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Abstract—This work presents GeST (Generator for Stress-Tests): a 

framework for automatically generating CPU stress-tests. The 

framework is based on genetic algorithm search and can be used to 

maximize different target CPU metrics such as power, temperature, 

instructions executed per cycle and dI/dt voltage noise. We 

demonstrate the generality and effectiveness of the framework by 

generating various workloads that stress the CPU power, thermal 

and voltage margins more than both conventional benchmarks and 

manually written stress-tests. The key framework strengths are its 

extensibility and flexibility. The user can specify custom 

measurement and fitness functions as well as the CPU instructions 

that will be used in the genetic algorithm search. The paper 

demonstrates the framework prowess by using it with simple and 

complex fitness functions to generate stress-tests: a) for various 

platform types ranging from low-power mobile ARM CPUs to high-

power x86 CPUs and b) with different measurement instruments 

such as oscilloscopes and software accessible performance counters 

and sensors. 

Keywords: tool, framework, stress-test, virus, power, temperature, 

dI/dt, genetic algorithms 

I. INTRODUCTION 

Stress-tests that maximize micro-architectural activity, 

heat-dissipation, power-consumption and voltage-noise are 

useful for numerous reasons that include among other: a) 

benchmarking, b) testing system stability, c) margining 

production systems, d) detecting performance bottlenecks or 

weaknesses in the CPU power delivery network (PDN), and e) 

testing the efficacy of energy-efficiency techniques such as 

voltage-noise mitigation mechanisms [1][2][3][4][5][6][13]. 

Manually crafting such stress-tests is a time consuming and 

tedious procedure. Consequently, previous work has proposed 

automated frameworks for generating stress-tests 

[1][2][3][4][5][6][7][8]. The basis of most of these approaches 

is genetic algorithm search (GA) [9].  

Despite the previous work on GA based stress-test 

generation frameworks, to the best of our knowledge, there is 

no publicly available tool for researchers and practitioners for 

automatic stress-test generation. This work presents GeST 

(Generator for Stress-Tests): a GA based framework that 

researchers and designers can use for automatic stress-test 

generation. GeST has already been used for industrial purposes 

and in several research publications [22][23][24][25]. 

GeST, given a user-specified set of assembly instructions  

and operands, attempts to find the instruction mix, order and 

operands that maximize a target metric. GeST is extensible as 

it offers an easy interface to build upon. A user can define the 

instructions, which the optimization search uses, by only 

changing input configuration parameters. This renders the 

framework compatible with any ISA. Moreover, an 

experimenter can script custom measurement procedures and 

custom fitness functions (the function that drives the GA 

optimization) in a plug-and-play fashion using the template 

measurement and fitness software classes provided in the 

framework. The user defined measurement scripts and fitness 

functions are easy to integrate in the framework by simply 

changing the configuration parameters without performing any 

change in the framework’s core source code. We demonstrate 

the power of the framework’s extensibility and flexibility by: 

a) generating stress-tests that maximize different target metrics 

such as power, temperature, and dI/dt voltage-noise, b) using 

the framework with various measurement procedures and 

optimization metrics such as software accessible counters (e.g. 

performance counters) and external instruments (such as 

oscilloscopes), c) generating stress-tests on mobile ARM and 

server-grade ARM and x86 CPUs, d) generating stress-tests on 

bare-metal and OS execution environments, and e) using both 

simple as well as complex multi-objective fitness functions. 

The rest of the paper is organized as follows: Section II 

provides background discussion on stress-tests, Section III 

presents GeST, Section IV discusses the experimental setup, 

Section V demonstrates the capability of GeST to generate 

stress-tests that maximize power consumption, temperature and 

IPC. In Section VI, we highlight the framework’s capability to 

generate dI/dt voltage noise stress-tests. Section VII discusses 

previously proposed GA frameworks. Finally, we present 

concluding remarks in Section VIII.  

