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Abstract

This paper proposes a hardware-based heuristic method for
implementing various transformations and detecting isomor-
phism in the dynamic dependence graph of a program. This
enables on the fly identification of isomorphic instructions which
may be useful for improving the performance of several microar-
chitectural mechanisms. This work considers the application of
the proposed method to conditional branch prediction. The
empirical results using SPEC benchmarks suggest that the pro-
posed method may be useful for increasing prediction accuracy
and improving performance. Specifically, is shown for a 4-way
processor that a 16KB gshare predictor combined with a 16KB
overriding isomorphic predictor can achieve better performance
than either a 32KB gshare or a 32KB combining gshare/bimodal
predictor.

1 Introduction

The pursuit for higher computing performance has lead to the
development of several basic microarchitectural mechanisms -
pipelining, caches, predictors etc - that can be found in vir-
tually all high-performance microprocessors. Most of these
mechanisms exploit one or combination of dynamic program
properties, such as locality and predictability. One other re-
cently introduced dynamic program property, that may be useful
for improving microarchitectural performance, is instruction-
isomorphism [11].

A dynamic instruction instance is said to be isomorphic if its
component-graph - information derived from the instruction and
the dynamic dependence graph of a program - is identical to the
component-graph of an instruction executed earlier. Instruction-
isomorphism was shown [11] to occur frequently during program
execution only when a number of transformations are applied on
the dynamic data dependence graph to remove “useless” com-
putation.

The presence of instruction-isomorphism suggests repetition
in the transformed program structure. Instruction- isomorphism,
therefore, builds on earlier instruction-repetition and instruction-
reuse work that demonstrated instructions to often repeat with
same input-output values [14], and to repeat, less often, with the
same dependences [13]. Instruction-isomorphism is different
from instruction-reuse though, because it extends the scope of
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the dependence graph that can be considered and employs trans-
formations on the dependence graph to facilitate isomorphism.

The previous instruction-isomorphism work [11] assumed,
however, a perfect implementation of the various graph trans-
formations and a perfect detection of graph isomorphism. This
paper proposes a heuristic hardware-based method for imple-
menting various transformations and detecting on the fly iso-
morphism in the dynamic dependence graph.

The notion of instruction-isomorphism may provide a new
perspective on several microarchitectural issues and may even-
tually lead to better performing or even new microarchitec-
tural mechanisms.  Potential applications of the proposed
instruction-isomorphism detection mechanism include various
types of predictors such as branch, value and dependence pre-
dictors [12, 6, 9].

This work considers the application of the proposed isomor-
phism detection method, called /DM, to conditional branch pre-
diction. An empirical analysis for an out-of-order processor
using SPEC benchmarks suggests that an IDM based predictor
may be useful for increasing the performance of a 4-way proces-
sor - often by more than 4% - as compared to other predictors
with similar cost.

2 Isomorphism Basics

This section reviews instruction-isomorphism related defini-
tions and also describes theoretical transformations proposed to
uncover isomorphism. Most of the information in this section
comes from [11].

2.1 Isomorphic-Equality, Pseudo-Isomorphism and
Non-Isomorphism

A dynamic instruction instance is said to be isomorphic if
its component-graph is identical to the component-graph of a
dynamic instruction instance executed earlier. The component-
graph of a dynamic instruction instance can include information
from the instruction, its dynamic data dependence graph, and
its input data (values read but not produced by program instruc-
tions). Fig. 1 shows an example dynamic instruction sequence
(Fig. 1.a) and the component-graph for the branch instruction
beq$4,$5,25 (Fig. 1.b).

