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Abstract

High performance multi-core processors are becoming an
industry reality. Although multi-cores are suited for multi-
threaded and multi-programmed workloads, many applications
are still mono-thread and multi-core performance with a single
thread workload is an important issue. Furthermore, recent stud-
ies suggest that performance, power and temperature consider-
ations of future multi-cores may necessitate activity-migration
between cores.

Motivated by the above, this paper investigates the perfor-
mance implications of single thread migration on a multi-core.
Specifically, the study considers the influence on the performance
of a single thread of the following migration and multi-core pa-
rameters: frequency of migration, core warm-up modes, subset
of resources that are warmed-up, number of cores, and cache
hierarchy organization. The results of this study can provide in-
sight to architects on how to design performance-efficient power
and thermal strategies for a multi-core chip.

The experimental results, for the benchmarks and microar-
chitectures used in this study, show that the performance loss
due to activity migration on a multi-core with private L1s and a
shared L2 can be minimized if: (a) a migrating thread continues
its execution on a core that was previously visited by the thread,
and (b) cores remember their predictor state since their previous
activation (all other core resources can be cold).The analogous
conclusions for a multi-core with private L1s and L2s and a
shared L3 are: remembering the predictor state, maintaining
the tags of the various L2 caches coherent and allowing L2-L2
data transfers from inactive cores to the active core.

The data also show that when migration period is at least
every 160K cycles, the transfer of register state between two
cores and the flushing of dirty private L1 data have a negligible
performance overhead.

1 Introduction

For the past 40 years, technology advances have enabled con-
tinuous miniaturization of circuits and wires and decreases in
clock cycle time. Unfortunately, the shrinking and speeding up
of circuits has not been accompanied by a similar decrease of
the on chip power consumption [28, 10]. In fact, with each tech-
nology generation processors are becoming increasingly power-
inefficient. Power-inefficiency has at least two negative conse-
quences, shorter battery life for mobile devices [11] and higher
power–density [26, 3, 24]. A rise in power–density can produce

thermal hot–spots and cause timing errors, and even physical
damage to circuits. Consequently, power constraints may force
to limit the clock frequency and, therefore, pose a major perfor-
mance challenge for future microarchitectures.

The response from industry to this challenge are power and
thermal management strategies [26, 12, 9, 11, 6, 23], and from
academia a plethora of methods that facilitate power and tem-
perature aware design.

At the same time, diminishing returns from increasing the
issue width on superscalar processors have lead to the emergence
of single-chip multi-core processors [22]. A two-way multi-core
is already a reality [29, 15, 20, 1, 14] and with increasing on-
chip capacity many more cores will soon be available on a single
chip [8, 16]. Multi-cores offer the means to increase thread
and program level parallelism but they can also be leveraged to
overcome power limitations using activity–migration [19, 13]
between cores.

Activity–migration in a heterogeneous multi-core [19, 18]
can improve power-efficiency by transferring the execution of
a thread to a core that better matches its power needs. On a
homogeneous multi-core, activity-migration can help alleviate
the power-density(temperature) problem by distributing power
consumption more uniform over the entire chip.

Nonetheless, while multi-cores can be efficiently designed
and built, many applications remain single-threaded. Therefore,
multi-core performance for a single thread workload is a major
issue. This paper investigates the performance implications of
activity migration when a single thread executes on a multi-core.

A multi-core capable of thread migration may have additional
requirements, as compared to a conventional multi-core. In par-
ticular, every migration requires, for correctness, the transfer
of some state, such as architectural registers, from one core to
the other. Furthermore, microarchitectural structures in the new
core, such as caches and predictors, may provide better perfor-
mance when they are warmed-up. A resource on an inactive core
can be warmed-up by explicit updates from a currently executing
core and/or can remain warm by retaining its state from its last
activation.

We explore various dimensions of the design space of a
multi-core that facilitate thread migration. In particular, we
will consider the following parameters: latency and frequency
of migration, core warm-up modes, subset of resources that are
warmed-up, number of cores, and cache hierarchy organization.
One of our main goals is to understand the effects of thread
migration over a range of migration periods. We do not, there-
fore, consider migrations that are triggered by “real” criteria but
rather we examine the behavior with various fixed interval sizes



and for several random distributions assuming a constant clock
frequency.

Our intention is to provide the designers of a multi-core pro-
cessor, with insight on the impact of thread migration on perfor-
mance and with information on how to best design a power and
thermal strategy for a multi-core microarchitecture that supports
activity-migration.

The main findings of our work, is that the performance losses
due to activity migration for a multi-core with private L1 and
shared L2 caches can be minimized by remembering the pre-
dictor state between migrations while all other resources can be
turned off. For multi-cores with private L1 and L2 but shared
L3 it may be necessary to remember the predictor state, main-
tain the tags of the L2 caches coherent and allow L2-L2 data
transfers from inactive cores to the active core.The results also
show that the migration latency for transferring register state and
flashing local data cache is not critical to performance provided
migration period is at least 160K cycles.

The paper is organized as follows. In Section 2 we discuss
related work. Section 3 describes the microarchitecture and
presents the migration model used in this study and discusses
its various parameters. Section 4 presents the simulation frame-
work. The experimental results and their discussion are given
in Section 5. Section 6 presents possible applications where the
findings of this work can be useful for. Section 7 concludes the
paper and provides direction for future work.