II. BACKGROUND ON STRESS-TESTS 

For the purposes of this discussion, we classify stress-tests 

into three categories: a) stress-tests that maximize specific 

micro-architectural (uArch) metrics, such as memory 

bandwidth, IPC and cache-misses, b) stress-tests that maximize 

power consumption and temperature, commonly referred to as 

“power-viruses”, and c) stress-tests that maximize voltage 

noise, also known as “voltage-noise viruses” or “dI/dt-viruses”. 

This work shows that GeST can successfully generate stress-

tests for all three categories. In particular, we use the 

framework to generate stress-tests that maximize CPU IPC, 

power, temperature and dI/dt voltage-noise. While this work 

focuses on the CPU there is nothing fundamental that prevents 

using GeST for other processor components as well, for 

instance the last level cache (LLC) or an integrated accelerator. 

A brief discussion on each of the three stress-tests categories 

follows. 
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Stress-tests for maximizing specific uArch metrics are 

mainly useful for performance benchmarking purposes. The 

AIDA test suite [15] is a good example of benchmarking 

stress-test software that is commonly used to test desktop and 

mobile system’s performance. This suite includes various 

benchmarks to test the performance of specific CPU units (e.g. 

floating-point unit) and specific functions (e.g. hashing). It also 

includes memory latency and read/write bandwidth tests as 

well as specific test benchmarks for GPUs and disks. Besides 

performance testing, previous work has proposed using stress-

tests that target specific CPU parts (ALU, FPU, L1D, L1I, L2 

and L3 caches) to characterize the CPU minimum operation 

voltage (VMIN) [14] and to generate power-models and an 

energy-per-instruction (EPI) profile [8].  

 Power-viruses maximize both sustained power 

consumption and heat-dissipation [5]. They are useful for 

characterizing a system’s power and thermal margins as well as 

the IR drop [10][11]. In addition, they can check thermal 

stability, in particular, of overclocked systems (set to run at a 

higher than nominal voltage and frequency). Power-viruses 

usually maximize the micro-architectural activity by issuing 

many instructions per cycle [4]. Prime95 [16] is a well-known 

test program that maximizes power consumption and it is often 

used to check the stability of over-clocked CPUs.  

Voltage-noise viruses attempt to maximize CPU voltage 

fluctuations [1][2] and they have different characteristics from 

power-viruses. Rather than keeping a sustained high current (I) 

consumption, dI/dt stress-tests attempt to cause sudden 

transition from very low to very high current consumption. 

Abrupt current increase causes the voltage to drop low. 

Periodic current surges that match the CPU’s PDN 1
st
 order 

resonance-frequency maximize the CPU voltage droops and 

overshoots [1][2][12]. Since low voltage operation may lead to 

malfunctioning [1][12], dI/dt viruses are very effective timing-

error stability-tests. Voltage-noise viruses typically cause 

higher voltage drop than power-viruses because the dI/dt 

component dominates over the IR drop. The lowest voltage at 

which a dI/dt virus runs correctly can provide a good indication 

of where to set the operating voltage of the CPU (for a given 

operating frequency).  

Typically, a dI/dt virus is a loop of assembly instructions 

fine-tuned to cause current variations at a rate equal to the 

PDN’s 1
st
 order resonance-frequency. To develop dI/dt viruses 

high bandwidth voltage measurements are required to measure 

the maximum voltage droop or the maximum peak-to-peak 

voltage swing. This is achieved either through external 

oscilloscope connected to on-package voltage sense points [1] 

or internal on-chip voltage sensors [12]. 

III. GEST FRAMEWORK DESCRIPTION  

GeST is written in Python 3 and takes as inputs xml files 

that define configuration parameters. The framework high-

level overview is shown in Figure 1. The framework can be 

broken down into 5 major parts: the inputs, the outputs, the GA 

engine, the measurement component and the fitness evaluation 

function. Next, we describe in detail each of these components. 