During program execution each dynamic instruction will ei-
ther be isomorphic to one or more previously executed instruc-
tions or non-isomorphic to any previously executed instruction.
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addi $2,$2,1 addi $1,$1,4
addi $1,81,4
addi $1,$1,8
addi $1,81,-8
addi $1,81,-4

$1,$2: Registers with Input Data
add $4.,%0,80 Iw $3,0(81)
addi $4,$4,5 add $5,$3,80

beq $4,$5.25

(a) (b)

addi $2,$2,1
addi $1,$1,4
sw  $2,0($1)

addi $1,$1,4

addi $1,$1,8

addi $1,$1,-8

addi $1,$1,-4
1w $3,0(s1)
add  $4,$0,$0
addi $4,$4,5

add  $5,5$3,$0

beg $4,8$5,25

Figure 1. (a) Example Dynamic Sequence, and (b)
the Component-Graph for a Branch Instruction

When two instructions are isomorphic to each other and their
outputs are equal we have a case of isomorphic-equality, and
when their outputs are not equal a case of pseudo-isomorphism.

In theory, when instruction component-graphs include all the
information that affects them, pseudo-isomorphism should not
occur because two isomorphic instructions will represent exactly
the same computation. However, real life constraints can lead
to pseudo-isomorphism. Two of the main causes of pseudo-
isomorphism are imperfect encoding of dependence graphs, and
the application of unsafe memory transformations to represent
dependences through memory. Unsafe memory transformations
may be essential because detecting on the fly exact read-after-
write and read-after-read memory dependences is particularly
difficult [8]. Therefore, if the component-graph of the example
branch instruction was (unsafely) transformed to not include the
subgraph for the loaded data (shaded part of Fig. 1.b), the branch
could have been pseudo-isomorphic to another branch that read
a different value from memory.

The above indicate that during program execution the fre-
quency of the three types of isomorphic behavior: non-
isomorphism, isomorphic-equality and pseudo-isomorphism,
depends on the information included in the component-graphs
of instructions. Next we describe some transformations that
can change the structure and content of a component-graph and
possibly its isomorphic behavior.

We note, that is possible to have component-graphs that in-
clude both control and data dependences. However, this paper
considers component-graphs with only data dependences. Con-
trol dependences are not considered because once a component-
graph is formed control dependences do not influence the
dataflow in the component-graph.

2.2 Component-Graph Transformations

This section describes component-graph transformations that
may convert non-isomorphism to isomorphic-equality. The basic
idea behind most transformations is to remove information from
the component-graph of an instruction that does not affect its
outcome, such as data movement through registers or memory.
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addi $1.$1.4
sw $2,0($1) addi $1,$1.4

B
addi $1,$1,-8

C

1w $3,0($1)

add $5,$3,$0 addi $2,82,1 addi $4,$4,5

(a) (b)
Figure 2. Component-Graph Transformations

BR

These transformations may lead to smaller component-graphs
that are more likely to be isomorphic-equal.
Bypass-Computation (BC): The purpose of this transforma-
tion is to bypass two dependent instructions when the one
adds(subtracts) an immediate value that the other subtracts(adds)
the same immediate value. This transformation can be applied
to more than two instructions at a time and is mainly aimed
to reduce the number of unique components defining the stack
pointer (SP), which typically form a very long dependence chain.
Bypass-Memory Move (BM): bypass memory communication
instructions (store and loads) by having the consumer of a load
instruction linked directly to the instruction that produced the
value that was stored in memory. The idea of memory bypass-
ing was introduced in [9] and here is leveraged to transform
component-graphs and facilitate isomorphism.
Bypass-Register Move (BR): bypass instructions that move
data between two registers. This is mainly useful to eliminate
the overhead computation due to call/return convention.
Conditional-Branch-Reversal (CBR): the goal of this trans-
formation is to allow for branches that test for complementary
conditions to be isomorphic. For example, a branch that tests for
equality can be isomorphic to a conditional branch that tests for
inequality. When this occurs the output of the former branch will
be the complement of the latter. The following pairs of condi-
tional branches are allowed to be isomorphic (these are specific
to the instruction set used in this study [2]): bne-beq, blez-bgtz,
bltz-bgez and bclf-bclt.

Commute (COM): this transformation allows two instructions
with the same commutative optype to be isomorphic irrespective
of the ordering of their input operands.

