Implicit-Storing and Redundant-Encoding-of-Attribute
Information in Error-Correction-Codes

Yiannakis Sazeides
University of Cyprus

Panagiota Nikolaou
University of Cyprus

ABSTRACT

This paper proposes implicit-storing to extend the logical
capacity of a memory array without increasing its physical
capacity by leveraging the array’s error-correction-codes to
infer the implicitly stored bits. Implicit-storing is related to
error-code-tagging, a technique that distinguishes between
faults in data and invariant attributes of a location when the
attributes are not stored in the memory array but are en-
coded in the error-correction-codes. Both error-code-tagging
and implicit-storing cause a code-strength reduction due to
their encoding of additional information in the code meant
to only protect data.

Redundant-encoding-of-attributes is introduced to improve
the strength of a code by encoding same information in mul-
tiple codewords in a cache or memory. We demonstrate how
EREA and IREA, two derivatives of redundant-encoding,
alleviate the code-strength reduction experienced by error-
code-tagging and implicit-storing respectively.

Implementing the proposed methods requires minor mod-
ifications in the encoding and decoding logic of the baseline
error-correction scheme used in this work. The paper dis-
cusses several uses of the proposed schemes to help demon-
strate their usefulness.

Categories and Subject Descriptors

B.4.5 [Reliability, Testing, and Fault-Tolerance|: Hard-
ware reliability; B.8.1 [Performance and Reliability]:
Reliability, Testing, and Fault-Tolerance; C.4 [Performance
of Systems]|: Fault tolerance

General Terms
Design, Reliability
Keywords

Implicit Storing , Error Code Tagging, Redundant Encod-
ing, Memory, Reliability, Error Correction Codes

1. INTRODUCTION

Error-correction-codes (ECC) [11] are commonly employed
to protect data in caches and main memory from faults

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MICRO 46, December 7-11, 2013, Davis, CA, USA

Copyright 2013 ACM 978-1-4503-2638-4/13/12 ...$15.00.

160

Emre Ozer
ARM

Marios Kleanthous
University of Cyprus

Danny Kershaw
NXP

Jaume Abella
Barcelona Supercomputing
Center

due to particle strikes [34], hard or repeated failures [26,
14], operation close or even below Vi, [32], static [6] and
dynamic [7] variations etc. The importance of ECC has
been increasing with smaller feature size due to the expo-
nential growth of memory elements integrated in processor
and memory chips.

When data is written to an ECC protected memory array
check bits derived from the data are also stored along with
the data in the array. The ECC check bits are redundant
information that encodes the data and are used on a read
to detect an error and determine whether it is possible to
correct it and how.

An ECC code is usually described by the number of check
bits it uses, k, the number of data bits it protects, m, and
its strength, how many bit errors it can detect and correct.
Very often, due to storage organization requirements, the
ECC code is shortened [25]: the number of protected data
bits, m, is smaller than the maximum number that can be
protected by k check bits of an ECC code. Consequently,
the k check bits have the potential to provide protection for
additional data bits that remain underutilized.

One possible use of the extra coding capacity is to encode
invariant attributes that are associated with the data in a
location (e.g. the memory block address). These attributes
do not need to be stored in the memory array if they are
available each time the data are accessed. This enables to
check that the read data are both correct and with the right
attribute encoding. We refer to this approach as error-code-
tagging (ECT), after a related proposal by Gumpertz [10].

First, we propose to use the extra coding space for erasure
coding [9] of some of the attribute bits. Erasure coding is a
well-known technique for correcting errors when the position
of an error is known, and is widely used for disk error pro-
tection [24]. We propose to implicitly-store attribute bits by
“intentionally” erasing some of the attribute bits and infer
them on reads. We referred to this as implicit-storing (IS).
The proposed approach enables us to extend the logical ca-
pacity of a memory array protected with shortened ECC
code without increasing its physical capacity, i.e. storage
for free.

The use of ECT or IS leads to an ECC code strength
reduction because part of the ECC code intended to de-
tect and correct errors is used in the case of ECT to check
for attribute errors and in the case of IS to store and infer
the erased bits. For example, as explained in Section 4.2,
by implicitly-storing one bit with a single-error-correction
double-error-detection code we lose the ability to detect some
double data errors. Although this may be an acceptable

m data bits m data bits
m m

generate

check bitg

k check bits

syndrome|

decode

decode

No Detect & Detect & m No Detect& Detect& Detect&
Error Correct Unrecoverable Error Correct Recovery Unrecoverable
Data Attribute
(a)

Figure 1: (a) ECC Protection (b) ECT Protection

trade-off, (e.g. reducing area or energy overhead for lower
fault-coverage), it is desirable to minimize the code strength
reduction as much as possible.

To help mitigate the code-strength reduction of ECT or IS
we exploit a common property of caches and memory [15,
3, 19, 22, 5]: the granularity used for ECC code protec-
tion, e.g. 64-bit word, is often smaller than the block size,
e.g. 512 bits block. In particular, we propose to redun-
dantly encode in two or more codewords in each block the
same ECT attributes or implicitly-stored information. We
refer to this approach as Redundant-Encoding-of-Attributes
(REA). Fundamentally, REA is similar to n-way modular
redundancy [18] and helps to improve fault tolerance.

ECT and IS can be applied independently of REA but
this work considers their combined use: ECT4+REA referred
to as Explicit Redundant Encoding of Attribute Informa-
tion (EREA), and IS+REA referred to as Implicit Redun-
dant Encoding of Attribute Information (IREA). The paper
shows how EREA can improve the fault-coverage of ECT,
and, similarly, how IREA recovers some of the code-strength
reduction of IS. All proposed methods require minimal de-
sign complexity and have several uses that help improve fault
tolerance, energy efficiency, security and performance.

The rest of the paper is organized as follows: Section 2
covers background related to ECC, erasure codes and error-
code-tagging. Section 3 describes the proposed implicit-
storing technique. This is followed by the description of
REA, EREA and IREA in Section 4. Various use-cases of
the proposed schemes are discussed in Section 5. Section 6
presents an area, delay, power and scalability analysis. The
related work is discussed in Section 7, and the paper con-
cludes in Section 8.

2. BACKGROUND

This section provides background on memory array pro-
tection, presents the specific ECC code assumed in the pa-
per, reviews error and erasure correction, and describes error-
code-tagging.

161

2.1 ECC Protected Data Array

Fig. 1(a) presents the generic organization of an ECC pro-
tected array. An array consists of many blocks, b, each con-
taining a fixed number of data bits, s. For the purposes of
ECC protection the block is divided into w equal size words
(each with m=s/w data bits). The array stores k check bits
for each of the m-bit data words. Every time a word is writ-
ten, the generate unit produces its k-bit check bits, according
to the ECC used, that are stored in the array together with
the data. Every time a word is read from the array the check
unit takes as input the word’s data and check bits and pro-
duces a syndrome. The syndrome is decoded to determine
whether or not an error has been detected. When an error
is detected, the error is corrected if it is a correctable one.
Otherwise, an unrecoverable error is flagged.

The top side of Fig. 1(a) (i.e. generate) depicts what
happens on a write operation, and the bottom side of the
figure (i.e. check and decode) shows what happens on a
read operation. The same convention is adopted in the other
figures of the paper.