A. Genetic Algorithm (GA) Engine 

The GA engine is the heart of the GeST framework and 

coordinates its execution. GAs optimize a target metric by 

applying operators inspired by natural evolution such as 

selection of fittest individual for breeding, exchange of genes 

(crossover) and mutation. Previous work has shown that GAs 

can generate workloads that stress the system worse or 

comparably to manually written stress-tests with little human 

guidance within few hours [1][3][4][5][6]. Our findings clearly 

confirm the GA suitability and effectiveness for stress-test 

generation. A typical GA flow is shown in Figure 2. A short 

description of each GA step follows:  

 Seed Population: The first step is to create an initial 

seed population (generation). The population is a set of 

assembly instruction sequences. In GA terminology, 

each sequence of assembly instructions represents an 

individual of the population.  The seed population can 

be either a new random initial population or a 

population from a previous GA run. In the case of a 

random initial population the individuals are randomly 

 

 
 

Figure 1. Framework overview. 
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generated based on the user-specified instructions, 

operands and loop-size. 

 Measure Individuals: The second step involves 

compiling each individual, executing the resulting 

binary, measuring the metrics of interest during the 

binary execution and assigning a fitness value to the 

individual. In GeST the user defines the measurement 

procedure and fitness function as shown in Figure 1.  

 Creating next generation: The algorithm creates a 

new population after all individuals are measured. The 

new population is created by selecting the fittest 

individuals as parents (e.g. the ones that scored the 

highest average power), exchanging instructions 

between the two parents (crossover) and performing 

mutation. A mutation operation converts an instruction 

or an instruction-operand (such as a register) into 

another, with a conversion probability, referred to as 

the “mutation rate”. For instance, if the mutation rate is 

equal to 2%, then each instruction has a 2% probability 

to be mutated.  

Figure 3 demonstrates, with the help of an example, how 

we generate a new population by applying tournament 

selection, one-point crossover and mutation operators. The 

procedure demonstrated in the figure is performed repeatedly 

until the desired population size is reached. Note that for this 

example each individual consists of only four instructions. 

First, we randomly pick five individuals from the population 

and select from them as “parent1” the fittest individual. The 

same procedure is applied to select “parent2”. Then a random 

point in the instruction stream is selected for the crossover 

between the two parents. In the example the crossover point is 

the 2nd instruction. This means that the “child1” will inherit 

the first half from the “parent1” and the second half from 

“parent2”, while “child2” will inherit the first part from 

“parent2” and the second part from “parent1”. Finally, the 

example demonstrates the mutation operator. Mutation can be 

performed for a whole instruction i.e. the whole instruction is 

randomly transformed to a new instruction, or an operand of 

the instruction i.e. an operand is transformed to another 

operand. For “child1” the r2 register of the SUB instruction 

transforms to r5, while for “child2” the STR instruction 

transforms to LSL and the LSL operands are randomly 

generated. 

Table I shows the GA related configuration parameters and 

their values that we empirically found to work well in our 

experiments. A key observation from our work is that 

relatively few instructions are sufficient to stress the CPU. 

Loop lengths of 50 instructions prove sufficient to cause large 

power consumption or high IPC. Voltage noise optimization is 

more sensitive to loop-length because the dI/dt noise is highly 

related to the PDN resonance frequency. A rule of thumb that 

is found to work well for dI/dt noise is to have the loop 

instruction length equal to IPC x clock_frequency / 

resonance_frequency (similar to what authors used in [3]). The 

IPC should be roughly equal to MAX_THEORETICAL_IPC / 

2 (the rationale behind this is that dI/dt should contain low and 

fast activity phases hence the IPC should be somewhere in the 

middle). In our experience, the aforementioned equation 

typically results in loop lengths of 15 to 50 instructions. 

Another recommendation, supported from experimental 

findings, is that mutation rate should be low enough so that 

only one or at-most two loop instructions are mutated at a time. 

Higher mutation rate might impede the GA convergence. So, if 

the target is one mutated instruction, then for loop lengths of 50 

instructions we need 2% mutation rate, for 15 instructions we 

need 8%. Finally, we have found that optimization search 

converges faster if children preserve some of the instruction 

order found in their parents (this is especially true for 

maximum power and maximum dI/dt search) [8]. Hence, to 

accelerate the GA convergence we prefer one-point crossover 

that does a better job in preserving the instruction-order of 

strong individuals compared to uniform-crossover (another 

well-known crossover operator), where each instruction has an 

equal probability to be swapped among the parents.  