The workings of the above transformations are illustrated in
Fig. 2. Fig. 2.a shows what information is removed when ap-
plying the BC, BM and BR transformations on the component-
graph of Fig. 1.b. The end-result is a smaller component graph
with the beq instruction directly dependent on the addi$2, $2, 1.
Furthermore, by applying the CBR and COM transformations,
the component-graph in Fig. 2.a becomes isomorphic with the
component-graph in Fig. 2.b.

Previous work has found instruction-isomorphism to oc-
cur frequently when isomorphism-detection and the above
component-graph transformations are implemented perfectly
and off-line. The next section proposes a practical method
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for implementing the transformations and detecting instruction-
isomorphism on the fly.

3 IDM: A Hardware-Based Method for Imple-
menting Component-Graph Transformations
and Detecting Isomorphism

This section describes IDM: a hardware-based method that
implements various component-graph transformations and can
detect instruction-isomorphism dynamically. Although most of
the basic functionality of IDM will be common across all its
applications, its implementation may vary depending on the type
of architectural information that is available at the stage of the
pipeline the mechanism is used. In this paper we describe an
IDM placed at the front-end of a processor.

3.1 IDM’s Logical Organization

The mechanism consists of four units: the register-signature-
file (RSF), the component-graph encoding/transformation mech-
anism (CGET), the Memory Signature File (MSF), and the
instruction-isomorphism detection table (IDT). The IDM is
shown pictorially in Fig. 3.

The RSF is accessed with the source architectural regis-
ter names of an instruction to read the signatures - encoded
component-graphs - stored in the RSF by the most recent in-
struction(s) that had these registers as a destination.

The CGET takes the source signatures of an instruction, in-
formation from the current instruction (such as the optype) and
creates a new signature. This new signature represents the en-
coded/transformed component-graph of the instruction. If the
instruction writes to a register the new signature is written to the
destination register in the RSF. This procedure can encode in
a signature information from all instructions that the proposed
method can trace directly or indirectly a data dependence.

To determine if an instruction is isomorphic to a previously
executed instruction, its signature, produced by CGET, is used
to access the IDT. The IDT returns whether an instruction is
isomorphic and some information about this component-graph
past behavior. The specific information returned by the IDT
depends on the IDM’s application. Specific details about an IDM
are presented in Section 4 where we consider its application to
branch prediction.

The MSF is a signature cache that contains in each entry an ad-
dress signature and a data signature. The purpose of the MSF is
to implement the memory bypassing transformation (Section 2).
To accomplish this, dependences between memory instructions
are established using address signatures, and then data signatures
are propagated between instructions with matching address sig-
natures. Due to space limitation we do not consider further in
this report the use of the MSF to perform memory bypassing.

For the remaining paper, component-graphs cannot go past
memory dependences, and load instructions update the RSF us-
ing a signature that better represents their missing component-
graph. We refer to this as unsafe memory bypassing (UMB)
which is discussed next.
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Figure 3. IDM’s Logical Organization
3.2 Unsafe Memory Bypassing (UMB)

Unsafe memory transformations are essential because dy-
namically tracking all read-after-write and read-after-read mem-
ory dependences is particularly difficult. As shown in previous
work [8], there can be numerous memory dependences, can
be very far apart in terms of dynamic instructions, and when
needed speculative are not always regular to be learned using
known history based prediction schemes. Several options exist
for implementing the unsafe memory bypassing by updating the
destination register of a load as follows: with a fixed code in-
dicating unsafe-memory transformation, with the PC (program
counter) of the load, with the PC of the load xored with the BHR
(branch history register), and with the load’s address signature.

We have established empirically that for the application of
IDM to branch prediction (Section 4) the best choice for an un-
safe signature is the xor of the BHR with the PC of the load
instruction. It was also found experimentally that for better
performance the number of history bits used should not be the
same for each load. This may be the case because some loads
always produce the same output value and their PC is sufficient
to identify their behavior, whereas for some other loads branch
history bits may be useful to capture correlating behavior. A
simple classification scheme that performed satisfactorily was
to decide the number of history bits used based on the memory
segment a load accesses. The memory segment to be accessed
can be approximated using the load’s base register: a gp (global
pointer) base register is assumed to indicate accesses to the data
segment, an sp (stack pointer) base register is assumed to indi-
cate accesses to the stack segment, and all other base registers
to represent accesses to the heap segment. The analysis showed
consistently that loads reading the data segment (with base reg-
ister gp) required fewer BHR bits than loads from the stack or
the heap. The above experimental analysis is not reported due
to limited space.