2.2 SEC-DED ECC Code

A category of linear error detection and correction codes
that can correct single and detect double errors [11], known
as SEC-DED codes, are very popular due to their low over-
head and high fault coverage. Hsiao code [12] is often cited
as the most cost-effective SEC-DED scheme due to the min-
imum number of XOR gates it uses to generate its check
bits. In particular, a Hsiao code, henceforth also referred
to as code, needs an n bit codeword to protect m bits of
data, where n>m, the number of check bits k=n-m, and
m< 2871k,

A Hsiao code can be uniquely defined by its check (or
generator) matrix. A check matrix, H, consists of k rows
and n columns. Hsiao code requires a check matrix that
contains unique columns with odd number of 1s. Each row
is an n bit vector that defines which data and check bits
are used for computing a syndrome bit. A syndrome is a
k-bit vector that is used to check the integrity of an m-bit
information word. It is obtained by performing the product
of the kxn check matrix, H, with the nx! codeword. The
syndrome is decoded as follows:

1. equals to the zero vector: no error is detected,

2. contains an odd number of 1s and is equal to one of
the check matrix columns: a single bit error is detected
and its position corresponds to the column position in
the H matrix,

3. contains odd 1s but does not exist in the H matrix: It
will be treated as unrecoverable error, and

4. has an even (greater than 0) number of 1s: it is de-
coded as an unrecoverable error (for example any two
bit faults will result in an even syndrome, however,
some rare combinations of even errors >/ may result
to a zero syndrome and remain undetected).

Fig. 2 describes the possible actions with different number
of actual errors in a codeword and also indicates whether the
action is correct. The behavior is as expected with 0, 1 and
2 errors. When the number of errors exceeds the strength
of the code we may have incorrect decisions. For example,
when there are three errors in some cases they are detected
as unrecoverable, but in the remaining cases they are incor-
rectly treated as single bit errors that get miss-corrected (a
correction that does not recover the correct data).

0 1 2 3

No Detect odd & Detect even & Detect odd &
error Correctable Unrecoverable Unrecoverable

Detect odd &
Correctable

NO

YES YES YES YES (miss-correction)

Figure 2: SEC-DED behavior with different number
of actual errors

Unless indicated otherwise the rest of the presentation
assumes the code discussed in this Section. Nonetheless, we
like to note that the techniques proposed in the paper are
applicable to other linear codes (SEC-DED or stronger).

2.3 Hamming Distance, Errors and Erasures

The strength of a code is a function of its minimum Ham-
ming distance, Dyin, between any of its legal codewords [11].
In general, a code has the strength to detect all errors up to
din any codeword where d<D,,i,-1, or can correct all errors
up to e where e< | Dmin/2] [11]. Furthermore, a code can
correct r erasures where r=D.,,in-1. An erasure is a specific
bit position of a codeword with an unknown value [9], this
is different from an error that corresponds to a bit flip in an
arbitrary bit position in a codeword. A given code can cor-
rect more erasures than errors because it is easier to correct
when the problematic positions are known.

We illustrate with an example the difference between er-
rors and erasures in Fig. 3 assuming a 7-4 SEC-SED (single-
error-correction and single-error-detection) code and a 7-4
double-erasure code. The example assumes a 4-bit zero
value. The encoder is the same in both cases and gener-
ates the error correction code. The positions 1, 2, 3 and
4 represent the data bits and the remaining positions, 5, 6
and 7, represent the parity bits. For erasure code the erased
positions are 1 and 3. Let’s assume a double bit error in
positions 1 and 3. Fig. 3(a) shows how the erasure code
recovers the erased bits by considering all their value com-
binations and selecting the combination that results in an
ECC match. However, in the case of double errors in other
positions this scheme will not work. On the other hand,
in Fig. 3(b) a double bit error exceeds the SEC-SED code
strength and the decoder miscorrects the data.

The number of error detections, corrections and erasures
offered by a specific decoding of a code depends on the D
of the code and the choice of d, e, r [25]. For example, a
code at the same time can detect d and correct e errors as
long as e+d<Dj,in or at the same correct e errors and r
erasures given that 2e+r<Din. Specifically, a code with
Dmin=4 can be used for three error detections, SEC-DED,
three erasure corrections, or one error correction and one
erasure correction, one erasure correction and double error
detections or two erasure corrections and one error detec-
tion.

Typically, processor caches and main memory rely on codes
that detect and correct errors since the positions of the er-
rors are not known a priori. On the other hand erasure
codes are used to recover lost data in redundant arrays of
disks since the specific position in the data corresponding to
a failing disk is known [24]. Nonetheless, schemes inspired
by erasure coding have recently been proposed for cache pro-
tection where one code is used to detect the error position,
and a second code is used for erasure correction [16, 20].

In this paper, we show how to augment a code used for
memory array error correction and detection to also per-

162

Code Word
Bl | B2 | B3 | B4 | B5 | B6 | B7 ENCODER
o lolololololo B5=B1 XOR B2 XOR B3
B6=B1 XOR B3 XOR B4
Data bits ECC bits B7-B2 XOR B3 XOR B4
Double Bit Erasure SEC-SED
Code Word Code Word
Bl | B2 | B3 | B4 | B5 | B6 | B7 Bl B2 | B3p B4 | B5S | B6 | B7
S| o BERERE: o [0 0 0o
) 20?0 1010
1
0
0000] 0010) 10001010 g ENCODER 0
00[01/101, 0 0
0 0
1
v

|-
Compare : MUX

Correction

>
Erased bits B1=0
B1=0,B3=0
v -
B1 B2 B3 B4 BS B6 B7 B1 B2 B3 B4 BS B6 B7
0 0 0 0 0 [1] 0 0 0 1 0 0 0 0

Correct-Code Word Miss-Correction

(a) (b)

Figure 3: Example with (a) Double bit Erasure and
(b) Double bit Error

form erasure correction without storage area overhead and
minimal code strength reduction.

2.4 Error-Code-Tagging

Very often due to storage configuration an ECC code, such
as the one presented in Section 2.2, is shortened. That is
the number of protected data bits, m, is smaller than the
maximum number that can be protected by & check bits.
Consequently, the k check bits can provide protection for
up to p=2""1-k-m additional data bits. For example, when
data is 64 bits, m=64, the number of check bits, k, must be
at least 8, and, therefore the code can protect up to 287 1-
8=120 bits. However, since the data size is m=64 bits, there
is room for additional 56 bits of data that can be protected
with the very same 8 check bits. These are 56 bits that
can be used to implement error-code-tagging (ECT) [10] by
encoding additional attributes that are associated with the
data. ECT does not store the attributes in the storage and
requires the attributes to be available each time the data are
accessed.

Fig. 1(b) shows how an ECC scheme can be extended with
ECT capabilities. The most notable addition, as compared
to Fig. 1(a), is the extra inputs (p attribute bits) used to
generate the check bits and the syndrome on write and read
respectively. Note that these attributes bits are not saved
in the storage because they are available whenever the data
is accessed and remain invariant between two writes, i.e.
a read from a location is guaranteed to receive the same
attribute as the one used on the most recent write to the
same location.

To illustrate the ECT concept, consider the case of a cache
sub-system in a processor core where each data access is ac-
companied by an attribute, e.g. the line address or security
ID. When the data is written into the cache both the data
and attribute are used to generate the ECC code that is
stored in the cache. At the time of the read, when the core

0 1

No error

Detect Odd Attr. & Recovery

Detect Even & Unrecoverable
(cannot distinguish)

2

Detect Even & Unrecoverable
(cannot distinguish)
Detect Odd Data & Correct
(miss-correction)

Detect Odd Data & Correct

Detect Odd & Unrecoverable

Figure 4: ECT behavior for different number of data and attribute errors

wants to access the same cache line, it provides the cache
line address as an attribute. The ECC check logic takes as
input the data and the ECC code read from the cache as well
as the attribute provided by the core and checks for errors.
If the data and the attribute given at the read time is the
same as the data and attribute provided at the write, the
ECC logic will give “No Error” status. However, if the data
from a location is the same but the attribute, line address in
this case, is different and the code detects it, then the ECC
check logic will flag this as “Error”. This error would have
remained undetected if the ECC had encoded only the data
of a location.