Table I. GA parameters. 

Parameter Default Values 

population_size 50 

Individual Size (number of loop 

instructions) 15-50 

mutation_rate 0.02 - 0.08 

crossover_operator one point crossover 

elitism (Best individual promoted 
to next generation) TRUE 

parent_selection_method Tournament Selection 

tournament_size 5 

 

 

 
Figure 3. Demonstration of GA operators. 
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Figure 2. A typical GA flow. 
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B. GeST Inputs  

The GeST inputs consists of the main configuration file and 

the template source code. We describe in detail the format and 

use of these files.  

1) Main Configuration File 

The main configuration file is a xml file that specifies: a) 

the GA engine related input parameters shown in Table I, b) 

the instructions and operands used in the GA search, and c) 

various other parameters, such as, the directory where the 

results will be saved and the names of the measurement and 

fitness classes to be used by the GA search. GA engine related 

configuration parameters (individual size, mutation rate etc.) 

are explained in the previous subsection. The following 

discussion focuses on how to specify the instructions and 

operands used by the GA optimization search. 

The registers, immediate values and instructions used by 

the optimization are defined in the main configuration file. 

Figure 4 shows an example of how a user can define an 

instruction and its required operands. The instruction in the 

example is the ARM ISA LDR (load from memory). The first 

required parameter is the instruction name, it is used to identify 

the instruction and must be unique. The second parameter is 

the number of instruction operands. LDR has 3 operands: a) the 

register where the result will be written, b) the register that 

holds the base memory address, and c) an immediate value that 

holds the memory offset. These operands must be separately 

defined in the same configuration file (also shown in the 

figure). The operand definition is described in detail in the next 

paragraph. The instruction definition links to the operand 

definitions through the operand ids. In our example, the third to 

fifth instruction-definition parameters define the operand ids 

which are “mem_result”, “mem_address_register” and 

“immediate_value”. If the instruction definition contains an 

undefined operand id, the framework will terminate the 

execution. In addition, if the instruction definition contains 

incompatible to the ISA specification operands, then generated 

instructions sequences that contain this instruction will fail to 

compile. Continuing with the instruction definition parameters, 

the “format” parameter specifies the instruction format. It 

prescribes to the framework how the instruction must be 

printed in the generated output source code. The op1, op2 and 

op3 keywords in the format specification will be replaced by 

the corresponding operands. Finally, an instruction type is 

specified, that is useful for various reasons. For example, it 

allows analyzing the instruction breakdown of the generated 

stress-tests in terms of integer, float, SIMD, memory and 

branch instructions. It is worth noting that through the same 

instruction specification interface the experimenter can specify 

both individual-instructions as well as whole instructions 

sequences that will be atomically included in the GA 

optimization search.  

Regarding operand definitions, both register operands and 

immediate operands require their potential values to be 

specified. For register type operands the values are specified 

through the “values” parameter that accepts space separated 

register names. In Figure 4, the user has specified that the LDR 

result register can be anyone of the x2, x3 or x4 registers. 

Regarding immediate operands, the potential values of an 

immediate are expressed through maximum, minimum and 

stride parameters. In the example the user allows the 

immediate value to take 33 different values, from 0 to 256 in 

strides of 8 i.e. 0,8,16,24…256. Essentially, in this example 

there are 99 possible ways the GA can use the LDR instruction 

(3 registers for memory result x 1 memory address register x 

33 immediate values). The GA randomly generates any one of 

the 99 possible forms when generating the initial random 

population and when performing the mutation operation. As 

the search is progressing, the GA will converge to the 

instruction variation that maximizes the target metric. If none 

of the evaluated instruction’s possible variations helps to 

maximize the fitness value, then the instruction will likely stop 

appearing in the GA generated source codes.  For instance, 

consider a long-latency instruction like integer division (DIV) 

used in an IPC maximization search. After, few generations the 

DIV instruction will most probably be eliminated from the 

individuals because it does not contribute in generating fit 

populations.  

