 1.7 for floating point benchmarks. This fraction
is a rough indicator of the number of immediate instruction
values. The fraction of D nodes is negligible; fewer than .03
percent. Most of the benchmarks have fewer than 1 percent
arcs connected to D nodes; the largest fraction is 2.6 percent
(for m88ksim).

Predictability behavior was studied for three predictors:
last-value, stride, and context–based. We chose these three
predictor types because the first two are commonly pro-
posed, and because the third (with a large prediction table)
has the best prediction performance we have been able to
produce thus far – although the design space for data pre-
dictors has barely been explored.

The last-value predictor is based on one proposed in [10]
with 2 �

�
entries and a 2 bit saturating counter replacement

policy. In general, it predicts that a value is the same as the
last time. The counter provides hysteresis; for example, the
prediction value is replaced when the counter indicates two
bad predictions in a row.

The stride predictor is the 2-delta predictor, first pro-
posed for addresses in [5], with 2 �

�
entries. This predictor

Benchmark Input Nodes Arcs
Flags (mil) (mil)

compress 400000 e 2231 102 142
gcc gcc.i 200 286
go 9 9 132 183
ijpeg specmun.ppm 128 196
perl scrabbl.in 39.8 59.0
m88ksim modified train 119 161
vortex modified train 101 149
xlisp 7 queens 199 292
applu 5x5x5 grid 60.0 99.6
fpppp 4 atoms 149 266
mgrid 32x32, 8 iter 119 219
swim 256x256 grid 199 326

Table 1. Benchmark Characteristics

uses hysteresis to replace the predicted stride only when a
different stride appears twice in a row.

The context-based predictor is a version [13] of the pre-
dictor proposed in [14]. The predictor uses a two level table,
similar to two level branch predictors [18], and is shown in
Fig. 4. The first level table has 2 �

�
and the second level

table 2
���

entries. A first level table is accessed with a trun-
cated instruction program counter (PC). The first level entry
holds the last 4 values (in hashed form) produced by the in-
struction(s) that reference that entry – there can be aliasing
in the tables. These 4 values form a “context” that is used
to access the second level table. The second level table con-
tains a predicted next value and a 3-bit saturating counter to
guide replacement. An important property of the context-
based predictor is that the second level table is shared. This
does affect results and was done in part to reduce the mem-
ory required by our simulations. It also enables some in-
structions to benefit from the learned behavior of another
instruction, although destructive interference is also possi-
ble. Sharing effects will be discussed when they affect re-
sults significantly.

Value predictors were used to predict all inputs and out-
puts of instructions with the exception of conditional branch
directions for which a 64K entry gshare predictor is used
[11]. The use of a branch predictor enables us to study the
relation between branch and value predictability (Section
5). This particular branch predictor was chosen because it
represents one of the better performing. An interesting al-
ternative would be a two-level predictor that more closely
mirrors the structure of the context-based predictor.

For all three prediction methods, we used separate, but
identical, predictors for instruction inputs and outputs to
prevent direct input/output prediction “short circuits” in-
volving the same dynamic instruction. But, for certain in-
struction types that always pass an input value through to
the output, only the input is predicted and the same pre-
dictability is assigned to the output. This was done for
memory instructions and register indirect jumps. As a re-

Context

Prediction

PC

Hysteresis for
Replacement

 2nd Level
Value Prediction Table

(Previous Values)

 1st Level
Value History Table

Figure 4. Two Level Context-Based Predictor

sult such instructions never generate predictability.
An important caveat is that the predictors are immedi-

ately updated following a prediction. Introducing delayed
update timing would have imposed particular implementa-
tion idiosyncrasies that may have limited the scope of the
results in other ways.