The main limitation of the ECT approach is that by ex-
tending protection to attributes an ECC code becomes un-
able to differentiate between the bit positions of multiple
faults. For instance, a SEC-DED code extended with ECT is
unable to differentiate in the case of two faults whether they
are only in the data, only in the attributes, or one fault in
both. Furthermore, an ECT scheme can miss-correct some
error combination that will be detected as unrecoverable if
attributes are not protected. Although these weaknesses of
ECT may be worth disregarding for the extended protection
ECT offers to attributes, it may be desirable to differentiate
between these different fault events. For example, in a secu-
rity scenario where the attribute is used as a security ID, it
is better for any error detected in the security ID to lead to
a system freeze or shutdown. Alternatively, if the attributes
are used to encode an address, a retry can be initiated from
a checkpoint (if one is available) to overcome a possible soft-
error in address decoding/tag match logic. We show next in
the paper how the use of redundant-encoding-of-attributes
can help mitigate this weakness of ECT.

Fig. 4 shows the behavior of the ECT scheme for different
combination of data and attribute errors assuming a one-bit
attribute. The example behavior illustrated in Fig. 4 as-
sumes a Hsiao SEC-DED code extended for ECT with the
attribute assigned a distinct odd column in the H-matrix?.
The table helps illustrate the benefits and weaknesses of
ECT. It can detect single data or attribute errors precisely
but (i) when an even number of data errors occur, it can-
not distinguish between data and attribute faults (2 data, 1
data+ 1 attribute), and (ii) in some cases with 2 data and
1 attribute errors it can perform a miss-correction.

The rest of the paper assumes that a cache is protected
with a shortened ECC code which is very common in prac-
tice [15, 3, 19, 22, 5]. We show next how to use the extra
coding space of a shortened code to increase the effective
cache capacity and to improve the strength of a code.

Assigning more than one unused column of the SEC-DED code to attribute bits
is possible but should be avoided if attribute errors are expected to be multi-bit
(>2) and possible to occur at the same time with data error(s). Such error events
can lead to miscorrection, misrecovery or even undetected errors. If an attribute
has two or more bits it can either be hashed to fewer bits [10] or be split and
assigned to different words in a block with each word checking a subset of the
attribute.

163

3. IMPLICIT-STORING (IS)

The logical capacity of a cache protected with a shortened
SEC-DED code can be increased by p bits per word with-
out increasing its physical storage. This is accomplished by
augmenting the shortened SEC-DED code to also perform a
p-bit erasure correction. This logical capacity increase comes
at the expense of reducing the ECC code-strength. We will
postpone the discussion of what attributes can be implicitly
stored and their use-cases until Section 5 and first examine
the basic operation of implicit-storing.

3.1 Basic Operation of Implicit-Storing

On a write of an m bit data, the proposed mechanism
stores m bits of data but computes the check-bits using the
values of the p additional attribute bits. These p bits are in-
tentionally erased and are said to be implicitly stored. The
positions of the p implicitly stored bits in the codeword are
known both to the encoder and decoder. Therefore, IS re-
quires that the original shortened ECC code has at least p
bit positions unused.

When the m bit data and k check-bits are read the de-
coder attempts to infer the missing p data bits by decoding
2P times, each with a different value combination of p bits.
The decoder considers the combination of the resulting 2°
syndromes to determine what the missing p-bit value is, and
whether an error is detected in the codeword and if it can
be corrected.

An important property of an ECC code is the maximum
number of bits, p, which can erase. These correspond to the
number of bits that can be implicitly-stored and inferred al-
ways correctly when there is no error in the m stored bits.
For SEC-DED based codes [11, 12] this is equal to 3 bits,
one less than the minimum hamming distance of the code
(see Section 2.3 for a code’s erasure strength). Although it
is feasible to implicitly-store three bits using a SEC-DED
code this takes up all the code-strength. We discuss in Sec-
tion 6 the trade-off between code-strength and the number
of implicitly-stored bits.

A generic description of the proposed mechanism is shown
in Fig. 5. The key differences from the conventional ECC
and ECT protection (see Fig. 1(a) and Fig. 1(b)) are: (i)
the ability to logically store additional p-bits and infer them
at read time (unlike ECT that provides the information at
read time to check for errors in the attributes), and (ii) in-
creased decoding overhead, illustrated qualitatively with the
multiple checkers. In an actual implementation the multi-
ple checkers may share logic or one checker may be used to
iterate sequentially over the possible values of p. In fact,
we show subsequently that for a SEC-DED code the logic
overhead required by IS checkers is only few inverters.

3.2 Implementation of 1-bit Implicit-Storing

Here we present a specific implementation of IS for a Hsiao
SEC-DED code. The code uses an n bit codeword to pro-
tect m bits of data, the number of check bits k=n-m, and

m data bits
m

k check bits

syndrome;

\L No Detect& Detect&
m p bits error Correct Unrecoverable

Figure 5: Array with ECC Protection and Implicit-
Storing

m<2°~1-k Let us assume a baseline with n=72, m=64 and
k=T72-64=8. That is the baseline code that requires 72 bits
per storage word, 64 for the data and 8 bit for the check
bits.

Fig. 6 shows how to implement the proposed scheme when
the number of data bits implicitly-stored is one (p = 1,
i.e. the logical storage size is increased by 1 bit per word).
A comparison of Fig. 1(b) and Fig. 6 reveals that the two
schemes are virtually the same except that IS uses two check-
ers instead of one. The generate unit of IS takes the erased
bit as additional input to determine the check bits. The two
checkers of IS have exactly the same inputs, all bits read
from the array, except that one checker assumes the implicit
value to be a 0 and the other 1. The syndrome decoder
takes two syndromes as input, instead of one, and produces
its output.

Fig. 7 describes the behavior of the proposed scheme for
different number of actual errors. When there are no errors,
the syndrome decoder infers correctly the missing bit. This
corresponds to the implicit value assumed by the checker
that indicates no error since the other checker detected a
single correctable error due to the incorrect value for the im-
plicit bit. When there is a single error the proposed scheme
can detect and correct the error using the checker that indi-
cates one detected error whereas the other checker detects
two errors, the actual error and the one due to the wrong
value of the implicit bit. When there are two errors there is
a chance for miss-correction. In particular, the checker that
assumes the correct implicit value will detect double error
whereas the other will behave as if there are three errors. As
shown in Fig. 7 three errors may lead to either detecting a
3-bit unrecoverable error or single-bit error. When the lat-
ter occurs we have a miss-correction. We have performed a
miscorrection analysis, for the 72-64 SEC-DED code in [12],
assuming uniformly distributed 64 bit values while using an
available column with five 1s in the parity matrix [12] to
represent the implicit bit. The minimum number of 1s in
available columns of the matrix protecting 64 data bit is
5 [12]. We found out that in the presence of 2 data errors

164

generate

k check bits

0 k y a— PEL
Cohecly>
syndrome; \ Sy/ndwﬁe1
decode
l Voo v
/ No Detect& Detect &

m p bit error Correct Unrecoverable

Figure 6: Array with SEC-DED Protection and
Implicit-Storing of 1-bit

the expected probability for a miss-correction is 28.27% .

The last row of Fig. 7 shows the corresponding output
of the syndrome decoder for the baseline SEC-DED. The
behavior of IS and SEC-DED is the same for 0 and 1 er-
rors. However, with 2 errors the proposed scheme, as noted
earlier, can lead in some cases to a miss-correction.

The cost of IS is minimal. The generate unit is the same
as the baseline ECC except the need to xor its output with
the implicit value only in the positions that have 1s in the
parity matrix column of the implicit bit. Since this column
has 5 ones then five extra XOR gates will be needed.