Henceforth for UMB the PCBHR transformation is assumed.
In Fig. 3, the generate-unsafe-signature (GUS) unit produces
unsafe signatures based on the PC, the BHR and the base register
of the load instruction.

A consequence of unsafe transformations is that there may
be a need to distinguish component-graphs with and without

50 10-10-2004



unsafe transformations. One way to determine the safeness of
a signature is by adding an additional field in the signature, the
safe-bit. This bit is simply propagated by all instructions and is
set to unsafe only by loads that are unsafely transformed. For
a two input instruction the safe bit is computed as a logical or
of its inputs safe bits. The safe-bit may be useful for assigning
higher degree of confidence to safe signatures or for guiding
replacement in IDT.

3.3 Implementing the Component-Graph Encoding
and Transformation Engine (CGET)

Component-graphs are represented in encoded-form using
signatures. A signature consists of several fields aimed to
uniquely identify a component-graph:

OptypeSign encodes the operation-types of the instructions in a
component graph,

DataSign encodes all the immediate values of the instructions
in a component-graph,

Depth contains the length of the longest dependence chain, and
Safe Bit indicates whether the signature includes any unsafe
memory transformation (Section 3.2).

A signature for a dynamic instruction is encoded on the fly
by the CGET using the instruction’s source registers signatures,
information about the instruction, and current processor state.
We considered four cases of encoding that depend on an in-
struction’s source registers and optype: (a) two source registers
and commutative operation (add, and, beq etc), (b) two source
registers but not-commutative operation (sub, slt, blt), (c) one
source register (addi, andi, slti etc), and (d) no register input
(load immediate).

For a two register input and commutative instruction, the new
OptypeSign is computed as the xor of the two source Optype-
Signs and the operation-type of the current instruction, followed
by a 1-bitleft-rotation. The same function is used for computing
the new DataSign. The depth is computed by adding a 1 to the
maximum value of the source depths. This encoding procedure,
shown in Fig. 4.a, implements the Commute (COM) transfor-
mation (Section 2) by not distinguishing the source operands
ordering.

For a two register input non-commutative instruction the en-
coding is the same as for a commutative instruction with the dif-
ference that the “left” OptypeSign and DataSign are left-rotated
by 1 bit before they are used to compute the new codes. This
encoding aims to distinguish two non-commutative instructions
that have the same input signatures but in opposite order.

The encoding for instructions with one input register and no
input register are similar in spirit with the above. Fig. 4.b shows
how a one input instruction is encoded.

The abovementioned method attempts to provide fast, con-
cise and accurate representation of component-graphs. But this
is done in a heuristic manner and therefore is possible for a
non-isomorphic instruction to appear pseudo-isomorphic. The
rotation applied before updating the OptypeSign and DataSign
fields attempts to reduce signature pseudo-isomorphism. The
importance of this encoding step, referred to as ROT, will be
demonstrated experimentally.
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addi $4,94.5 @
beg $4.55.25
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Figure 4. The Encoding Procedure (a) Commuta-
tive Instruction, and (b) One input instruction

3.4 Implementing Component Graph Transforma-
tions

Section 2 introduced several component-graph transforma-
tions. We have already described how to implement two of
them, bypass-memory move (BM) and commute (COM), below
we describe how to implement the rest in the CGET.
Bypass-Computation (BC) This transformation is applied to
add instructions that have an immediate operand. For these in-
structions the encoding for the Optype and DataSign fields is
slightly modified depending on the sign of the immediate value.
Specifically, if the immediate value is positive the encoding is
performed as in Fig. 4.b, otherwise if it is negative the two fields
are encoded in “reverse”: first they are rotated, in the opposite
direction of Fig. 4.b, to the right and then the OpType signature
is xored with the new optype where as the DataSign is xored with
the magnitude of the immediate value. This encoding enables
to remove from component-graphs the Optype and Immediate
values of consecutive instructions that add(subtract) and then
subtract(add) the same immediate value.