4 Simulation Results

4.1 Overall Results

In Fig. 5 we present the overall generation, propagation
and termination behavior of nodes and arcs. To permit rel-
ative comparison between node and arc behavior, through-
out the paper the y-axes are expressed as a percentage of
the total nodes and arcs. There is a set of bars for each
benchmark. Each set gives results for all three predictors:
last-value (L), stride (S), context-based (C). The two sets
of bars at the right are averages of the integer and floating
point benchmarks. Averages are calculated as the arithmetic
mean. Note that the sum of all arcs and nodes for each case
is less than 100%. The missing portion corresponds to the
fraction of nodes and arcs that propagate unpredictability;
i.e. have all unpredicted inputs and outputs.

All benchmarks appear to follow similar trends, i.e.
there is cross-program consistency regarding predictability.
Context-based prediction works better, as expected. Nodes
and arcs tend to generate about the same amount of pre-
dictability, and their propagation is also similar – with arcs
propagating slightly more than nodes. However, signifi-
cantly more predictability is terminated at nodes than on
arcs; reasons will be given later. Overall, propagation is
the dominant predictability behavior. By adding the middle
(darker) segments of the node and arc graphs, we see that on
average 40%–65% of the nodes/arcs in the integer bench-
marks and 25%–60% in the floating point benchmarks (de-

0

5

10

15

20

25

30

35

40

45

L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C

O
ve

ra
ll

N
o

d
es

 (
%

 o
f

N
o

d
es

, A
rc

s)

Term

Prop

Gen

com gcc go ijp per m88 vor xli app fpp mgr swm INT FLOAT

0

5

10

15

20

25

30

35

40

45

50

55

60

L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C

O
ve

ra
ll

A
rc

s
(%

 o
f

N
o

d
es

, A
rc

s)

Term

Prop

Gen

com gcc go ijp per m88 vor xli app fpp mgr swm INT FLOAT

Figure 5. Overall Node and Arc Predictability

pending on the predictor used) propagate predictability.
In the following three subsections, we provide more de-

tailed results for predictability generation, propagation, and
termination.

4.2 Generation of Predictability

We first consider generation of predictability. Although
the generate nodes and arcs comprise a small fraction of all
nodes and arcs, an important point is that their overall in-
fluence is bigger than their numbers: a single generate can
affect the predictability of many instructions via propaga-
tion. This is explored further in Section 4.5.

Our first conclusion is that predictability is most com-
monly generated by iterative control flow (e.g. as in loops).
In terms of the graph model, iterative control flow appears
as repeated-use arcs that generate predictability. In terms of
programs, these arcs occur frequently when an instruction
outside a loop initializes a memory or a register with a value
that is unpredictable at the time it is generated, yet, because
of repeated-use inside the loop the value is predictable.

To support our first conclusion, refer to Fig. 6. Note

0

1

2

3

4

5

6

7

8

L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C

N
o

d
e

G
en

er
at

es
 (

%
 o

f
N

o
d

es
,A

rc
s)

i,n->p

n,n->p

i,i->p

com gcc go ijp per m88 vor xli app fpp mgr swm INT FLOAT

0

2

4

6

8

10

12

14

16

L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C

A
rc

 G
en

er
at

es
 (

%
 o

f
N

o
d

es
,A

rc
s)

<1:n,p>

<r:n,p>

<rd:n,p>

<w1:n,p>

com gcc go ijp per m88 vor xli app fpp mgr swm INT FLOAT

Figure 6. Node and Arc Generation

that y-axes of both graphs are expressed in the same units:
percentage of total nodes and arcs, but the upper graph is
scaled to cover a smaller range. In the arc generation graph,
the bottom three segments all correspond to repeated-use
arcs. With stride and last-value prediction, these three seg-
ments account for much more more generation than any of
the other segments; for context-based prediction, single-use
arcs (discussed below) provide about as much. We divided
the repeated-use arcs into three segments for more detailed
understanding of the phenomena at work.

The bottom segment, denoted � w1:n,p � , occurs when
a static source instruction producing the value executes only
once during the entire lifetime of the program. We call this
repeated-use write-once control flow. An example of pro-
gram behavior that can lead to write-once generation is the
use of a global data pointer.