The two check units of IS are equivalent to just one base-
line check unit plus 5 inverters. A baseline check unit pro-
duces the syndrome(that corresponds to the checker that
assumes the implicit bit value is 0 since an implicit value of
0 does not change the syndrome value. To produce the syn-
dromel, that assumes the implicit bit value is 1, we simply
invert five syndrome0 bit positions. The bits of syndrome0
that are not inverted are common to both syndrome0 and
syndromel. Fig. 8 shows the detailed implementation of IS
with 1-bit attribute.

In summary, we can increase the capacity by one bit in
each word of a cache array at the cost of (i) 5 XOR and 5
inverters and slightly larger decoder, and (ii) code-strength
reduction in some cases of 2 data errors. In the next section,
we present a technique that helps lessen the code-strength
reduction due to implicit-storing.

4. REDUNDANT-ENCODING-OF-ATTRI-
BUTES (REA)

One of the basic ideas of this work is to redundantly
encode attributes (REA) in multiple codewords to recover
some of the code strength lost due to the encoding of addi-
tional attributes in a shortened ECC code.

REA exploits a common characteristic of caches and main
memory: the granularity used for ECC protection, e.g. 64-
bit word, is often smaller than the granularity of transfer,
e.g. 512 bits block. We propose to encode in multiple words

)
=
N

Detect even &
Unrecoverable

Detect odd & Detect even &

No error
Correctable Unrecoverable

Detect odd &
Correctable

Detect odd & Detect even & Detect odd &
Correctable Unrecoverable Unrecoverable

Detect odd & Detecteven & Detect odd &

N @ Correctable Unrecoverable Correctable
X X NA X
YES YES YES . NO .
(miss-correction)
YES YES NA NO
Detect odd & Detect even &
No error

Correctable Unrecoverable

Figure 7: Behavior of IS with different number of
actual errors and Implicit-Storing of 1-bit

of a block, e.g. two neighboring words, the same attributes.
We refer to each of these group of words in a block as cor-
related.

Although REA is not applicable to memory arrays with
block-wide ECC, apparently, many ECC designs in caches
and memory systems use sub-block-based ECC, which will
make REA applicable in practical cache and memory system
implementations [15, 3, 19, 22, 5]. There are many practical
reasons for this:

1. Design constraints (area, energy etc) or standards limit
read /write granularity. For example, a 64B block may
be read/written in eight 8B chunks (DRAM and caches).

2. If a higher level cache is write-through you can update
the lower level cache at the granularity of word without
having to read the whole block first.

3. The array area would be smaller with a block ECC vs
word ECC. But, the delay (latency) would be larger.
The time to decode a Hamming like ECC increases
with the number of bits N. In theory, the additional
decoding only grows with logz N - but in practice, as
the logic gets bigger, the logic gets spread out and the
wire delays can become large.

4. Avoid having to read the entire block before checking
and forwarding the data (per word ECC allows a word
to be read, checked and forwarded immediately).

5. Provide stronger correction. ECC per word has lower
probability for unrecoverable/undetectable error when
multi-bit errors occur and can correct errors distributed
in different words. This is one of the reasons for em-
ploying column interleaving in SRAMs.

REA behaves exactly the same way on writes and reads
as any baseline ECC scheme. REA is distinct in how it
decodes a syndrome. Specifically, when a word is read and
the syndrome indicates an error, REA proceeds to produce
the syndrome of the other correlated locations and then the
decoder processes all the syndromes together to decide the
nature of the error.

165

[EE]

g
S7| se| s5[sa[s3[S2[s1/sq

—

64 8

\
% 575645554453 52451450
57,56, 55,[54,153,

\L No Detect& Detect&
64 pbit error Correct Unrecoverable

Figure 8: Overhead for Implicit-Storing 1-bit

Fig. 9 illustrates the generic concept of REA and how it
operates upon detecting a fault. It reads multiple correlated
locations and produces their syndromes. The syndrome de-
coder uses the multiple syndromes to decide how to react.
Hence, REA can be classified as a n-way modular redun-
dant scheme. When data is read, if there are errors, up to
n-1 more syndrome generations are performed by reading
the n-1 correlated locations. We discuss the performance
implications of accessing correlated words in the memory
hierarchy in Section 4.3

REA does not require writing the blocks in their entirety.
Individual words may be updated separately as long as the
attribute used for updating them is the same with their other
correlated words. Also, when a block is filled the attributes
of the correlated words need to be the same. These require-
ments ensure that correlated locations without faults have
the same attributes.

Next we discuss how to combine REA with ECT and IS
to recover some of the code-strength reduction they suffer
from encoding additional info in their codewords.

4.1 Explicit and Redundant Encoding of At-
tributes (EREA)

EREA is a combination of ECT and REA that aims to re-
coup some of the code-strength loss of ECT. EREA behaves
exactly the same way on writes and reads as a baseline ECT
scheme (see Section 2.4). EREA is different from ECT in
how it reacts to error detection.

We present the EREA operation with the help of an ex-
ample case that considers correlation across two words and
one attribute bit. The EREA behavior with more corre-
lated words and attribute errors has also been derived but
not shown due to space limitations. In particular, Fig. 10
presents the EREA reaction to different number of errors
when an attribute is redundantly encoded and stored in two

ECC

syndrome, syndrome, ...syndrome,

\
|

No Detect & Detect &
error Correct Unrecoverable

Figure 9: Concept of REA Producing Syndromes of
Correlated Words

correlated locations CO and C1. Fig. 10(a) shows the be-
havior when data errors occur only in location CO whereas
Fig. 10(b) presents the behavior with data errors in both
locations. Redundant-encoding ensures that when an at-
tribute error occurs it will appear in both correlated words.
Assuming we read from either of these locations and an er-
ror is detected, then the two syndromes of CO and C1 will
be produced and they will be decoded as shown in Fig. 10.
We note that some symmetric combinations of events are
missing, such as data errors only in C1 instead of CO or the
0-1/0% event, because the behavior for them can be mapped
to other cases already present in Fig. 10.

First some remarks about the labels used in the figure.
When syndromes with odd number of 1s are produced they
can correspond to a data, attribute, or non-legal bit position
(see Section 2) and, therefore, we can differentiate between
the three cases as Odd Data, Odd Attribute and Odd3 re-
spectively. For example, in Fig. 10(a) when we have 2 data
errors only in CO and 1 attribute error, both correlated words
will produce a syndrome with odd number of 1s. However,
the CO will be different from C1 because it is the result of
three faults whereas C1 is due to a single fault (for more why
this happens check [12]). This and other similar distinctions
are important to be able to uniquely identify the different
cases. The reaction to an attribute error is shown as XYZ
because it varies depending on what type of attributes are
encoded. For example, if the attribute is a security 1D, then
the action XYZ will most likely be a reaction to a security
violation, e.g. reset the system. In Fig. 10 we assume that
attribute errors have higher priority and that is why when
both types of faults are detected in a column the action XYZ
is used.

It is noteworthy that EREA is able to always decode cor-
rectly the case with two data errors in one correlated word
(Fig. 10(a)) something that the baseline ECT scheme could
not provide always (Section 2.4). This shows that for this er-
ror scenario EREA is able to recover the full code strength
lost due to ECT. Furthermore, for some of the 2-1/1 and
2-2/1 cases, where ECT performs miscorrection, EREA re-

x-y/z denotes x data errors in CO, y data errors in C1, and z attributes errors
affecting both.

166

acts correctly by detecting an attribute error. However, both
EREA and ECT are pessimistic for all cases with 2-1/0 and
2-2/0 errors by detecting an attribute error whereas in re-
ality there is an unrecoverable data error. Finally, both
schemes perform a miscorrection in some cases with 2-2/1
errors. The cases where EREA does not improve over ECT
correspond to the shaded cells in the Global Action row of
Fig. 10(b).