Bypass-Register Move (BR) This transformation is imple-
mented in CGET by simply propagating the source register sig-
nature to the destination register when: (a) the optype of an
instruction is a move, or (b) one of the sources is the zero reg-
ister and the optype of the instruction ensures the output will be
the same as the contents of the other register (for example add,
XOr, or).

Conditional-Branch-Reversal (CBR) This is realized directly
in the encoding process by using always one opcode for pairs
of conditional branch types that are allowed to be isomorphic
(Section 2).

3.5 Pipelining Issues

The IDM can be placed in a processor pipeline after the
stage where decoded fetched instructions are available, since
the encoding/transformation engine requires information such
as the optype, immediate value, source registers and destination
register.

The register signature file, RSF, can be accessed using archi-
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tectural or physical register names and most likely will need to
be updated speculatively. For performance reasons the RSF may
need to be recovered in case of misspeculation and therefore
will need to be checkpointed [1]. One way to reduce checkpoint
memory cost is to not have an entry in the RSF for each register.
This may be acceptable when there is no benefit by maintaining
all register signatures.

If high speed isomorphism-detection is required the various
IDM structures may need to be multiported and the encoding
mechanism will need to perform, in parallel, encoding of several
instructions that are possibly dependent. Encoding in parallel
signatures of dependent instruction can be performed quickly
because the encoding for all instructions types requires simple
operations such as the bitwise xor. A detailed implementation of
parallel signature encoding is not presented due to limited space.

3.6 Applications of the Dynamic Isomorphism Detec-
tion Method

Isomorphism detection can be applied to improve the perfor-
mance of several types of predictors. Branch, and value pre-
dictors may be improved by using the proposed isomorphism-
detector to learn the value that is associated with the signature
of a component-graph and when the same signature repeats to
predict the previous value. To accomplish this the IDT will need
to store in its entries the value associated with a given signature.

One other application of the isomorphism-detector is to assist
the storageless value predictor [18] for deciding whether the
signature of an instruction is isomorphic to the signature in a
register and using this information to decide how to register-
rename instructions.

Memory-dependence prediction and other memory related
optimizations [8] can also benefit from isomorphism detection.
The MSF can be used to determine when two address signatures
are isomorphic and therefore dependent. This can help with
the scheduling of memory instructions or help bypass memory
communication through register renaming [8].

We believe that an isomorphic based predictor is probably
better to be used as an additional component rather as stand-alone
to capture only those predictions that other more cost-effective
schemes can not predict correctly.

Next we describe the application of the proposed method for
implementing an isomorphic-based branch predictor.

4 Isomorphic-Based Branch Predictor

To exploit the isomorphism exhibited by dynamic conditional
branches an overriding prediction approach is proposed. This is
shown in Fig. 5, where an example pipeline combines a fast base
predictor (this can be any fast predictor proposed to date) with
a slower isomorphic based predictor. Isomorphism-detection
needs to wait for decoded instruction information and as a result
the isomorphic branch prediction will come few cycles after the
base prediction is available but many cycles before the actual
execution of a branch. Consequently, the isomorphic prediction
will be used to validate and possibly override the prediction pro-
vided by the base predictor. A confidence-estimator is employed
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Figure 5. Pipeline with an Overriding Isomorphic-
Based Branch Predictor

to decide whether to trust the prediction from the isomorphic-
predictor. When the isomorphic-prediction is confident and the
two predictions agree no action is taken, otherwise if they dis-
agree the prediction is reversed. This approach is similar in
spirit with other overriding predictors that have been proposed
recently and shown to have promising performance [4, 17, 3].