The second segment, denoted � rd:n,p � , occurs when
the source data value comes from program input data
(data nodes). We call this repeated-input use control flow.
Reads from statically allocated arrays can lead to repeated-
input use predictability. Generation due to write-once and

repeated-input use is important because their corresponding
values remain invariant for a long time (often for the entire
program execution) and offer potential for static/dynamic
specialization.

The third segment from the bottom includes all the other
cases of repeated-use, i.e. where the source instruction is
executed multiple times, and is denoted as � r:n,p � .

Intuitively, repeated-use arcs would most often result in
last-value predictability, and in the integer benchmarks this
borne out. Stride prediction and context-based prediction
include last-value prediction as a special case, yet they pro-
vide similar generation for repeated-use arcs. On floating
point benchmarks, context-based prediction does provide
more generation, but this is mainly caused by programs that
repeatedly scan the same array of input data. Context-based
predictors generate predictability at these points.

The second conclusion regarding generation is that
single-use arcs also contribute significantly to generation,
especially for context-based prediction. These arcs are de-
noted � 1:n,p � in the bottom graph of Fig. 6. In terms of
program structure, these often occur when the producing
and consuming instructions are in different basic blocks,
and they are separated by some kind of “filtering” condi-
tional branch that converts the unpredictable producer se-
quence into a predictable consumer sequence. A simple
case occurs when a branch tests a relatively hard-to-predict
sequence for some constant value. Any consuming instruc-
tions on the true path of the branch will see a very pre-
dictable (i.e. constant) sequence. Context-based prediction
works better than last-value or stride for single-use because
of cases where filtering branches test for a range of val-
ues. Constructive sharing in the prediction table also helps
context-based prediction for these cases.

The third conclusion regarding generation is that instruc-
tions with all immediate inputs are responsible for most of
the predictability caused by instructions. Results for node
predictability generation are shown in the top graph of Fig.
6. Instructions with only immediate values are denoted as
i,i– � p . In terms of programs, these occur for load imme-
diate instructions or when instructions initialize a register
(typically to zero).

Generation also occurs at some nodes when there is at
least one unpredicted input. These cases are denoted with
n,n– � p and i,n– � p in the graph. The majority of these,
70%-95%, depending on the predictor used, are due to
branch, compare, logical, and shift instructions. These op-
erations often produce few unique output values and often
produce the same value for many consecutive executions.
That branches and compares have few output values is ob-
vious. Logic operations often use masks that select a small
number of bits, and shifts often have large shift counts that
clear out large number of bits (see instruction 1 in Fig 1).
Often the shift count or logical mask is an immediate, so

the majority of the time one of these instruction generates
predictability, it involves at least one immediate value.

For node generation, mgrid stands out; it has almost no
generation at nodes because very few instructions in this
benchmark have immediate inputs.

4.3 Propagation of Predictability

Most propagation occurs on single-use arcs, denoted as
� 1:p,p � in the bottom graph of Fig. 7. This should be ex-
pected because single-use arcs include all the dependences
between instructions in the same basic block.

Propagation through repeated-use arcs, denoted as
� r:p,p � , occurs more often in the floating point bench-
marks and happens in doubly nested loops where the output
value of an instruction in the outer loop is predictable and
an inner loop makes repeated-use of that value. Propagation
due to � w1:p,p � arcs is rare and shown for completeness.

Propagation through nodes most often occurs when all
inputs are predictable. These cases are denoted p,p– � p
and p,i– � p in the top graph of Fig 7. This is expected
behavior – if all inputs of an instruction are predictable, the
output is often predictable as well.

Memory instructions are responsible for most of the
nodes that propagate predictability and have an unpre-
dictable input (denoted as p,n– � p). These propagates occur
when data is predictable but the register used to calculate the
address is not.