An operand definition, if desired, can be common for 

multiple instructions. For instance, the 

“mem_address_register” and “immediate_value” can be used 

by other memory instructions that the user may want to define, 

such as for the ARM ISA instructions LDP, STR, STP. The 

instruction and operand specification interface can serve one 

more purpose: as the means to force or explicitly avoid 

instruction dependencies. For instance, if optimizing for 

maximum instructions per cycle (IPC) it may be undesirable to 

have short-latency integer instructions depending on memory 

loads. Thereby, to avoid integer instructions depending on 

memory loads the user can specify two disjoint sets of integer 

register operands, one for memory destinations and one for 

source operands of all other integer operations.  

2) Template source code 

The GA uses the instruction and operand definitions to 

generate individuals during the optimization search. These 

individuals are printed inside a template source code file (the 

location of the template file is provided in the main 

configuration file by the experimenter) that will be eventually 

compiled in a binary. The template source file must contain an 

empty loop body that is filled with the GA generated 

 
Figure 4. Example of an instruction definition and its 

necessary operands. 

 

 

<operand

id="mem_result"

values="x2 x3 x4"

type="register" >

</operand>
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stride="8"

type=“immediate"

>

</operand>

<instruction

name="LDR"

num_of_operands="3

operand1=“mem_result"

operand2="mem_address_register"

operand3=“immediate_value“

"format="LDR op1,[op2,#op3]"

type="mem"

> </instruction>
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individuals. To indicate where the individual will be printed, 

the string “#loop_code” must be written within the empty loop 

body. Before compiling an individual, the framework removes 

the “#loop_code” string and prints the instruction sequence 

starting from the indicated line. Within the template file the 

user can also specify some fixed code that can be part of the 

loop body across all individuals e.g. add NOP instructions for 

padding. The template source file may also include user 

specified initialization code that contains register and memory 

initialization. We find that register values have considerable 

effect on power consumption, so they must be initialized 

judiciously. For this work, we have use checkerboard patterns 

(e.g. 0xAAAAAAAA) since they increase bit switching that 

helps in maximizing power or dI/dt voltage-noise. 

It is worth mentioning that while this work performs GA 

searches at assembly programming level, the instruction 

definition interface and the template source file can be also 

used to perform optimization at a higher-level language (e.g. at 

a C code level).  

C. Measurement and Fitness Evaluation 

Each source code is compiled to a binary and measured on 

the target machine (the GA framework if needed can run on a 

separate workstation). This procedure typically involves 

transferring the source file to the target machine, compiling the 

binary on the machine, running the binary, measuring the 

metric of interest through a measurement instrument (such as 

multimeter, oscilloscope or software accessible counters) while 

the binary is running, and, finally, stopping the binary 

execution and calculating the fitness value based on the 

measurements. An abstract Python class, refer to as the 

“Measurement.py”, provides the template for scripting such 

measurement procedures. Moreover, the class contains various 

utility functions that can be useful for scripting these 

procedures. For instance, the class contains functions for 

communicating through ssh with the target machine such as 

copying files over scp and executing any arbitrary command. 

To create a custom measurement script the user must inherit 

the Measurement.py class and overwrite the “init” and 

“measure” functions. The “init” should contain specific to the 

measurement procedure parameter initializations (e.g. number 

of active CPU cores, number of measurement samples to take 

etc.) and the “measure” function defines the actual 

measurement procedure. The specific measurement parameters 

initialized in “init” function should be defined in a xml 

configuration file (not in the main configuration file). Both the 

measurement class name and its corresponding configuration 

file should be specified in the main configuration file. The 

framework utilizes the Python language capability to 

dynamically load a class. This means that the user defined class 

is dynamically loaded by only specifying the class name in the 

input configuration file. No other change in the source code is 

required. 