The above confirms that EREA can improve the fault-
coverage of ECT. However, the exact amount of improve-
ment depends on the probability of multiple-bit upsets [8,
26] in correlated words. With current DDRx DRAM inter-
faces the probability of a fault resulting in a correlated error
is significant [26]. The analysis based on multiple bit upsets
distribution is important, but beyond the scope of this work
because it is dependent on many challenging to model pa-
rameters. For instance, the parameters for SRAM caches in-
clude: the cause of the multiple bit upsets, such as energetic
particles or voltage of operation [8], technology parameters,
such as feature size [8] and well orientation [29], and array
implementation details, such as degree of interleaving [13].

4.2 Implicit and Redundant Encoding of At-
tributes (IREA)

This section describes how to combine IS and REA to pro-
vide Implicit and Redundant Encoding of Attributes (IREA).
The goal of this scheme is to provide the benefits of IS, in-
creasing the logical cache capacity without increasing the
physical size, but with a stronger code.

IREA operates identically on writes and reads as IS (Sec-
tion 3). The key difference, similar to the ECT+REA com-
bination, is that the decoding is not done per word but by
using the syndromes of multiple correlated words. Recall
that correlation exists when the two or more words in a
block share the same attribute and, therefore, the same at-
tribute value is implicitly-stored in all the correlated words.
This redundancy is leveraged by the decoder of the IREA
to minimize the code strength reduction that IS experiences
in some cases with two data errors.

Fig. 11 presents the IREA decoder behavior with different
number of faults in two correlated locations when a single bit
attribute with value X is redundantly encoded in two cor-
related locations CO and C1. The inputs of the decoder are
the two syndromes from each location assuming the implicit
value is X and X’. The figure shows what value is inferred
for the implicit bit - X, X, or unknown (?)- and what action
is taken for each of the words: No error (N), Correct (C),
and Unrecoverable (U).

The table clearly shows that IREA is able to infer almost
always the correct value for the attribute and also detect
correctly what error is suffered by each word in the corre-
lated pair. In the case of 1/2 and 2/1 errors the value of
p cannot be inferred but the decoder recognizes correctly
that one of the two words experiences an unrecoverable er-
ror. Depending on the use scenario, this information may be
sufficient because an unrecoverable error will initiate some
abort sequence.

It is important to note that in the case of two errors in one
word (cases 2/0 or 0/2) the decoder recognizes that there is
an unrecoverable error unlike in Fig. 7. This demonstrates
that IREA recovers the strength code reduction of IS for
that case.

The only problematic IREA case, for the errors combina-
tions considered in Fig. 11, happens when two errors occur
in each word. This corresponds to the last column in Fig. 11.

1-0/0 0-0/1 1-0/1 2-0/0 2-0/1

- 0dd data Odd Attr. Even Even
- No Error Odd Attr. Odd Attr. No Error

- Correct Data XYz Xyz

Unrecoverable XYz

Odd data 0dd3 - Odddata Even Even
Odd Attr. Odd Attr. - Odddata Even Odddata Even

1-1/0 1-1/1 2-1/0 2-1/1 2-2/0 2-2/1
Odddata Odd3 Even Odddata Odddata Odd3
Even Even Odddata 0dd3 Odd3

Data

(a) (b)
Figure 10: (a) EREA behavior with errors in one correlated word (C0) (b) EREA behavior with errors in

both correlated words

The wrong value of p is misinterpreted and both words are
miscorrected.

Quantifying the exact strength-code improvement of IREA
vs IS is quite challenging and dependent on many param-
eters, as argued in Section 4.1. We, nonetheless, quantify
analytically the probabilities for spatial and temporal multi-
bit error to illustrate how REA can help improve the code
strength when considering random independent single-bit
transient faults. It is stressed that the expected improve-
ment from the use of REA depends on the probability dis-
tribution of multi-bit upsets in correlated-words which are
not examined in the following analysis.

The following analysis measures how likely it is for two
bit flips to occur in a word as compared to two flips in each
word of a correlated pair. First we quantify analytically
these two probabilities for spatial multi-bit error assuming
a cache with n 64 bit words that is protected with a 73-65
SEC-DED code with 1 implicit bit.

For IS the probability for the miscorrection in a cache is
given by:

Prs=1—(1-puw)" (1)

where p,, is the probability of a word to experience a mis-
correction from a two bit error:

Puw = (%)Pfaif(l —pfail)* " Ws (2

where pfail is the probability for a single bit flip, and W3 is
the probability when two bits are flipped and the attribute
value is wrong to have miscorrection. We obtained W3 to be
0.2827 when using a Hsiao 72-64 SEC-DED code extended
with an unused weight-5 column that minimizes W3 to rep-
resent the implicit bit.

For IREA the probability for a miscorrection in a cache is
given by:

Prrpa = (1—(1—pu,°)""?) (3)

The number of words is divided by two because IREA treats
words in pairs and the probability for two words to experi-
ence miscorrection is the product of each to experience a
miscorrection.

We also present the temporal analysis using PARMA [28]
that estimates the probability of IS and IREA to experience
a miscorrection. The probability for IS miscorrection in a
cache is given by:

1315t = AVF % Pwt * N (4)

where AVF is the probability that a fault will affect the
result of the program. We assume an AVF of 90%. Also pu:
is the probability for a word to experience a miscorrection in
t vulnerability cycles, where t is the average number between
two consecutive accesses to a word. The p.+ can be obtained

167

from:
72 _
pwt=< :)pfu—pt)” 211 (5)

where p; is the probability of at least one bit flip to happen
in ¢ vulnerability cycles:

pe= (1~ (1 - pfail)") (6)

For IREA the probability for temporal miscorrection in a
cache is given by:

PIREAt = AVF *p2wt * % (7)

The number of words is divided by two for the same reason
it is done for the spatial analysis.

Fig. 12 shows the ratio of spatial (P;s/Prrra) and tem-
poral (Prs, /Prrea,) as a function of pfail for different cache
sizes. The results demonstrate that IREA can minimize the
IS strength reduction by many orders of magnitude under-
lying the potential of the REA approach to mitigate code-
strength reduction.

4.3 Performance Overheads of EREA and
IREA

The redundant-encoding employed by EREA and IREA
requires in some cases to access multiple correlated words.
In this Section we discuss the implications of accessing corre-
lated words on performance of L1 data caches, non-L1 caches
and main memory, assuming correlation between pairs of
words. The discussion considers the behavior with no-errors
and correctable errors since for the other remaining error
types the recovery methods are more geared for functional
correctness than performance (e.g. restart after detecting
an unrecoverable error).

The operation and performance of a L1 data cache that
uses EREA remains as usual until an error is detected in
a word. In such case, to resolve the type of error, EREA
requires another access to read the correlated word to de-
termine depending on the two syndromes the type of error
and the action to take. The latency from the initial detec-
tion to the eventual resolution can be a handful of cycles in
modern processors but if correctable errors occur rarely this
performance overhead can be ignored. In the case where cor-
rectable errors occur frequently, to avoid any performance
degradation, one may allow the speculative forwarding of
the corrected value, using the one codeword, while waiting
for the eventual resolution. In the rare case where the fi-
nal outcome indicates an uncorrectable or attribute error
EREA can leverage existing pipeline flushing mechanisms
in the microarchitecture to prevent this data from polluting
the architectural state.