2 Related Work

To the best of our knowledge, the notion of activity mi-
gration as the means to reduce power–density was indepen-
dently proposed by [19, 13]. In [19] a microprocessor with
two pipelines is suggested, a primary high-power out-of-order
superscalar pipeline and a low-power in-order pipeline. When
thermal-sensors detect a hot-spot while executing in the primary
pipeline, execution can migrate to the secondary pipeline to re-
duce temperature. Activity migration at regular time intervals
was investigated in [13] to increase the sustainable power dissi-
pation for a given constant peak temperature or to reduce tem-
perature for a constant frequency. The experimental evaluation
considered various configurations of a superscalar processor that
have one or more duplicated resources. The best performance
was obtained when having an entire pipeline duplicated and mi-
grating execution across the two pipelines.

Activity migration techniques for reducing power–density
were also considered in previous temperature work [27] where
access to an overheated integer register file are directed to a du-
plicated register file until the primary cools down, and for clus-
ter microarchitectures where activity migrates between back-
end processing elements [5]. Another [25] recently proposed
approach to reduce power-density is to leverage simultaneous-
multithreaded (smt) cores in a multi-core to co-schedule pro-
cesses that stress complementary resources and to migrate a
thread from an overheated core to a core with an available smt
context.

Activity migration for better power-efficiency was proposed
by [19, 17]. In [19] migration to a low-power pipeline occurs

when extended battery-life is required for executing a lightweight
application. In [17] a heterogeneous chip-multiprocessor is pro-
posed to facilitate power-efficiency by migrating, at the granu-
larity of an operating-system interval, a process to the core that
is expected to provide the best power-efficiency.

What distinguishes our work, from earlier activity-migration
research, is the problem parameters we consider and the analysis
of their combined effects.

The work that most closely resembles ours is the seminal
work on activity migration [13]. The study in [13] considers
various types of resource replication to address the power-density
problem when a single thread is executing on a chip. One of the
migration scenarios examined was effectively for a dual multi-
core. However, the study in [13] did not quantify the effect
and interaction of several parameters, for example the impact of
changing migration frequency, increasing the number of cores,
the subset of resources that are warmed-up, the warm-up modes,
cache hierarchy etc.

We note that this paper is an extended version of a previously
published report [7].

3 Migration Model

In this section we present first the microarchitecture of the
multi-cores used in the study and then discuss the model for
migration in these multi-cores.

3.1 Multi-core Architecture

This work considers two types of multi-core architectures
that differ mainly in their cache organization. In the first type
of multi-core, shown in Fig. 1.a, each core has private L1 data
and instruction caches and a shared L2 cache. Both the L1 data
and L2 caches are write-back and write-allocate. For the second
multi-core architecture, shown in Fig. 1.b, the L1 and L2 caches
are private and the L3 cache is shared. The L1 is a write-through
non write-allocate whereas both the L2 and L3 are write-back
and write-allocate. Neither of the above architectures maintains
cache inclusion. This means that cache coherence transactions
on the multi-cores with private L2 will need to check the tags of
the L1 cache [2]. Next we introduce the model for describing
migration scenarios and trade-offs.

3.2 Thread Migration Model

The various phases required in our model for a thread migra-
tion between two cores are illustrated in Fig. 1.c. During the
execution of a thread on a core, P1, there is a need for migration,
for instance a temperature threshold has been reached, and it is
decided that the execution should be transferred to an inactive
core, P2. As soon as this decision is made, a migration signal
is send to the two cores and P2 is activated. When P2 is acti-
vated, it enters first the initialization-phase where its resources
are turned-on. Some resources on inactive cores may be already
on to preserve their state between activations for performance
reasons. However, it may be undesirable to keep all resources
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Figure 1. (a) Multi-core with private L1 caches and shared L2, (b) Multi-core with private L1 and L2 caches
and shared L3, and (c) Different Phases for a Thread Migration from core P1 to core P2

on since the power consumption of inactive cores may limit the
potential of activity-migration. During the initialization phase
of P2, core P1 continues in normal execution and therefore per-
formance is not hurt. However, the length of the initialization
phase places a limit as to how often we can migrate. According
to [17] bringing up a core that is completely shut down requires
about one thousand cycles. We also assume that our worst case
initialization latency will require one thousand cycles and, there-
fore, the smallest migration interval we consider is larger than
that.

After the initialization-phase, we may need to enter the train
phase where some of the resources of P2, such as caches and
predictors, are trained based on the outcome of instructions exe-
cuting on core P1. Training may require a dedicated update-bus
for communication between cores. The length of a train phase
should not be very long because training occurs when a tempera-
ture or power threshold is exceeded on P1, and together with the
initialization phase place a limit to the frequency of migration.
Furthermore, the train phase incurs its own energy overhead due
to the update-bus activity. So a balance must be reached be-
tween the expected performance benefit and the length of the
train phase. At the tail of the train phase the pipeline of core P1
is flushed. In the experimentation we will investigate whether it
is necessary to have a train phase.

At this point the necessary-update phase can commence. This
is the phase where state essential for correctness is updated.
During this phase the architectural register state is transferred
from P1 to P2, and the dirty cache blocks, in a private cache
to be turned off in P1, are written in a lower level cache. The
write-back is necessary so that the loads from the new core get
the correct memory data. The length of this phase depends on the
number of registers, latency and bandwidth of register transfer,
number of dirty blocks and the write-back latency. If the register
transfer and the cache flushing occur in parallel, then whichever
takes longer to complete determines the latency of a necessary-
update phase. Note that the latency to transfer the registers is

constant whereas the latency to flush dirty blocks is not as it
depends on the number of dirty blocks.