The isomorphic-predictor is a variation of the method intro-
duced in Section 3 and its logical organization is very similar
to the one in Fig. 3 except it does not use an MSF. The RSF
contains as many registers as the architectural registers (in this
work 67).

The fields included in a signature are the OptypeSign,
DataSign and SafeBit. The size for the OptypeSign and DataSign
fields depends on the size of the IDT, and the number of bits in
IDT tags. The CGET mechanism implements all transforma-
tions and features reported in Section 3. For unsafe-memory
transformation the PCBHR is used.

The IDT is tagged with a hashed component-graph signature
and is only read and updated by conditional branch instructions
because we are interested only in detecting the isomorphism of
those instructions. Each entry in the IDT also contains one bit
that provides the branch direction prediction. The IDT index is
computed by folding and hashing the OptypeSign and DataSign
fields of a branch’s signature. When the CBR transformation
is applied during the encoding, indicated by a signal from the
CGET unit, the prediction provided by the IDT is reversed.

A prediction by IDT is used only when there is a high con-
fidence in the isomorphic-prediction. The confidence is based
on a tag match and the value of a reseting counter maintained in
each IDT entry. The counter is incremented when the isomor-
phic predictor gives correct predictions and reset otherwise. The
counter is considered high-confident when its value is maximum.

The IDT is updated by a branch when is mispredicted by the
base predictor or when its signature has a tag match in the IDT.
When the IDT is associative and an entry needs to be evicted
from a set, the entry with the lower confidence gets replaced.

To facilitate better confidence estimation, when a signature is
inserted in the IDT its initial confidence is set to maximum when
its safe-bit is set, otherwise it is set to minimum.
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Fetch/Issue/Commit Width 4

Pipeline Stages 20

Instruction Window Size 128

LSQ Size 64

LIT§ 2cycle, 16KB, 64B blocks, 2-way

L1D$ 1cycle, 8KB, 64B blocks, 4-way
ALU/Memory Ports 472

L2$ 7cycles, 512KB, 128B blocks, 8-way
Memory 200 cycles

Table 1. Out-of-Order Processor Parameters
5 Experimental Framework

To establish the usefulness of the IDM a simulation study was
performed for the overriding branch predictor presented in Sec-
tion 4 that includes an isomorphic-based predictor component.

The analysis was performed for an out-of-order superscalar
processor with the attributes shown in Table 1. The simulator
models accurately pipeline stages, speculative updates, execu-
tion from the wrong path, and misprediction recovery. The
simulator was build on top of the simplescalar for the PISA
architecture [2]. Experiments were performed with train or ref-
erence inputs for complete runs of SPEC95 integer benchmarks,
and selected regions of a subset of the SPEC2000 benchmarks.
We emphasize that the observations are indicative of the behavior
for specific datasets and simulated regions.

The base predictor used is an idealized gshare.fast predictor
[5] with no gap between the older and more recent branch history.
This is a pipelined predictor that has an effective latency of one
cycle.

The experimentation compares the performance of a 32KB
gshare.fast predictor with the performance of a 16KB gshare.fast
predictor combined with an IDM based predictor based on iso-
morphism.

The isomorphic-predictoris atwo way-associative 16KB IDT.
Each IDT entry includes a 4-bit tag, a 3-bit confidence and a 1-
bit for prediction. This IDT configuration requires signatures
that are at least 18 bits long. The 13 bits are needed to index
the IDT, 4 bits are used for tag match and the remaining bit is
the safe-bit. The RSF cost without any optimization must be
at least 67x18 bits (151 bytes). The latency of the isomorphic-
predictor is assumed to be 4 cycles and an isomorphic prediction
is available 5 cycles after the base prediction. The number of
branch history bits used for unsafe memory transformations are
6 for sp base register, 3 for gp, and 6 for other.