The use of IREA for a L1 data cache seems inappropriate
since it may require an access to the correlated word on

0/0 0/1 0/2 1/0 1/1 1/2

No No No No

X Error Error Error Error e
X Odd Odd Odd Odd Even Even Even
No Even Even No Odd Even

Error Error

X Odd Even Odd3 0Odd 0Odd Even 0Odd3
X X X X X X X

NN NC NU NU CN cc cu

x
o
Q
Q

2/0 2/1 2/2

Odd Even Even Even Even Even Even Even Even

Even 0Odd3 Odd 0Odd3 Odd 0Odd3 0dd3 Odd Odd
Even No No Odd Odd Even Even Even Even
Error Error
Odd Odd Odd Even Even 0dd3 Odd 0Odd3 0Odd
? X X X ? X X X -
u? UN UN uc u? uu uu uu -

Figure 11: Individual and Global Syndrome Decoding assuming 2-way IREA with 1 implicit bit

each write access to ensure the coherence of implicitly-stored
information in correlated words. This implies doubling write
accesses to the L1 data cache which can be detrimental to
performance, energy and power.

For non-Li1 caches and main-memory an access typically
involves a whole block. In a typical processor with deep
cache hierarchy the practice is to bring an entire block from
lower cache (e.g. L2) to upper cache (e.g. L1) on a read
operation or on a replacement to read the replaced block
when dirty (for writeback caches). So in both cases the
entire cache block is read. Therefore, both EREA and IREA
need no extra access for correlated words since correlated
pairs belong to the same block and when accessing one word
its correlated word will also get accessed. Therefore, the only
performance overhead can come from having a word to wait
for its correlated word to be accessed.

When using EREA for non-L1 caches and main-memory
there is no delay when no error is detected and if correctable
errors are frequent the latency overhead can be mitigated
by forwarding speculatively values. Note that some con-
trollers allow forwarding values before getting checked for
integrity and are capable of forwarding subsequently the cor-
rect value or take an exception in the case of uncorrectable
error. EREA can leverage such mechanisms to mitigate such
performance overheads.

For IREA there is also no latency overhead in the case of
no-error for non-L1 caches and main-memory. As shown in
Fig. 11, for all cases that a word with no data error is ac-
cessed one of its two syndromes, X or X’, indicates no error
and the correct value of the implicit bit can be inferred un-
ambiguously. However, when both syndromes of a word de-
tect some error, the error can not be resolved unambiguously
until the correlated word is accessed. For example, when the
two syndromes of word, X and X’, are Odd and Even then
the correlated word is needed to determine what action to
take. For instance, if the correlated word syndromes, X and
X’, indicate No Error and Odd then the error can be cor-
rected and the implicit value can be inferred. However, if
the syndromes are Even and Odd, the implicit value cannot
be inferred and there is an unrecoverable error.

For caches that access correlated words in parallel IREA
may not suffer any performance overhead for correctable er-
rors. However, main memory and some caches have narrow
transfer interfaces that limit access to a word at a time and,
therefore, expose the delay between accessing the words in
a correlated pair. If correctable errors are rare such perfor-
mance overhead is negligible, but if they are frequent then

168

this IREA overhead may degrade the performance.

Another possible overhead of redundant-encoding is the
extra state needed when correlated words are not accessed
in parallel. Specifically, the first word accessed in pair as well
as its syndrome need to be stored until its correlated word
is accessed and decoded at which time the two syndromes
can be used to determine what action to perform.

5. APPLICATION AREAS

Herein, we describe some of the potential application areas
of the proposed schemes.

5.1 ECT and EREA Uses

ECT and EREA can be used to enhance the protection
of caches and memory with location specific invariant infor-
mation that is available every time a location is accessed.
Their main benefit comes from eliminating the overheads
from storing the attribute information in the array. Exam-
ples of such invariant information are address bits [4] and
security ID. In the case of the address, a hash or a subset of
the address bits of a block can be used as attribute informa-
tion. This information is encoded on a write and checked at
read time to determine whether both the data and address
are correct. In the case of error detection, ECT and EREA
can localize where the error occurred: data, peripheral logic
(address decoders, muxes etc) or both. Depending on the
type of error a different recovery action can be initiated.

ECT and EREA can also be used to encode a security
ID. For example, a location may be marked by a security
ID and only be accessible when the provided security ID
does not cause an error. When an error is detected due to
a wrong security ID it can lead to a freeze or a shutdown.
Since ECT and EREA do not strictly check whether the ID
is identical but rather that its encoding is correct, such an
approach may be better suited for low cost platforms that
aim to provide inexpensive lightweight security.

When ECT and EREA are used in arrays where a read
accesses an entire block and the attribute is multi-bit and
common across all words in a block, the attributes can be
encoded as follows. The attribute can be split and each
part encoded in different words in the block. This means
the check of the entire attribute is accomplished with many
checks. Splitting the attribute may be preferable over hash-
ing the entire attribute into few bits and encoding it in all
words, because it can reduce the probability of undetected
errors due to the aliasing caused by hashing.

1E+50 ~——2MB ~——1MB ——256KB ~——64KB ——32KB ——16KB
16425 ____— Spatial
1E+40 -
1E+35

1E+30

1E+25 -
1E+20 Temporal

1E+15 |

Ratio of IS vs IREA

1E+10 -

1E+05

1E+00 T T
1E-25 1E-24 1E-23 1E-22 1E-21 1E-20 1E-19 1E-18

Figure 12: Ratio of Spatial and Temporal Probabil-
ity for Miscorrection of IS vs IREA assuming 2-way
Redundant Encoding of an implicitly stored bit

5.2 1IS and IREA Uses

IS and TREA can be thought as inexpensive methods to
tag information to words in a cache and main memory. Con-
sequently a variety of previously proposed techniques that
require some extra bit or bits per word or block can po-
tentially benefit from the proposed approach. All the uses,
therefore, that we describe next are feasible by using ex-
tra bits in the cache but this would entail larger area, more
energy and possibly longer latency.

One possible use of IS and IREA is to track the dirty
status in write-back caches at a finer granularity than an
entire block. For example, words in a block can implicitly
encode whether they are dirty. This information can be
propagated through the cache hierarchy and can offer fault-
tolerance, bandwidth, energy and performance benefits [30].

Without IS and IREA when a block is read from the L2
and it is both dirty and includes an unrecoverable fault, it
may cause a halt, crash or revert to a checkpoint (if one
exists). However, if the block is clean we can get its copy
from a lower-level in the hierarchy. Tracking dirty status at
finer granularity helps increase the potential to recover from
otherwise unrecoverable faults. The finer tracking of dirty
blocks also means less bandwidth, energy and potentially
better performance since when we evict dirty blocks only the
dirty subblocks need to be updated. For this application of
IS and IREA, it may be advantageous to track the dirty bits
explicitly in the L1 cache and have them implicitly in the rest
of the hierarchy. This may be desirable to avoid performance
degradation due to the need to update the dirty bit of all
correlated words in L1 when one of the word changes. This
is not an issue for writeback caches below L1 where accesses
are typically performed at block granularity.

Another use of IS and IREA is for taint analysis [27]. In
taint analysis it is desirable to track the flow of information
through memory but this requires extra bits at a fine gran-
ularity in the cache hierarchy. IS and IREA can be used to
implicitly tag words in a block without the storage overhead.

One other application of IS and IREA is to facilitate the
lazy resolution of unrecoverable errors [31] using poison bits
that are propagated through the memory hierarchy. This
is used to track the influence of an error and only cause
an exception when it will otherwise result in a user visible
failure.

Finally, implicit-storing can be used to implement cost-
effectively tagged main memory to improve the performance
of graph-oriented applications [17].

169

5.3 Selective Use and Architectural Support

We anticipate that ECT, IS, EREA and IREA will be built
in cache and memory controllers of future processors and ar-
chitectural support will be provided to determine whether
they are enabled and in what configuration. The selective
use allows to assign to the same ECC hardware different ca-
pabilities that programmers and system can exploit in dif-
ferent situations. The configuration can be selected at boot
time or during operation. The second is more flexible but
may be a bit intrusive since it requires re-encoding the array
contents with new (or no) attributes dynamically.