The transfer of registers and the writeback can take place in
parallel to minimize the length of the necessary-update phase.
But that introduces complexity due to the need for a bus to
communicate the registers between cores. An alternative is to
perform first the writeback and then the register transfer. In such
case the register transfer can be implemented using microcode
or a software trap. This routine will store registers in shared
memory from where the target core can load them. This can be
carried out using existing on-chip resources and without the need
for a dedicated update bus. We will investigate both serial and
parallel necessary-update phase for different values of latency
for the register transfer to decide whether the parallel transfer
and the update bus are really needed.

When the necessary-update phase completes, core P1 can
become inactive and core P2 starts to execute normally.

Thread migrations can cause a performance degradation be-
cause during migration there are phases without normal execu-
tion. This occurs during the flushing of the pipeline and during
the necessary update-phase(Transition Overhead). Therefore, it
may be important to keep the latency of these events small. Fur-
thermore, performance can suffer even after a thread’s migration
to a new core due to cold resources. Cold start effects are mainly
dominated by cold cache misses and branch mispredictions. It is
for this reason that having warmed-up resources may be useful.
This can be accomplished using the train phase prior to migra-
tion and/or having resources in inactive cores preserving their
state between migrations.

The above implies that the migration overhead is both appli-
cation and microarchitectural dependent. To assess its perfor-
mance impact we perform an empirical study using simulation
that is discussed in Section 5.



3.3 Other Migration Issues

Below we elaborate on migration issues related to predictors,
caches, and migration order.
Branch Predictor: High branch predictor accuracies are very
important for the performance of a modern processor. With
the increase of pipeline stages branch misprediction penalty is
also increasing. Thus, maybe important for a branch predictor
after migration to have a level of accuracy as if no migration
has occurred. If the predictor is turned-off between migrations
then the train phase can be useful to train the branch predictor
based on the outcomes of branches committed in P1 by trans-
ferring for each branch instruction executed in P1 its address,
its direction and its target address. The longer the train phase
the better the predictor is trained. But the train phase should be
minimized because it incurs, as mentioned previously, energy
cost and can limit migration frequency. So we need a branch
predictor with both high accuracy and fast training. We believe
that a good solution is to employ a hybrid predictor with high
accuracy that includes a “simple” component, such as bimodal,
that can be trained fast. An alternative to training is to preserve
the state of the predictor between migrations into a low leakage
drowsy state [13]. Deciding which of the two approaches or
their combination is better depends on program characteristics
and, therefore, will be established experimentally. In the ex-
perimentation we will consider the following predictor warm-up
modes: cold, train (updated during train-phase), drowsy (pre-
serve state from previous activation), the combination of train
and drowsy, and ideal. The ideal predictor warm-up corresponds
to the case where the entire predictor state is transferred between
cores without a penalty. The experimentation also investigates
which of the following predictor components are more important
to warm-up: conditional direction tables, branch-target-buffers
(BTB), return-address-stack (ras) and target-cache.
Caches: with activity-migration there are at least two options as
far as what to do with the state of private caches when a core
becomes inactive. The one option, referred to as cold, is to have
the private write-back caches flushing their contents to a lower
level shared cache and then turn them off. The other option,
called coherent, is to keep the private write-back caches active,
maintain their tags coherent and allow data transfers between
private caches in inactive cores to the active core. This effectively
corresponds to an invalidation coherence protocol.

When the coherent cache mode is employed and the active
core has a miss in its private cache, it will first probe the caches
in the other cores for the missing block and only if its not found
it will probe for the block lower in the memory hierarchy. For
the cold mode, when a core has a miss in its private cache it does
not check the caches in the other cores but probes directly for
the block from lower in memory hierarchy.

In the experimentation we explore the performance impact
of three cache warm-up alternatives which are denoted as cold,
coherent and ideal. The ideal scenario is represented by the case
where the entire private cache content is transferred between
cores without any penalty.

In the results section we are going to study several combi-
nations of cache and predictor warm-up modes and consider

Benchmark Skip(mil) Dynamic Instr (mil
compress95 INT - 443
gcc95 INT - 177
go95 INT - 133
ijpeg95 INT - 553
li95 INT - 202
M88ksim INT - 241
perl95 INT - 40
vortex95 INT - 101

bzip00 INT 315 100
gcc00 INT 700 100
gzip00 INT 300 100
mcf00 INT 2000 100
parser00 INT 400 100
vortex00 INT 100 100

ammp00 FP 2000 100
art00 FP 50 100
equake00FP 1300 100
mesa00 FP 350 100

Table 1. Benchmarks and Regions Simulated

the warming-up of different combination of core resources. We
will also quantify the significance of having a train phase by
considering its impact with different lengths of training time.
Rotation Policy: Another dimension of the design space to
consider is the rotation order between cores. One policy, refer
to as Mod, is to rotate to core (i+1)%N, where i is the present
core and N is the total number of cores on a multi-core. For
the remaining paper we assume the Mod, however, we note that
alternative policies exists

4 Experimental Framework

To establish the importance of the migration model parame-
ters presented in Section 3, a simulation study was performed.
The study was based on a modified version of the Simplescalar
3.0 simulator [4] that implements the various multi-core config-
urations, warm-up and migration modes. The simulations were
for complete runs of SPEC95 integer benchmarks and selected
regions of a subset of SPEC00 benchmarks (shown in Table 1).