4.4 Termination of Predictability

Most termination of predictability happens at instruc-
tions where a predictable input is combined with an unpre-
dictable input, and the instruction output is unpredictable.
These are shown in the top graph of Fig. 8, and are denoted
p,n– � n. Additional analysis (not given here) revealed that
this is caused primarily by memory instructions with pre-
dictable addresses but unpredictable data. The remainder
of the p,n– � n terminations are mostly due to integer or
floating add instructions.

Another significant cause of termination occurs because
of control flow and is similar to the “filtering” described for
the generation of predictability. However, in this case the
filtering terminates predictability. That is, the producer and
consumer instructions may be in different basic blocks with
a conditional branch in between. Even though the producer
instruction has a predictable output, the conditional branch
only allows the consumer to see some proper subset of the
producer instruction’s outputs. Because only a subset is ob-
served at the consumer, they may be much less predictable.
In terms of the graph model, these are single-use arcs and
are denoted as � 1:p,n � in the lower graph of Fig. 8.

0

5

10

15

20

25

30

35

40

L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C

N
o

d
e

P
ro

p
ag

at
es

 (
%

 o
f

N
o

d
es

, A
rc

s) p,i->p

p,n->p

p,p->p

com gcc go ijp per m88 vor xli app fpp mgr swm INT FLOAT

0

5

10

15

20

25

30

35

40

45

50

L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C

A
rc

 P
ro

p
ag

at
es

 (
%

 o
f

N
o

d
es

, A
rc

s)

<1:p,p>

<r:p,p>

<w1:p,p>

com gcc go ijp per m88 vor xli app fpp mgr swm INT FLOAT

Figure 7. Node and Arc Propagation

Control flow termination also occurs when different in-
stances of the same static instruction consume values pro-
duced by different static instructions. The values produced
by some of the static instructions are predictable, but their
combination may not be. This suggests predictors that com-
bine values with the PCs of producing instructions. Termi-
nation due to � w1:p,n � arcs is negligible and shown for
completeness.

Turning back to nodes, one would expect termination
when all instruction inputs are predictable to be rare. And
for last-value and stride prediction, they are indeed rare.
These cases are denoted p,p– � n and p,i– � n in Fig. 8.
For context-based prediction, however, p,p– � n and p,i– � n
nodes are much less rare. This is often due to the limited
context history length maintained in the predictor. Consider
the sequence that consists of the integers from 0-9, repeat-
edly. A context-based predictor would successfully predict
these values if its history length is one. However if this
sequence is the input to an AND instruction and the other
input is a mask consisting a single 1 in the 4th bit position,

0

2

4

6

8

10

12

14

16

18

20

L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C

N
o

d
e

T
er

m
in

at
es

 (
%

 o
f

N
o

d
es

, A
rc

s)

p,i->n

p,n->n

p,p->n

com gcc go ijp per m88 vor xli app fpp mgr swm INT FLOAT

0

1

2

3

4

5

6

L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C L S C

A
rc

 T
er

m
in

at
es

 (
%

 o
f

N
o

d
es

,A
rc

s)

<w1:p,n>

<r:p,n>

<1:p,n>

com gcc go ijp per m88 vor xli app fpp mgr swm INT FLOAT

Figure 8. Node and Arc Termination

the output sequence becomes 00000000110000000011... A
context-based predictor with history length one will now
yield some mispredictions each time through the repeating
sequence. Further analysis (not detailed here) shows this
often happens with compare, logical, shifts, and branch in-
structions. This suggests that when predicting the output
values of these instructions, it may be beneficial to correlate
with (possibly predicted) input data values of the same or
preceding instructions.

4.5 Path Behavior

Thus far, we have analyzed the three major components
of predictable behavior separately. It is perhaps more inter-
esting to consider their inter-relationships. In particular, we
focus on predictable paths. A predictable path begins at a
generate node or arc, and includes only propagate nodes and
arcs. An interpretation of paths is that all predictable values
along a path owe their predictability to the original genera-
tor(s). Or, conversely, a specific generator may influence a
number of predictable values “downstream”.