The performance of the proposed predictor was also compared
against a configuration that employs only a fast 32KB hybrid base
predictor proposed by McFarling [7] that consists of three tables:
a 16KB gshare, an 8KB bimodal, and an 8KB selector. The
latency for this predictor was assumed to be a single cycle. This
latency is optimistic since it is not known how such a predictor
can be pipelined and have a single cycle effective latency. This
predictor is used to determine whether the isomorphic predictor
captures branch behavior not captured by a bimodal predictor.

6 Results

Fig. 6 shows the speedup for two predictor configurations over
a 32KB gshare predictor. The first column (GI) shows the per-
10-10-2004

formance of the proposed 16KB gshare predictor combined with
a 16KB overriding IDM based predictor. For all benchmarks the
proposed predictor achieves better performance as compared to a
32KB gshare predictor. In particular, for benchmarks equake00,
bzip00 and twolf00 it achieves performance improvements of
7%, 6% and 5% respectively. This indicates that the IDM based
predictor can be useful for improving performance.

To further establish the usefulness of the IDM based predic-
tor the second column (H) shows the performance of a 32KB
combining gshare/bimodal predictor with a single cycle delay.
It can be observed that for several benchmarks - such as comp95,
twolf00 and equake00 - the combining predictor’s performance
is significantly worse than the overriding. This demonstrates
that performance can benefit more by adding a 16KB isomor-
phic overriding predictor to a 16KB gshare predictor, rather than
adding a 16KB bimodal/selector. This also suggests that the
isomorphic predictor learns branch behavior in a more effective
manner than a bimodal predictor, and it gives correct predictions
for branches that neither the gshare nor the bimodal predictors
can capture.

Fig. 7 shows an analysis of branch prediction behavior for
the overriding predictor. The branches are divided into four cat-
egories, according to the prediction made by the fast and the
overriding predictors. BaseCor and Baselncor indicate whether
the branch was predicted correctly or incorrectly by the fast pre-
dictor. Similarly Over and NoOver indicate whether the branch
was overridden or not overridden by the second level predic-
tor. For most benchmarks, we notice that the percentage of
branches that the overriding was incorrect (BaseCor-Over) is
very small. This suggests that the confidence estimation em-
ployed in the isomorphic predictor is effective in preventing
pseudo-isomorphism. From the data in Fig. 6 and Fig. 7 we
can observe that benchmarks with 1% or more of their branches
being overriden correctly (Baselncor-Over), have at least a 2%
performance improvement. However, for some benchmarks with
large amount of correct-overrides, such as gcc95 and go95 the
performance improvement is modest. This can be explained
by considering that these benchmarks have small but still sig-
nificant amount of incorrect overrides (BaseCor-Over). This
indicates that to have significant performance improvements, it
may be necessary to have a significant portion of branches cor-
rectly overridden (at least 1%) and a much smaller fraction of
incorrectly overridden branches.

The performance potential of the isomorphic predictor is pos-
sibly limited by the confidence-selection mechanism used. Fig. 8
presents the percentage of branches for which the base predic-
tor gives an incorrect prediction and the isomorphic overriding
predictor could have overridden them correctly (Potential). The
lighter portion of the column represents the fraction of these
branches for which the isomorphic predictor actually overrides
the base predictor (Captured). The difference between the po-
tential and the captured represents the branches for which the
overriding predictor disagreed with the base but did not override
because of low confidence. From the data, we can notice that the
current confidence-selection mechanism usually captures less
than half of the potential. This may suggest the need for a more
accurate confidence-selection mechanism.
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Figure 6. SpeedUp over a 32KB gshare.fast Predic-
tor
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an Overriding Predictor

Fig. 9 highlights the importance of the various transforma-
tions employed and of the rotation used during encoding. The
data show the speedup obtained with a configuration using a
particular mix of transformations over a configuration that em-
ploys only the UMB transformation. The results show that using
transformations, in addition to unsafe memory bypassing, is ben-
eficial to performance for almost all benchmarks. The data also
show that the amount of improvement and the configuration with
the best performance varies across benchmarks. In most cases
the configuration that combines all the transformations together
offers also the best or close to the best performance.