The experimentation compares the performance of perfect
migration with the performance of several migration scenarios
discussed in Section 3 with varying number of cores and two
different memory hierarchies. These two memory hierarchies
divide our results into two categories. In the first, the cores share
a unified on-chip L2 cache, and in the second they share a unified
L3 cache on-chip with each core having a private L2 cache. The
effects of migration period is examined by considering runs
with fixed migration period and with random migration periods.
The various microarchitectural parameters are shown in Table 2
(when there is more than one option the default value is shown
in bold).

The default policy for the register transfer is to be performed
in parallel with the writeback phase. The default latency for
transferring the registers during the necessary-update phase is
assumed to be 100 cycles, 30 cycles for the initiation of the
transfer and a cycle thereafter to transmit each of the 70 archi-
tectural registers. Unless indicated otherwise, when reporting



Fetch/Issue/Commit 4 instructions
Pipeline Stages 10,15,20
Direction Predictor 8,16,32,64KB Hybrid Bimodal/Gshare
BTB/Target$/RAS 4K/0.5K/16,8K/1K/32,8K/2K/64,16K/4K/128
Instr. Window Size 128
LSQ Size 64
L1 I$ 1,2,3 cycle 8,16,32,64KB,64B blocks,2-way
L1 D$ 1,2,3 cycle 8,16,32,64KB, 64B blocks,4-way
ALU/Cache Ports 4/2
L2$ 7,9,12,14,20,28 cycles 2MB,256B blocks,8-way
Memory 200 cycles

L2-L2 latency 25 cycles
L3 25 cycles, 32MB, 256B block, 8-way

Table 2. Microarchitectural Parameters

the normalized IPC for a given configuration it is computed with
respect to the same hardware configuration but with perfect-
migration. In perfect-migration the migration-penalty is zero
and the resources are warmed-up ideally. Finally, the default
number of cores is two.

5 Results

In this section we present our simulation results. The data are
divided into two parts. We first report results for a multi-core
with private L1 caches and shared L2, and then for a multi-core
with private L1 and L2 caches and shared L3. Due to space
considerations in sections 5.1.1-4 we only show results for some
representative benchmarks.

5.1 Results with Private L1s and Shared L2

5.1.1 Performance Impact of Ideally Warming-Up a Subset
of Resources

In this section we present data that show the importance of
warming-up different combinations of resources on a dual multi-
core. This is examined for various migration frequencies, at
every 2.5K, 10K, 40K, 160K, 640K and 2.5M cycles. For these
experiments, after each thread migration a core resource is either
cold or ideally warmed-up (there is no train or coherent warm-
up). The experiments examined the influence of the i-cache
(including i-tlb), the d-cache (including d-tlb), and the predictor
(all predictor components: direction, ras, BTB and target-cache).

Fig. 2 shows these results for art00, go95 and vortex00. For
each benchmark the x-axis represents the seven combination
of cold resources we considered (in each case the missing re-
sources are ideally warmed-up), and the y-axis represents IPC
normalized to perfect migration. For better data presentation,
the resource combinations on the x-axis are listed in reversed
order of importance for each benchmark. The graph also shows
the additional misses per thousand instructions (misses/KI) as
compared to perfect-migration. This is useful to illustrate the
main causes of any performance degradation. For clarity, we
only show the additional misses when a single resource is cold,
the contribution from multiple cold resources is roughly additive.
When a branch predictor is cold the additional misses/KI rep-
resent the additional branch mispredictions/KI and in the other

cases correspond to additional cache misses/KI.
We can observe that for high migration frequencies, every

2.5K and 10K cycles, there is a large performance loss when
migrating to a core with any of its resources cold (points all for
2.5K and 10K migration period). For go95 and vortex95 this
appears to be caused by a large number of additional misses in
all resources. However, art00 has very few additional misses
and we still observe a significant degradation. This implies that
part of the observed loss, at 2.5K and 10K migration periods,
is due to the migration penalty. Therefore, with high migration
frequency all resources seem to be important to be warmed-up
and the migration penalty can not be ignored.

On the other hand, when migration occurs every 2.5M cycles,
performance loss is usually very small even when all resources
are cold (points all for 2.5M migration period). The additional
misses, with migration period of 2.5M cycles, are very small
and the migration penalty must be negligible as compared to
the migration period. The exception is go95 that incurs a small
performance loss when the predictor is cold (points with P and
2.5M).

The behavior for medium migration frequency, between every
40K–640K cycles, appear to have more unpredictable behavior
than those just discussed and also seems to be application and
microarchitectural dependent. Below we focus the analysis on
the behavior with migration frequency every 40K–640K cycles.

The behavior of art00 indicates that for some benchmarks
may not be important to warm-up any resource. With all re-
sources cold the loss in performance is small. The largest re-
duction in IPC is around 3% when all resources are cold and the
interval size is 40K. The number of additional misses/KI when
resources are cold is insignificant and that is why the perfor-
mance loss is small.

However, the above is not valid for all benchmarks. As we
can see for go95 with all resources cold there is a reduction
in IPC around 30%, 25% and 15% for migration at every 40K,
160K and 640K cycles respectively. Similar behavior is observed
for vortex00. A notable observation from the results for go95
and vortex00 is that the branch predictor is by far the most
important resource to have warm on a core, and that there is
no benchmark for which it is important to have warm either the
instruction and/or data cache. An implication of this observation
is that when migrating every 40K cycles or more the migration
overhead is mainly dominated by cold predictor effects and not
from cold caches or the penalty to flush the pipeline and perform
the necessary update phase.