We conjecture that paths indicate potential correlation

0

5

10

15

20

25

30

35

40

45

50

N M I C D W

P
ro

p
ag

at
es

 -
 S

P
E

C
IN

T
95

 (
%

 o
f

 N
o

d
es

,A
rc

s)

L

S

C

0

2

4

6

8

10

12

14

16

18

C I M IC M
C

M
IC

C
W

M
C

W

M
IC

D
W

M
IC

W M
I

IC
W IW N

M
ID

W

IC
D

M
C

D
W

M
IC

D

D
W W ID

IC
D

W C
D

P
ro

p
ag

at
es

 -
 S

P
E

C
IN

T
95

 (
%

 o
f

N
o

d
es

,A
rc

s)

L

S

C

Figure 9. Overall and Combinations Contribu-
tion of Generates to Propagation

among values. That is, a predictable value upstream prob-
ably correlates well with a predictable value downstream
along a predictable path. This can potentially be used to
aid in prediction. The distance between the two may indi-
cate how early a correlating value is available, and the paths
flowing into a given node may indicate the upstream values
that should be used for correlation.

Note that all subpaths of a path are considered as paths.
This leads us to analyze all the predictable paths, and for
each determine the generating node or arc at its beginning.
These, in effect, are the sources of predictability.

In doing the path analysis, we combine some of the gen-
eration classes. In particular we consider the following six
major classes of generators:

C, control flow, including both � r:n,p � and � 1:n,p � .
D, input data, � rd:n,p � .
W, write-once, � w1:n,p � .
I, nodes, all immediate inputs , i,i– � p.
N, nodes, all inputs unpredictable, n,n– � p.
M, nodes, mixed immed. and unpredict. inputs, n,i– � p.

Results given in Fig. 9 are for all three predictors and are
averages over the integer benchmarks. The graphs show the

percentages of propagating arcs and nodes on predictable
paths beginning at the various classes of generators. The
top graph in the figure shows the overall contributions from
each generator type. Note that in the top graph, a given arc
or node can be included more than once if it is on paths from
more than one generator class. The results indicate that the
dominant mechanism influencing predictability is control
flow. For context-based predictors, generation at single and
repeated-use arcs initiate predictable paths that include 45
percent of all arcs or nodes in the DPG. Instructions with
only immediate inputs are the second most important gen-
erator. With context-based prediction, they initiate paths
comprising about 30 percent of the DPG graph.

On the other hand, the predictability influenced by pro-
gram input data (D) is relatively small. This leads us to
the general conclusion that most predictability is caused by
program structure and internal data values, i.e. control flow
and immediates, and not by program input data.

The bottom graph in Fig. 9 shows the contributions of
specific combinations of generators; these are the top 24
combinations when sorted with respect to their set sizes for
context-based prediction. In this graph, a given arc or node
is only counted once. The set labeled “C” is the percent-
age of arcs and nodes that are influenced only by control
flow generation. This is the largest set for all three predic-
tors, containing roughly 12 to 17 percent of the arcs and
nodes, depending on the predictor. The set “I” are influ-
enced only by i,i– � p generators; i.e. instructions that have
not data inputs. These account for 10 percent of the arcs
and nodes with last-value prediction, and suggest the use of
some form of specialization or dynamic constant propaga-
tion. The set “CI” are influenced by both control flow and
immediate generators. For two of the three predictors, CI
is the third largest set, and underscores the importance of
control flow and immediates. For the context-based predic-
tor, CI is the fourth largest set. The set of “M”, nodes with
mixed unpredictable and immediate inputs is slightly larger;
this again indicates the influence of immediate values.

We now expand our analysis to predictable trees. That is,
a generator node or arc is at the start of multiple predictable
paths, which, collectively, form a tree. For this analysis, we
concentrate on a few specific benchmarks.