Let’s illustrate the selective use with a hypothetical ex-
ample. A system with EREA can disable REA if the aim is
to maximize protection of data. But, if the goal is to protect
against both data and attribute errors then EREA can be
enabled. In another situation EREA can be disabled during
normal mode but enabled when the hardware starts expe-
riencing faults. By getting EREA enabled it facilitates the
debugging process and helps better diagnose the problem
source.

Additionally, a processor with IREA capability may be
used more efficiently if a new data type is supported that
permits tagging [10, 17] and operations on tags. IREA,
therefore, can be used both for error protection and to im-
prove analysis and performance.

In general, programmers and system should be informed
about the implications on the fault-coverage of different con-
figurations (e.g. how code strength is influenced as a func-
tion of attribute bits used and configuration).

6. AREA, DELAY, ENERGY AND SCALA-
BILITY ANALYSIS

This Section quantifies the area, delay, energy and scala-
bility trade-offs of the proposed schemes for caches and main
memory.

We have measured the cache data array access delay, area
and energy numbers for a cache implemented in a 32nm Low
Power(LP) process using Artisan Memory Compilers [1].
Artisan Memory Compilers, which are offered by ARM, pro-
vide various silicon-proven SRAM, Register File and ROM
memory compilers for CPUs and SoCs ranging from perfor-
mance critical to cost sensitive and low power applications.
We have also written the ECC logic design in Verilog, syn-
thesized and implemented in 32nm LP libraries by using the
Synopsys IC compiler implementation flow. The propaga-
tion delay, dynamic and static power consumption of the
post-layout ECC logic circuit design are measured using the
Synopsys PrimeTime suite.

Our analysis shows that 99.1% of the energy is due to
reading the block from the data array and 0.9% due to
the ECC logic for the data array of a 2MB, 16-way, 64B
per block serially-accessed L2 cache using ECC with (72-64)
Hsiao code. For every extra bit that is added per 64-bit
word, the area and energy increase roughly by 1.25% per bit
whereas delay roughly increases by 0.2% per bit. The over-
head of single bit ECT, IS, EREA or EREA on ECC logic
energy is insignificant. We have synthesized various ECC
decoder designs under the same timing constraint and we
are able to meet the delay constraint at the expense of min-
imal overall cache area and energy increase. Note that the
entire ECC logic contribution to the overall cache energy is
less than <1% and an increase in the ECC decoder energy
has minimal impact on the overall energy. For this work we,
therefore, assume that the extra decoding logic needed can

be added without affecting the critical path.

Considering the large real estate caches occupy in modern
processors area savings of the order of few percent, such as
those offered by IREA, translate to more chips per wafer,
better yield due to smaller area and more profit. This is in
addition to any other benefits obtained using the proposed
schemes.

The cache area savings is a function of how many attribute
bits are encoded in a word, how many words store this in-
formation redundantly, and the size of each codeword. For
example, if a single bit is redundantly encoded in two 72-bit
codewords the area savings are in the order of 0.7%. The
area savings appear minor but they come with minimal cost,
a handful of gates. Note that the relative area and energy
savings depend on code strength and codeword length. For
example for 39-32 SEC-DED the savings are expected to be
close to 2.5% per redundant implicit bit.

The maximum cache energy and area savings of EREA

and IREA is around 3.75% when 3 bits are implicitly /explicitly-

stored for the 2MB configuration. With 3 bits there is no
compromise in fault-tolerance when faults are limited in one
of the correlated words. Going beyond 3 bits compromises
the SEC-DED capability of the code.

The savings of the proposed schemes are more pronounced
and critical when applied to main memory. The main mem-
ory is built using commodity cards and devices with fixed
width and compliant to standards. This leaves little flexibil-
ity to introduce an extra memory device to store attributes
and to modify DRAM protocols. For example, to store from
one up to the width of a memory device attributes requires
adding an extra device. For a memory using 72-64 SEC-
DED this will translate to 11.1% (5.5%) more overhead for
x8(x4) devices, a custom DIMM card with 10(19) devices
and modifying the DRAM communication protocol. All this
overhead and complexity are eliminated with the use of the
proposed approaches.

Regarding scalability, we have mentioned in Section 4.2
that the logical number of IREA checkers grows exponen-
tially with the number of erased bits: 2 checkers for 1 bit,
4 for 2 etc. However, for the SEC-DED code used in the
paper the logic required to generate all syndromes is 8 in-
verters. The syndrome is produced as in the baseline and
to produce the 8 syndromes, for the 8 possible values of p
in the case of 3 implicit-bits, we select each syndrome bit in
its true or complement form depending on how the values of
the implicit-bits affect the parity of each syndrome-bit.

7. RELATED WORK

Most modern processors have some form of protection for
values in architectural arrays such as cache tag and data
RAM arrays. What is less known, is that processors both
in high availability systems but also embedded processors
protect arrays against address errors [21, 33, 2]. This can
be useful for catching errors that result in accessing correct
data in the wrong block. These previous works do not de-
scribe exactly the method used to accomplish this but we
anticipate that some variation of ECT is employed.

Gumpertz [10] describes how an ECT approach can be
used to detect address errors that occur when reading from
incorrect memory locations. As far as we know, Gumpertz’s
work is the first to explain why attributes that remain in-
variant between a write and read from a location need not be
stored together with the data and can be used to augment
protection by encoding them in the ECC code. However,
in that work double bit data errors and single bit attribute

170

errors result in identical type of syndromes (with even num-
ber of 1s in the case of Hsiao code) and the combination of
a single bit data and a single bit attribute error can result
in miss-correction. Therefore, the solution proposed in [10],
that extends Hsiao code with ECT capabilities, is not Hsiao
compliant and is not leveraging the extra space of the short-
ened code to detect errors.

It is of course possible to overcome some of the limitations
of [10], in the case of a Hsiao code, by assigning each bit
attribute an unused odd column (see Section 2). However,
still the code will not be able to differentiate, in the case of
double errors, whether the errors are only in data or they
involve attribute bits.

Abella et al. [4] proposed to hardwire in each wordline
its ID. Whenever, accessing a wordline the ID is read and
compared with the index that is used to access the array
to detect faults in the array peripheral circuits that lead
to accessing an incorrect wordline (e.g. address decoders).
This approach is able to detect address errors and differen-
tiate between data and attribute errors but requires array
modifications to hardwire the wordline ID.

Meixner et al. [23] proposed to detect data and address
errors by storing the xor of the address and data of a location
after the parity of the data is computed. When a value is
read out it is xored with the address that is used to access
the location and then its parity is computed. When there
is an error in the data or address it can be detected. This
scheme, however, is only limited to detection and is unable
to differentiate between data and attribute errors.

Our work is distinct from the ECT scheme in that we re-
dundantly encode the attribute in multiple correlated loca-
tions to facilitate distinction between faults in attributes and
data, and therefore, avoid miss-corrections or undetected er-
TOrS.

Erasure coding is widely used in different domains as a
way to mitigate faults that may occur in the field and are
readily identifiable [24]. Implicit-storing, as proposed in this
work, is distinct in that it erases an attribute intentionally,
without an error, aiming to save space.

The concept of using spatial redundancy for reliability is
well known and widely used [18]. REA can be thought as a n-
way modular redundant scheme that leverages the combined
coding capacity offered by two or more codewords to increase
the strength of a code.