One reason for the tolerance of thread migration to cold L1
caches is that the working set they can fit is very small (256
unique blocks for the instruction and 128 blocks for the data
cache used in this study). As a result the penalty to warm them up
and to flush dirty blocks is very small as compared to the period
of migration we consider here (40K cycles or more). Analysis
of the fraction of blocks that need to flushed for 40K intervals
has shown that typically 40% (50 blocks) of the blocks are dirty.
On the other hand the direction prediction table for conditional
branches can hold predictions for many unique combinations
or branch histories (the predictor used in this study can hold
98204 unique combinations). Consequently, a benchmark with
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Figure 2. Performance Impact when Ideally Warming-Up a Subset of Resources

many unique branch history patterns, like go95 and vortex00,
will incur significant performance penalty when the predictor
is cold. For go95 and vortex00 there are 14 and 5 additional
misses/KI respectively when migrating at every 40K cycles.

An important difference between go95 and vortex00 with
cold predictor, point P in the graph, is that the perfor-
mance(mispredictions) of vortex00 is improving(decreasing)
faster as the migration frequency decreases. This may indi-
cate that the working set of the predictor for vortex00 is smaller
and with longer migration periods the negative effects of having
a cold predictor are diminishing.

Overall, we can observe that to avoid performance degrada-
tions with high-migration frequencies, every 10K cycles or less,
all resources need to be warmed-up and migration penalty must
be small, whereas when migration is infrequent, every 2.5M
cycles or more, resources can be left cold.

For medium migration frequencies, every 40K-640K cycles,
the migration overhead is highly dependent on the benchmark
and when there is a significant overhead it is dominated by cold
predictor effects. I.e. we have found that there is little to gain by
keeping L1 caches warm, however, depending on the benchmark
it may be very important to have the branch predictor warm.

For the remaining of Section 5.1 we focus on migration with
medium frequency because that is where benchmarks exhibited
the most unpredictable behavior.

5.1.2 Performance Impact of Ideally Warming-Up a Subset
of Resources for Different Table Sizes

In the previous section, we have established that to avoid per-
formance degradation for medium migration frequencies it is
important to have the branch predictor warmed-up but not the
caches. However, this was obtained for one particular config-
uration. In this section we investigate, for a dual multi-core,
whether by changing the size of the L1 caches and the predictor,
we reach a different conclusion.

Fig. 3 shows the normalized IPC for I-cache sizes of 8KB,
16KB, 32KB and 64KB for three different migration frequen-

cies, when all resources after migration are cold and when all
resources are ideally warmed-up except the i-cache which is
cold. For clarity we have omitted the sizes in the graph, for each
migration period there are four bars each corresponding to one
of the sizes in increasing order from left to right.

These results are shown for the benchmarks go95, vortex00
and art00. Analogous study was performed for the d-cache and
the predictor, and these results are also shown in Fig. 3. For the
branch predictor the size are for the direction prediction tables,
however, the size of the other predictor components is scaled by
the same factor the direction table size is changed as compared
to its default size.

Fig. 3 indicates that for the three benchmarks and across
different i-cache sizes it is not very important to have a warm
i-cache. The only exception is vortex00 when migrating every
40K cycles, where the performance loss is considerable, about
12%, for a 64KB I-cache size. For art00 the performance loss is
small even when all resources are cold.

The data clearly indicate that a warm d-cache is not important
for any cache size, migration frequency, and benchmark. This
may appear unintuitive especially for large caches, but recall
that the underlying core microarchitecture provides some toler-
ance to cold-caches through out-of-order scheduling and long
misprediction penalties.

The results suggest that for go95 and vortex00 a cold branch
predictor is the major cause of the performance loss with thread
migration. For go95 the performance loss increases with in-
creasing predictor size, whereas for vortex00 the performance is
not sensitive to the branch predictor size. The results for these
two benchmarks support the observation made in the previous
section about little benefit when migrating with warm i-cache
and d-cache. This is evident by the small difference between the
cold-all and rest-ideal results when the predictor is cold. The
behavior for art00 is almost insensitive to any combination of
cold resources.

Overall, the data in Fig. 3 show that even with different table
sizes still the most important resource to have a warm is the
branch predictor and that cold instruction and data caches have
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Figure 3. Performance Impact with different i-cache,d-cache and branch-predictor sizes
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Figure 4. Performance Impact of different predictor components

insignificant effect on performance. Consequently, for the re-
maining of Section 5.1, unless indicated otherwise, the d-cache
and i-cache start cold after each migration and d-caches write-
back their dirty blocks before migrating out of a core.

We like to note that we have also performed sensitivity anal-
ysis for numerous combinations for L1 caches latencies (1-3
cycles), L2 cache latencies (5-28 cycles), pipeline depths (10,15
and 20 stages) and register transfer latencies(150, 220 and 420
cycles). The main conclusion was that in most cases the branch
predictor is by far the most important resource to warm-up. The
exceptions occur when the L2 latencies are more than 20 cycles.
In this case the two L1 caches and especially the L1 data cache
may be also important to have warm.