Fig. 10 illustrates some of the characteristics of the
predictability trees for the benchmark 126.gcc using the
context-based predictor. The curve marked “trees” shows
the lengths of the longest paths within predictable trees.
This is a cumulative graph, so, for example, about 90 per-
cent of the generates form trees with longest paths contain-
ing 8 or fewer propagating nodes and arcs. This graph in-
dicates that most of the predictable trees are relatively shal-
low. However, a few of the trees are very deep, and include
a large number of the propagate nodes and arcs. This is
shown in the second curve labeled “aggregate propagation”.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Longest Path Length (Nodes, Arcs)

(%
)

Trees

Aggregate Propagation

Figure 10. Longest Tree Path and Aggregate
Propagation

Aggregate propagation is the total number of nodes and arcs
in all trees. This graph shows, for example that 80 percent
of aggregate propagation is due to trees with longest path
length 256 or more. Hence, relatively few generates influ-
ence a large proportion of the predictability. This suggests
that predictors that correlate on a few points of generation
can be used in making a large proportion of predictions.

Taken collectively, the predictability trees are intermin-
gled to form the predictable regions. That is, a given prop-
agate node or arc can belong to multiple trees. Hence, one
can start at a propagate node or arc and trace back to gener-
ator nodes and arcs, and get additional information. The top
graph in Fig. 11 shows the number of generates that influ-
ence a given propagate for the benchmarks 129.compress,
099.go, and 126.gcc, with the context-based predictor. This
is also a cumulative graph. The data indicate that about
70%–85% of the propagates are influenced by fewer than 4
generates. This suggests that the predictability trees are not
highly intermingled. It also indicates that to predict a value
by correlating with all of its upstream generators, relatively
few correlating values would be needed.

The bottom graph in Fig. 11 shows the distance between
a propagate and the earliest generate that influences it. That
is, the longest distance along a propagating path from any
generate to the propagate node or arc under consideration.
This is also a cumulative graph. For a simple control flow
program (loop dominated such as compress) about 50% of
the propagate nodes/arcs are no more than 64 nodes and arcs
away from the farthest generate that influences them. On
the other hand, these lengths are greater for complex control
programs, go and gcc, where about 50% of the propagates
are influenced by a generate 1024 or more away. Such dis-
tances may indicate how early a correlated prediction can
be made, i.e. when correlating on the earliest generator.

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 >64

Number of Generates Influencing a Propagate

%
 o

f
P

ro
p

ag
at

es

com

gcc

go

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512 1024 >1024

Dynamic Distance of a Propagate from its Generate(Number of Nodes, Arcs)

%
 o

f
P

ro
p

ag
at

es

com

gcc

go

Figure 11. Number of Generates Influencing
a Propagate and Dynamic Distance between
Propagates and Generates

4.6 Predictable Contiguous Sequences

Although these results do not come from the graph
model, because they are not based on dependences, it is in-
teresting nevertheless to consider contiguous sequences of
predictable instructions in the dynamic instruction stream.
These are instructions where all inputs and outputs are cor-
rectly predicted. We feel this is of interest because an imple-
mentation using predictability may work better on contigu-
ous sequences of instructions rather than single instructions.

Fig. 12 shows the number instructions (nodes) contained
within instruction sequences of different lengths. This
graph includes averaged benchmark data for all three pre-
dictors and integer benchmarks.

The data show that fairly long predictable sequences are
common with all three predictors. For example, with the
context predictor, 13% of the instructions are in blocks of
length 9-16. By adding data points, it can be determined
that 40% of the instructions, with the context-based predic-

0

2

4

6

8

10

12

14
1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
11

72

%
 o

f
In

st
ru

ct
io

n
s

L-INT

S-INT

C-INT

Figure 12. Predictable Sequence Length

tor, are in sequences containing 9-256 instructions. Last
value prediction is also interesting. The data show that
many instructions occur in sequences where all instructions
have the same inputs and outputs as their previous execu-
tion.