Eventually, a fitness value will be given on the generated 

individual based on the measurement results. This is needed so 

that the GA can rank the individuals and pick the fittest ones 

that satisfy the most the optimization goal(s). An individual 

can have many measurements associated with it, e.g. maximum 

voltage droop and average power consumption. The framework 

offers a default fitness class “DefaultFitness.py” that simply 

uses the first measurement (in the list order) as the fitness 

function. More complicated fitness functions might be desired, 

for instance, maximize voltage droop while keeping average 

power low. The framework offers the user the ability to define 

such functions by writing a custom class that inherits from 

“DefaultFitness.py” and overrides the “getFitness” function. 

Similarly, to the measurement scripts, to use the custom fitness 

class the user must specify the fitness class name in the main 

configuration file. 

D. Output 

The framework’s output is the source code of all 

individuals. Each source code is saved in a different file. The 

name of the file includes: the population number, individual id 

and an array of measurements. For example, for the individual 

with id number 10 that belongs to population number 1 and 

with measured average and peak power of 1.3W and 1.33W 

respectively the file name would look like this 

1_10_1.30_1.33.txt. By default, the first measurement is the 

fitness value, this naming convention facilitates the quick 

retrieval of the fittest individual using basic UNIX commands.  

Moreover, each GA population is saved in a separate binary 

file. This binary file contains the source code, the id, the parent 

ids and the measurement values of each individual. These 

binary files can be loaded in a Python script for advanced result 

post-processing. As part of the framework release, there is a 

Python script that reads the populations in binary format and 

extracts statistics such as the fitness value of the fittest 

individual per generation and instruction mix breakdown of 

fittest individual per generation. Furthermore, the binary 

population files can be used as seed population for a new GA 

search (by default a new GA search starts with a randomly 

generated population). In such case, the user must specify the 

location of the seed population file in the main configuration 

file.  

Additionally, in the output directory of each GA run the 

following are saved for record-keeping: the GA source code, 

the configuration files and the template individual source file 

used for the run. 

IV. EXPERIMENTAL SETUP 

We evaluate GeST on 4 different CPUs shown in Table II. 

We generate power viruses for ARM Cortex-A15 and Cortex-

A7 running on a bare-metal environment (without OS). The 

chips are hosted on a CoreTile Versatile Express evaluation 

board [17]. The board offers external measurement points that 

allow measuring CPU power, current and voltage. We hook an 

ARM energy-probe [20] on the measurement points to read the 

power. Next, we generate a power virus and an IPC virus for 

the Ampere Computing X-Gene2 ARM-based server CPU 

[18]. This server offers temperature sensor readings accessible 

through the i2c interface [21]. We use the i2c interface to 

generate the power virus by optimizing towards maximum 

temperature. The IPC virus is generated by monitoring the IPC 

from the perf Linux utility [19]. On the same system we 

demonstrate the GeST ability to optimize complex fitness 
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functions (multi-objective) by generating a virus that targets 

both high temperature and instruction stream simplicity (fewer 

unique instructions). Lastly, we generate a dI/dt voltage noise 

virus on an AMD desktop CPU hosted on an Asus M5A78L 

LE motherboard. This motherboard offers high-bandwidth 

voltage measurements through external power-pads. We hook 

an active differential probe on the power-pads and measure the 

peak-to-peak voltage-noise on an external Agilent MSO9254A 

oscilloscope.  

GA searches are performed on a single core. GeST can do 

multi-core optimizations by launching multiple workload 

instances but optimizing on single core has the advantage of 

less measurement variability which helps the GA optimization 

to converge faster. This is especially true when runs are 

conducted within an OS environment. Despite the GA search 

performed on a single core, a virus is tested by running it on all 

cores. All results reported in this paper are measured with all 

cores active with each core running a separate virus instance. 

The viruses developed in this work do not make use of shared 

resources (e.g. LLC). Hence, the generated viruses scale well 

with multi-core execution because running multiple virus 

instances is not causing performance interference. The other 

workloads are also executed on all cores. For single-thread 

benchmarks we execute multiple instances and for multi-thread 

benchmarks (e.g. NAS, Parsec) we execute one instance with 

multiple threads.   