The data also suggest that overall migration overhead is
mainly determined by cold effects rather than transition over-
head. Transition overhead has significant contribution on mi-
gration latency only for small migration periods(less than 100K
cycles).

5.1.3 Which Branch Predictor Components are Important
to Warm-Up

In this section we present data that attempt to quantify for a dual
multi-core the importance of warming different branch predictor
components (direction tables, ras, BTB and target cache). In
Fig. 4 we show the performance for gcc95 and vortex00 for
various interval sizes, when different combinations of branch
predictor resources are cold – for each case the resources missing
are ideally warmed-up. For this experiment we assumed that the
caches are ideally-warmed up to isolate the effects of branch
mispredictions.

The data across all interval sizes suggest that the most im-
portant resource to warm-up is the direction prediction table and
that the return-address-stack is not useful to warm-up. A cold
branch target buffer, when migration every 40K cycles, causes
a performance loss around 5% for vortex00 and around 3% for
gcc95. This indicates that a branch target buffer may be also
important to warm-up. Finally, the target cache also seems to be
useful for gcc95, but not for vortex00. When it is cold causes
gcc95 to loose 5% of its performance when migrating every 40K
cycles.

Overall, the data suggest that the importance for a warm
branch predictor, observed in previous sections, is primarily due
to the direction tables and secondary due to the target cache
and/or branch target buffer. A cold return address stack has
insignificant impact on performance. In the remaining paper we
consider warming up all branch predictor components except the
return-address-stack.

5.1.4 The importance of Train and Drowsy Warm-up
modes for the Branch predictor

This section investigates the performance implications of differ-
ent branch predictor warm-up modes. The objective is to deter-
mine how close to ideal are practical warm-up modes. In partic-
ular, we consider how the train, drowsy and train combined with
drowsy warm-up modes compare to perfect migration. When
the warm-up mode includes train, we consider three different
train lengths that occur for 12%, 25% and 50% of the previous
interval. Fig. 5 compares the normalized performance of the
various predictor warm-up modes for gcc95, go95, vortex00 and
art00.
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Figure 5. Performance Impact of different branch predictor warm-up modes
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Figure 6. Performance Impact of drowsy branch predictor warm-up mode for all benchmarks

The results show that the train warm-up mode provides a
modest performance improvement over cold mode and that with
increasing train phase length there is an increasing improvement
in performance (particularly for gcc95 and vortex00). Never-
theless, across all migration periods, for three out of the four
benchmarks, the train mode incurs large performance loss as
compared to perfect migration.

On the other hand, the results show that the drowsy warm-
up mode can recover most of the performance loss due to cold
resources. The largest loss of 6% is for go95 when migrating
every 40K cycles. The performance loss gets close to 3% or less
when migrating every 160K cycles and to 1.5% or less when
migrating every 640K cycles.

The low performance with the train warm-up mode suggests
that the working set of a branch predictor can not be learned by
considering only the branch outcomes from the previous inter-
val. The drowsy mode performs significantly better than train
because a predictor can accumulate and remember knowledge
from all previous intervals its core was activated.

The combination of drowsy and train warm-up modes, offers
a minimal performance increase over only drowsy. Considering,
the potential energy overhead of the train phase, the possible
limit it places on migration frequency and its minimal benefit, it
is reasonable to conclude that is not an attractive warm-up mode.
This means that the migration policy does not need to include a
train phase and the update bus that was needed for it.

Fig. 6 compares the normalized performance of cold and
drowsy branch predictor warm-up modes for various interval
sizes for all benchmarks. The drowsy branch predictor reduces
the average performance loss from around 13% to 4% when
migrating every 40K cycles, from around 6% to 1.5% when

migration every 160K cycles, and from around 2.5% to 0.5%
when migrating every 640K cycles. We remind the reader that
for the drowsy results all other resources, except the predictor,
start cold after migration.

The experimental results also show that average migration
period is a strong indicator of how well activity-migration is
performing. .

To summarize, the observations in Sections 5.1.1-5.1.4 sug-
gest that keeping the branch predictor drowsy between activa-
tions of the same core while the other resources are cold appears
to recover most of the performance loss due to thread migration
on a dual multi-core. The data also show that there is no need
for a train phase or an update bus. We adopt this migration
policy for the remaining paper unless indicated otherwise.

5.1.5 The Impact on Thread Migration with increasing
number of Cores

This section explores the effect of thread migration on perfor-
mance with increasing number of cores. Fig. 7 presents results
for 2, 4 and 8 cores. Data are shown with all resource cold and
with the predictor in drowsy mode. In cold mode a benchmark
has the same performance irrespective of the number of cores
thus Fig. 7 shows it only once for each benchmark. Recall that
the rotation policy used for these experiments is Mod.

The data suggest that for most benchmarks the performance
with drowsy predictor remains unchanged as the number of cores
increase irrespective of the migration frequency.

However, for some benchmarks(gcc95, go95, parser00) per-
formance gets worse as the number of cores increases. This
indicates that with drowsy mode and the Mod migration policy,



����

����

����

����

����

����

����

����
	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	


�� � 
 �

	
���� �		�� �
�� ������� ���� ������ ������ �
���� ������� �		�� ������ �	��� ������ �
���� ������ ����� �� ��� ������ !��"

�
�
�
�
�
��
�
	


��


�


�#

���#

�
�#

Figure 7. Performance Impact of increasing number of cores

the branch predictor state is getting stale as the number of cores
increases.