5 Branch Instructions

In this section we apply the predictability model to con-
ditional branch instructions, and consider ways that data
predictability may affect branch predictability.

Fig. 13 shows the predictability behavior of all branch
instructions for the integer benchmarks. Recall that branch
outputs are predicted with a 64K entry gshare predictor.
The x axis of the graph is labeled using notation similar to
that we have been using. Only branch instructions (nodes)
are considered. Branches that generate or propagate pre-
dictability are labeled x,y– � p, where x and y are either n,
p, or i. Mispredicted branches are labeled x,y– � n. The
overall prediction accuracy of gshare was 93%.

Many of the branch nodes propagate predictability; i.e.
when their output is predictable they have at least one input
that is value predictable. This is the case for 70%-82% of
the branches, depending on the predictor used. Only a small
fraction of branches 1%–2% are predicted correctly when
all inputs are unpredictable values.

It is perhaps more interesting to consider mispredicted
branches. The data show that branch mispredictions when
all inputs are unpredictable are relatively rare (fewer than
0.5% of all branches). Branches with only unpredictable
inputs and immediate values account for about 2% of the
branches. Slightly over half of the branch mispredictions,
however, occur when all input values are predictable (p,p–
� n or p,i– � n). This suggests that branch prediction can be
enhanced by incorporating data values into the predictor in

0

2

4

6

8

10

12

14

16

18

20

22

24

n,n->p n,i->p p,n->p p,p->p p,i->p p,n->n p,p->n p,i->n n,n->n n,i->n

B
ra

n
ch

es
-S

P
E

C
IN

T
95

 (
%

)

L

S

C

50 51 62

Figure 13. Branch Predictability Behavior

some form – for example, including input values from pre-
vious instances of the same static branch in a history regis-
ter. Updating the history in a deterministic way would be
significant design issue, however.

6 Summary and Discussion

We have developed a model for studying program value
and control predictability. In terms of the DPG, we de-
scribed some readily identifiable constructs that lead to pre-
dictability generation, propagation, and termination. The
relative contribution of the different causes for each be-
havior is investigated using three different predictors: last-
value, stride and context-based. First we studied the three
categories of predictability in isolation. We then performed
path analysis to determine which are the important sources
of predictability. Finally, we considered branch predictabil-
ity in terms of value predictability. Some of the more sig-
nificant results are:

� Most predictability can be traced back to program
control structure and immediate values. Program in-
put data are a relatively unimportant source of pre-
dictability.

� The majority of generates are at the beginning of
paths that propagate through fewer than 8 nodes and
arcs. However, a very small fraction of generates
originate very long paths and influence the majority
of the predictability.

� Predictability is often terminated by unpredictable
memory data or when a correctly predicted value is
combined with an incorrectly predicted value in an
instruction. Another significant way that predictabil-
ity is terminated is through single-use control flow.

That is, conditional branches between the producer
and the consumer causes irregularity in patterns read
from one or many predictable producers.

� Slightly over half of mispredicted branch instructions
have predictable input values.

There are a number of possible applications of the model.
One application is making better predictors. The model can
point to cases where there should be correlation among data
and control values. It may be advantageous to feed con-
trol information into data predictors and vice versa. Or data
values corresponding to different instructions may be cor-
related; for example, the value at a generate point may cor-
relate with values on paths that it originates. This suggests
that occurrences of p,p– � n and p,i– � n can possibly be ex-
ploited to improve prediction accuracy. That is, one could
perform output predictions by correlating on predecessor
instructions’ input values.

The model may also be used to explore new paradigms.
For example the large number of p,p– � p and p,i– � p
nodes and � p,p � arcs naturally suggest speculation and/or
reuse/memoization of regions with predictable nodes and
arcs. Regions could possibly start execution early, and/or be
precomputed or eliminated all together in hardware and/or
software.