8. CONCLUSIONS

This paper introduces two coding methods useful for caches
and main memory protected with shortened ECC codes:
implicit-storing and redundant-encoding-of-attributes. The
first is useful to increase the logical capacity of a cache with-
out increasing its physical size. The second is beneficial
for recovering some of the strength of a code that is re-
duced due to the encoding of additional attributes in the
code. Redundant-encoding augments the protection capa-
bilities of an array by redundantly encoding the same at-
tributes in multiple word locations. The proposed method,
in general, does not incur storage cost but requires a slightly
more expensive error decoding procedure sometimes involv-
ing multiple syndromes. Redundant-encoding is considered
in combination with error-code-tagging and implicit-storing.
Discussion of several uses underlines the potential benefits
of the proposed approaches.

9. ACKNOWLEDGMENTS

The research leading to this paper is partially supported
by the “EuroCloud, Project No 247779“ and “Harpa, Project
No 612069“ of the European Commission 7th RTD Frame-
work Program - Information and Communication Technolo-
gies: Computing Systems, and by the University of Cyprus.
Yiannakis Sazeides completed part of this work during a
HiPEAC (FP7 Network of Excellence) sponsored mini-sabba
tical at ARM. Jaume Abella has been partially supported
by the Spanish Ministry of Science and Innovation under
grant TIN2012-34557. Also we like to thank the anonymous
reviewers for their constructive critique and feedback that
helped improve the paper quality.

10. REFERENCES

[1] Artisan Memory Compilers.
www.arm.com/products/physical-ip/embedded-
memory-ip,2013.

[2] Cortex-A9 technical reference manual.
infocenter.arm.com, 2010.

[3] Cortex-r4 and cortex-r4f technical reference manual.
infocenter.arm.com, 2010.

[4] J. Abella, P. Chaparro, X. Vera, J. Carretero, and
A. Gonzélez. On-line failure detection and
confinement in caches. In IOLTS, pages 3-9, 2008.

[5] AMD Corporation. BIOS and Kernel Developer’s
Guide for AMD NPT Family OFh Processors, 2009.
Order Number> 32559 Rev. 3.16 Nov. 2009.

[6] S. Borkar, T. Karnik, S. Narendra, J. Tschanz,

A. Keshavarzi, and V. De. Parameter variations and
impact on circuits and microarchitecture. In DAC 03,
pages 338-342, 2003.

[7] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu,

T. Karnik, V. De, and S. Borkar. Circuit techniques
for dynamic variation tolerance. In DACY46, pages 4-7,
New York, NY, USA, 2009. ACM.

[8] A. Dixit and A. Wood. The impact of new technology
on soft error rates. In SELSE11, Mar. 2011.

[9] P. Elias. Coding for two noisy channels. In The 3rd
London Symposium, Information Theory, pages 61-76,
1955.

[10] R. H. Gumpertz. Combining tags with error codes. In
ISCA, 1983.

[11] R. W. Hamming. Error detecting and error correcting
codes. The Bell System Technical Journal,
26(2):147-160, 1950.

[12] M. Y. Hsiao. A class of optimal minimum
odd-weight-column sec-ded codes. IBM Journal of
Research and Development, 14(4):395 —401, july 1970.

[13] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and
T. Toba. Impact of scaling on neutron-induced soft
error in srams from a 250 nm to a 22 nm design rule.
IEEE Transactions, Electron Devices on,
57(7):1527-1538, 2010.

[14] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 3B: System
Programming Guide, Part 2, 2013. Order Number>
253669-046US March 13.

[15] C. Keltcher, K. McGrath, A. Ahmed, and P. Conway.
The amd opteron processor for multiprocessor servers.
IEEE, Micro, 23(2):66 — 76, march-april 2003.

[16] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C.
Hoe. Multi-bit error tolerant caches using
two-dimensional error coding. In Proceedings of the
40th International Symposium on Microarchitecture,
pages 197209, Dec. 2007.

[17] S. Li, K. Chen, M. yu Hsieh, N. Muralimanohar, C. D.

171

(18]

(19]

20]

21]

(22]

23]

[24]

(25]
(26]

27]

28]

29]

(30]

(31]

32]

(33]

34]

Kersey, J. B. Brockman, A. F. Rodrigues, and N. P.
Jouppi. System implications of memory reliability in
exascale computing. In SC, 2011.

R. E. Lyons and W. Vanderkulk. The use of
triple-modular redundancy to improve computer
reliability. IBM Journal of Research and Development,
6(2):200 —209, april 1962.

M. J. Mack, W. M. Sauer, S. B. Swaney, and B. G.
Mealey. Ibm power6 reliability. IBM Journal of
Research and Development, 51(6):763 —774, nov. 2007.
M. Manoochehri, M. Annavaram, and M. Dubois.
Cppc: correctable parity protected cache. In ISCA 38,
pages 223-234, 2011.

C. McNairy and R. Bhatia. Montecito: a dual-core,
dual-thread itanium processor. IEEE, Micro, 25(2):10
— 20, 2005.

C. McNairy and D. Soltis. Itanium 2 processor
microarchitecture. IEEE, Micro, 23(2):44 — 55,
march-april 2003.

A. Meixner, M. E. Bauer, and D. J. Sorin. Argus:
Low-cost, comprehensive error detection in simple
cores. IEEE Micro, 28(1):52-59, 2008.

D. A. Patterson, G. A. Gibson, and R. H. Katz. A
case for redundant arrays of inexpensive disks (raid).
In SIGMOD Conference, pages 109-116, 1988.

W. Peterson and E. Weldon. Error Correcting Codes.
MIT Press, 1972.

V. Sridharan and D. Liberty. A study of dram failures
in the field. In SC, 2012.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure program execution via dynamic information
flow tracking. SIGARCH Comput. Archit. News,
32(5):85-96, Oct. 2004.

J. Suh, M. Manoochehri, M. Annavaram, and

M. Dubois. Soft error benchmarking of 12 caches with
parma. In SIGMETRICS, pages 85-96, 2011.

A. Tipton, J. Pellish, J. Hutson, R. Baumann,

X. Deng, A. Marshall, M. Xapsos, H. Kim,

M. Friendlich, M. Campola, C. Seidleck, K. LaBel,
M. Mendenhall, R. Reed, R. Schrimpf, R. Weller, and
J. Black. Device-orientation effects on multiple-bit
upset in 65 nm srams. IEEE Transactions, Nuclear
Science on, 55(6):2880-2885, 2008.

S. Wang, J. Hu, and S. Ziavras. On the
characterization and optimization of on-chip cache
reliability against soft errors. IEEE Transactions,
Computers on, 58(9):1171 —1184, sept. 2009.

C. Weaver, J. Emer, S. S. Mukherjee, and S. K.
Reinhardt. Techniques to reduce the soft error rate of
a high-performance microprocessor. In Proceedings of
the 31st annual international symposium on Computer
architecture, ISCA 31, 2004.

C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti,
M. Khellah, and S.-L. Lu. Trading off cache capacity
for reliability to enable low voltage operation. In
ISCA35, pages 203-214, June 2008.

A. Wood, R. Jardine, and W. Bartlett. Data integrity
in HP nonstop servers. In SELSE, Apr. 2006.

J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J.
Montrose, B. Chin, M. Nicewicz, C. A. Russell, W. Y.
Wang, L. B. Freeman, P. Hosier, L. E. LaFave, J. L.
Walsh, J. M. Orro, G. J. Unger, J. M. Ross, T. J.
O’Gorman, B. Messina, T. D. Sullivan, A. J. Sykes,
H. Yourke, T. A. Enger, V. R. Tolat, T. S. Scott,

A. H. Taber, R. J. Sussman, W. A. Klein, and C. W.
Wahaus. Ibm experiments in soft fails in computer
electronics (1978-1994). IBM Journal of Research and
Development, 40(1):3-18, 1996.