The data can also be interpreted in a different way by assum-
ing that with increasing number of cores the migration interval
increases. For example, if with two cores we migrate every 40K
cycles then with four cores we migrate every 160K cycles and
with eight every 640K cycles The data show that most of the
benefits of migrating over more cores are captured with four
cores in most benchmarks.

Overall, with increasing numbers of cores a drowsy predictor
combined with the Mod migration policy provides an effective
migration strategy with good performance.

5.1.6 Random Migration frequencies

The results presented so far were for constant migration fre-
quency and, therefore, someone may claim have limited scope.
In an attempt to extend the generality of our observations we
conducted several simulations where the migration frequency is
determined using random distributions.

The simulations were done by randomly selecting during a
run, the next interval size from the following migration peri-
ods: 10K, 40K, 80K, 120K, .., 640K cycles. Different random
distributions were considered: a) same probability for all inter-
val sizes, b) increased-probability for the shortest-one migration
period size (10K), shortest-two (10K and 40K), shortest-three
(10K-80K) and shortest-four (10K-120K),and c) increase prob-
ability for largest-one interval size (640K), largest-two (600K
and 640K), largest-three (560K-640K), and largest-four (520K-
640K). Three different increased-probabilities were considered
for 25%, 50% and 75%. Each random simulation was repeated
five times and here we report the results using averages of these
five runs. This study was performed for a dual multi-core for all
benchmarks.

The results show that the drowsy predictor migration policy
can provide good performance irrespective of the distribution of
the migration-period. For all benchmarks and for all distribu-
tions considered, the performance was within 3.2% of perfect
migration. The largest performance loss is observed with the
shortest distributions which they have high migration frequency.

For each of the above random runs we determined its effec-

tive migration frequency, by averaging for each run its migration
periods, and performed another run with a constant migration
frequency equal to the effective migration frequency of the ran-
dom run. The data reveal for all cases that there is very little
variation - at most 1.3% - between the runs. This may suggest
that a run with a constant migration frequency may be indica-
tive of many runs that have different distribution of migration
periods but the same effective migration frequency. This also
indicates that the average migration period is a good indicator
of the performance loss to be incurred by activity migration.

The data for the random experiments are not shown because
all points have similar normalized value which is close to 1.

5.1.7 Is there a need for an update bus?

In Section 3, we have argued that an update bus may be useful
for two reasons: (a) training the predictor and caches prior to a
migration to a new core, and (b) for transferring the register state
in parallel with the writeback of dirty blocks.

The results so far had shown that there is no need for an
update bus for training predictors and caches. Consequently,
to answer the question whether an update bus is needed for
activity-migration, we performed experiments comparing the
performance of serial and parallel register transfer with increas-
ing register transfer latency. Our data - not shown due to space
limitations - suggest that for migration periods less than 160K
cycles an update bus may be useful, but for larger migration
periods the serialization overhead has very little impact and thus
there is no need for it.

5.2 Results for a Multi-core with Private L1s and L2s
and a shared L3

In this section we consider the performance impact of thread
migration on a dual multi-core with private L1 and L2 caches
and a shared L3.
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Figure 8. Performance Impact of Warming the Predictor and L2 Cache for multi-core with private L2
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Figure 9. Performance Impact with increasing number of cores for multi-core with private L2

5.2.1 Performance Impact of Warming-Up a Subset of Re-
sources

Based on the observations of Section 5.1 we assume thread mi-
gration where L1 caches are always cold and we only investigate
the significance of warming-up the predictor and/or the L2 cache.
The predictor is warmed-up using the drowsy mode and the L2
cache using the coherence mode (see Section 3). More specifi-
cally, Fig. 8 shows the results with thread migration for gcc95,
go95, ijpeg95, bzip00, vortex00, and art00, when all private re-
sources are cold, with only the branch predictor warm, with only
the L2 warm, and with the combination of warm predictor and
cache.

The data clearly show that migrating with all resources cold
has a very high performance penalty, unless we migrate infre-
quently, every 2.5M cycles or more. In that case the worst
performance degradation is only 5% (for go95) and typically is
less than 2%.

The data also show that the predictor is usually more im-
portant to be warm, but there cases where the L2 cache is also
very critical (especially for art00 which is memory bound). The
results indicate that for best performance, irrespective of the in-
terval size, it is important to have warm both the predictor and
the L2 cache. Such migration strategy is different from the one
suggested for a multi-core with shared L2, where only the pre-
dictor is important to warm-up. This should be expected because
a large private L2 cache can fit a very large working set and hav-
ing to flush all its dirty blocks before each migration and re-fetch
many blocks after each migration can be very time consuming.

The data also reveal that when both resources are warm the
performance loss can be high if we migrate frequently, every 10K
cycles or less. For example, vortex00 suffers a 20% performance
degradation when both resources are warm and migration occurs
every 10K cycles. To limit the performance losses, to no more
than 5%, migration should occur every 40K cycles or more.

Overall, the performance losses with high frequency migra-
tion, every 10K cycles or less, are very large. Infrequent thread
migration, every 2.5M cycles or more, with cold resources can
provide acceptable performance but some improvement is fea-
sible if the predictor is kept drowsy. For medium frequency of
migration, every 40K–640K cycles, a good performing migra-
tion strategy is to have the predictor drowsy and the L2 cache
coherent.

Next we focus only on medium migration frequencies be-
cause, as in Section 5.1, benchmarks appear to have more diverse
behavior.