Finally, as we did this work, it became evident that un-
predictability is as interesting as predictability. For exam-
ple, in the branch part of the study, insight was gained by
considering the behavior of the unpredicted branches. Sim-
ilarly, study of unpredictable values may give insight into
making them predictable; this remains for future research.

7 Acknowledgements

This work was supported in part by NSF Grants MIP-
9505853 and MIP-9307830 and by the U.S. Army Intelli-
gence Center and Fort Huachuca under Contract DABT63-
95-C-0127 and ARPA order no. D346. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of the U. S. Army Intelligence Center and Fort Huachuca,
or the U.S. Government.

The authors would like to thank Mike Smith for his valu-
able comments on an earlier version of this work and Sub-
ramanya Sastry for his suggestions in refining and better
understanding the predictability model.

References

[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and
Interpretation of Computer Programs. McGraw-Hill Book
Company, New York, 1985.

[2] J. L. Bentley. Writing Efficient Programs. Prentice-Hall Inc.,
New Jersey, 1982.

[3] D. Burger, T. M. Austin, and S. Bennett. Evaluating Fu-
ture Microprocessors: The SimpleScalar Tool Set. Technical
Report CS-TR-96-1308, University of Wisconsin-Madison,
July 1996.

[4] C. Consel, L. Hornof, F. Noel, J. Noye, and N. Volanschi.
A Uniform Approach for Compile and Run-time Specializa-
tion. Technical Report 979, INRIA, December 1995.

[5] R. J. Eickemeyer and S. Vassiliadis. A Load Instruction Unit
for Pipelined Processors. IBM Journal of Research and De-
velopment, 37(4):547–564, July 1993.

[6] J. A. Fisher. Trace Scheduling: A Technique for Global
Microcode Compaction. IEEE Transactions on Computers,
30(7):478–490, July 1981.

[7] F. Gabbay and A. Mendelson. Speculative Execution Based
on Value Prediction. Technical Report (Available from
http://www-ee.technion.ac.il/fredg), Technion, November
1996.

[8] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning Con-
fidence to Conditional Branch Predictions. In Proceedings
of the 29th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 142–152, December 1996.

[9] M. H. Lipasti and J. P. Shen. Exceeding the Dataflow Limit
via Value Prediction. In Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture,
pages 226–237, December 1996.

[10] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value Local-
ity and Data Speculation. In Proceedings of the 7th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 138–147,
October 1996.

[11] S. McFarling. Combining Branch Predictors. Technical Re-
port DEC WRL TN-36, Digital Western Research Labora-
tory, June 1993.

[12] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith.
Trace Processors. In Proceedings of the 30th Annual
ACM/IEEE International Symposium on Microarchitecture,
pages 138–148, December 1997.

[13] Y. Sazeides and J. E. Smith. Implementations of Context–
Based Value Predictors. Technical Report ECE-TR-97-8,
University of Wisconsin-Madison, Dec. 1997.

[14] Y. Sazeides and J. E. Smith. The Predictability of Data Val-
ues. In Proceedings of the 30th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pages 248–258,
December 1997.

[15] J. E. Smith. A Study of Branch Prediction Strategies. In
Proceedings of the 8th International Symposium on Com-
puter Architecture, pages 135–148, May 1981.

[16] A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. In
Proceedings of the 24th International Symposium on Com-
puter Architecture, pages 194–205, June 1997.

[17] K. Wang and M. Franklin. Highly Accurate Data Value Pre-
diction using Hybrid Predictors. In Proceedings of the 30th
Annual ACM/IEEE International Symposium on Microar-
chitecture, pages 281–290, December 1997.

[18] T.-Y. Yeh and Y. N. Patt. Two-Level Adaptive Branch Pre-
diction. In Proceedings of the 24th Annual ACM/IEEE In-
ternational Symposium on Microarchitecture, pages 51–61,
November 1991.