The CBR transformation appears to be the most useful trans-
formation in many benchmarks. This indicates that often the
base predictor mispredicts on branches that are isomorphic to
other branches that simply test complementary conditions. For
one benchmark, equake00, the CROT transformation contributes
significantly. This implies that the base predictor mispredicts
branches that are isomorphic to other branches that have the
same inputs but in different order.

The data also show that for some benchmarks using a transfor-
mation can be detrimental to performance. This mainly occurs
because the combination of unsafe memory bypassing with other
types of transformations can result in pseudo-isomorphism. This
is illustrated with the aid of an example in Fig. 10. The two orig-
inal component-graphs are non-isomorphic but with the applica-
tion of the BR transformation they become pseudo-isomorphic
(the value loaded from memory is different in the two compo-
nents).

Overall, although the combination of the various transforma-
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tions appears beneficial, the amounts of improvement are mod-
est. We have evidence that suggest that this can be improved
by applying safe memory bypassing. The components with un-
safe memory bypassing are typically small - rarely more than 10
instructions - with little opportunity for isomorphic transforma-
tions. By applying safe memory bypassing components can go
past loads and therefore both the size of the components and the
opportunity for isomorphism will grow. We have developed two
accurate mechanisms for memory bypassing from the stack and
the memory segment and we are currently exploring a method
for memory bypassing in the heap. Our future work will report
on these mechanisms.

7 Related Work

Previous work [16, 10] proposed mechanisms for encoding
data-dependence graphs on the fly and predicting values based on
encoded graph information. The mechanism in [16] was used in
a subsequent work to predict [15] conditional branches. These
earlier mechanisms resemble the one introduced in Section 3,
however, they were not geared toward facilitating or detecting
isomorphism. Specifically, the dependence-graphs considered
in the above work were limited to include only dynamic instruc-
tions that are currently in the instruction window of a processor.
The dependence-graph for instructions that already committed is
represented with the values they produced and stored in registers.
One other difference is that these previous works did not employ
transformations to remove superfluous instructions. Memory by-
passing is mentioned and its ideal potential is evaluated in [10],
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however, no concrete scheme is proposed for implementing it.
Nevertheless, three practical options for encoding unsafely load
instructions were proposed: (a) predicting their value [16], (b)
using the encoding of their address graph [16, 10], and (c) using
the PC of the encoded load [16].

One other related work is a mechanism proposed by [3] for
tracking data dependences. This mechanism can be used to
track the registers that affect an instruction, but not past load
instructions. Data dependence tracking was applied to branch
prediction. The basic idea is to use the tracking mechanism to
determine the registers that affect a branch instruction and use
known register values and the mask of registers that affect a
branch, to index and train a branch predictor. This mechanism
may be limited: (a) by not considering dependences past loads,
and (b) by ignoring the information about the instructions and
their dependences that use the values selected by this mechanism
to compute the branch direction.

Recently, a method was proposed that uses the dynamic data
dependences to determine the branch history that a branch in-
struction should be correlating on [17]. In our view, this method
attempts indirectly to encode the data dependence graph that
affects a branch. Such an indirect encoding may be limiting
the potential of this approach. One other possible limitation of
this scheme is that memory dependences are always unsafely
transformed since for loads instruction the address dependence
is considered.

8 Conclusions and Future Work

This paper proposes IDM: a hardware-based method for de-
tecting instruction-isomorphism dynamically. The proposed
method implements several dynamic data dependence graph
transformations.

A method that can detect instruction-isomorphism can have
several uses and this paper consider its application to branch
prediction. An overriding branch predictor is proposed that
includes an isomorphic-based branch predictor component that
is a variation of the IDM. Experimental analysis using SPEC
benchmarks shows that the proposed prediction approach can be
beneficial to performance.

This paper points to several directions of future work: develop
other component-graph transformations, improve the memory-
bypassing transformation, design a more accurate confidence
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estimator, and perform a more comprehensive comparison of
the proposed predictor with other known branch predictors. An-
other direction of research is to consider other microarchitectural
applications of the instruction-isomorphism detection method.
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