5.2.2 Influence of Number of Cores

The results in this section illuminate the impact of thread-
migration on performance with increasing number of cores.
Fig. 9 presents normalized IPC for 2, 4 and 8 way multi-cores.
Two migrations approaches are compared: all resources cold,
and drowsy branch predictor together with coherent private L2
cache.

The data show that the migration strategy that combines
drowsy predictor with coherent data cache can recover most



of the performance loss due to cold resources for most combi-
nations of benchmarks, number of cores and migration. The
average performance loss with cold resources is around 23%,
13% and 6% for migration periods of 40K, 160K and 640K cy-
cles respectively. A warm-up strategy that combines a drowsy
predictor with coherent L2 cache reduces the average perfor-
mance loss goes down to 6%, 4% and 2% respectively. These
averages are roughly the same irrespective of the number of
cores.

The general trend in the data is that with increasing number of
cores the performance remains the same or gets slightly worse.
However, mcf00 and art00 exhibit the opposite behavior, their
performance increases with increasing number of cores. This
occurs because these benchmarks are memory bound and a larger
number of cores means more L2 space to distribute their working
set and convert L3 accesses to L2 to L2 hits [21]. For these
benchmarks the migration overhead is offset by having a large
distributed L2 cache.

The behavior of ammp00 is even more peculiar. ammp00
is also memory bound benchmark but its performance with all
resources cold is better than with drowsy predictor and coherent
L2. Additional investigation revealed that for this benchmark
L2 misses on the active core are frequently L2-L2 misses. In
the cold mode these L2 misses would have accessed directly the
L3 without incurring the L2-L2 miss and therefore have shorter
latency and evidently better performance. This may suggest the
need for an adaptive energy friendly scheme that when probing
the remote L2 caches chooses between probing in order or in
parallel the L3 cache.

To summarize, using the drowsy mode for the branch predictor
and coherent mode for the private L2 caches provides an effective
strategy to tolerate the overhead of thread migration on multi-
cores with 2, 4 and 8 cores.

5.2.3 Other Results

We have also explored the usefulness of a shared L3 cache when
a multi-core has private L2 caches. We present our findings
without the data due to limited space. We have found that the
performance of a configuration with drowsy predictor and coher-
ent L2 without L3 is sometimes significantly worse as compared
to the same configuration with an L3. This means that an L3 is
useful for a multi-core with a private L2 cache.

We have also investigated whether a faster L3 can obviate the
need for a coherent L2. We experimented with an L3 with a 14
cycle latency combined with a cold L2 cache and we have found
this to provide same or worse performance than an otherwise
identical scheme with coherent L2 and 25 cycle latency to L3.

Finally, we have performed experiments with random migra-
tion frequencies that lead to the same observations as in Sec-
tion 5.1.6 that reemphasize the generality of our observations.

6 How to interpret the results of this paper?

The findings of this work may be useful for several applica-
tions. Below we offer some discussion on few such applications.

Improving Power-Efficiency on a Heterogeneous Multicore:
Previous work [18], on activity migration for power efficiency,
considered migration at a very coarse scale (at context switch).
The data in Section 5 suggest that fine grain activity migra-
tion with low performance overhead is feasible, thus, power-
efficiency may improved with one or more hardware triggered
migrations between a context switch.
Reducing the Temperature on a Homogeneous Multicore:
Let us assume that as long as there is no temperature problem
a thread is keep executing on the same core at peak frequency.
Furthermore, when a temperature reaches a trigger-threshold we
need to engage a dynamic thermal management (DTM) tech-
nique to reduce temperature. However, if the DTM technique
fails to decrease temperature and the temperature emergency-
threshold is reached then the processor is put in a halt state until
the temperature drops below the trigger-threshold.

If we assume that the only DTM technique employed, in
addition to halt, is activity-migration. Then the results from
the previous section suggest that during the time the processor
is not halted, the overhead of migration is usually small and
thus activity-migration can be useful to address the temperature
problem with minimal impact on performance.

The results also show that average migration periods can be
useful to decide whether or not to switch from activity-migration
to a different DTM technique. Specifically, the data suggest that
for average performance loss of less than 1% migration should
occur on the average every 160K cycles or more.

7 Conclusions

This paper investigates the performance implications of single
thread migration on a multi-core.

The main conclusions of our work, is that the performance
losses due to activity migration for a multi-core with private L1
and shared L2 caches can be minimized by remembering the
predictor state between migrations. For multi-cores with private
L1 and L2 but shared L3 it may be necessary to remember
the predictor state, maintain the tags of the L2 caches coherent
and allow L2-L2 data transfers from inactive cores to the active
core. The experimental results also show that average migration
period is a strong indicator of how well activity-migration is
performing. For the microarchitectures considered in this study
migration period that is at least 160K cycles or more has minimal
impact on performance.

The results suggest that an effective migration strategy can
possibly be implemented without using a dedicated update bus,
for transferring state between cores, and without a train phase,
for warming up caches and predictors prior to a migration on a
new core.

This work has assumed several idealizations that need to be
addressed in future work. For example, uniform cache latencies,
and infinite write buffers. More importantly, the migrations
were not triggered by actual events but rather occurred at reg-
ular or random intervals. Future work, should combine thread-
migration with power and temperature modeling and evaluate
the overall effectiveness of the strategy proposed in this paper.



Another direction of work is to establish the performance impact
of multiple thread migration on a multi-core.
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