We are aware of a previous work [6] that evaluates a GA 

framework for power-virus generation on simulated multi-

cores and reports significant increase in power-consumption 

when virus threads access shared memory. This increase in 

power consumption is attributed to the high engagement of 

network-on-chip, which in the simulated systems has a large 

contribution in total power consumption (for some runs more 

than 33% of the total power). In all CPUs we tested, we have 

successfully generated effective power/thermal stress-tests that 

exceed the fitness of the worst-case workload or manually-

written stress-test by at least 10% without using shared 

memory. With that said, memory instructions that access 

shared memory can be added to the GeST optimization. The 

user must provide a template file that initializes shared-

memory and launches multiple workload threads (in case the 

shared memory is defined in kernel then multiple process 

instances instead of threads should also work). Moreover, the 

user must define in the main configuration file the instructions 

that access the shared-memory. This important extension is 

beyond the scope of this work. 

Regarding framework execution time, the GeST runtime is 

defined by the following factors: a) time to measure each 

individual, b) for how many generations the optimization is 

performed, and c) how many individuals are measured per 

generation (population size). In our experience GeST produces 

stress-tests that exceed significantly conventional workloads 

after 70-100 generations. Given 50 individuals per population 

and 5 seconds per measurement (which is typical for power 

optimization) the runtime is approximately 7 hours. 

In the framework release we include measurement scripts 

and fitness functions that can be used for power, IPC, dI/dt 

noise and instruction-stream simplicity optimization for x86 

and ARM ISA.  

V. POWER VIRUSES GENERATION 

We develop a power-virus for Cortex-A15 and Cortex-A7 

in a bare-metal environment. The measurement function for 

this optimization executes each GA generated binary for few 

seconds and takes multiple power readings during the binary 

execution. The fitness function calculates the average value of 

all power samples. Fittest individuals are considered the ones 

with the highest average power.  

The relative (normalized to coremark benchmark) power-

results for Cortex-A15 and Cortex-A7 are shown in Figure 5  

Table II. Experimental details. 

CPU # of Cores Board Environment Stress-test developed Measurement Instrument 

ARM Cortex-A15 2 CoreTile Versatile Express Bare Metal power-virus ARM energy probe 

ARM Cortex-A7 3 CoreTile  Versatile Express Bare Metal power-virus ARM energy probe 

Ampere X-Gene 2 8 Validation Board Centos 7.2 power-virus and IPC virus 
i2c temperature sensor readings, performance 

counters 

AMD Athlon II  X4 
645 4 Asus M5A78L LE Windows 8.1 dI/dt virus 

External Oscilloscope hooked on voltage-sense 
points 

 

 

 
Figure 5. Cortex-A15 power results. 

 

 
Figure 6. Cortex-A7 power results. 
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and Figure 6 respectively. First, it is worth noting that the GA 

generated stress-test both on Cortex-A15 and Cortex-A7 cause 

the highest power consumption and surpass the manually 

written stress-tests (A15manual_stress_test, 

A7manual_stress_test) as well as conventional bare-metal 

workloads (coremark, imdct, fdct). This emphasizes the GA’s 

ability to generate worst-case pathological scenarios that are 

hard for humans to produce. The other interesting observation 

is that Cortex-A7 GA virus is not a good stress-test for Cortex-

A15 and Cortex-A15 virus is not a good stress-test for Cortex-

A7. Different CPU designs require different stress-tests to 

maximize their CPU power consumption. The need for 

different stress-tests for dissimilar micro-architecture is also 

evident by the differences in the instruction mix between the 

Cortex-A15 and Cortex-A7 GA-power-viruses depicted in 

Table III. The breakdown is shown in terms of short latency (1 

cycle) integer instructions (e.g. ADD, SUB), multi-cycle 

instructions (e.g. MUL), float or SIMD instructions, memory 

instruction and branch instructions. Both stress-tests consist of 

a loop of 50 instructions. The table shows that to raise the 

Cortex-A7 power consumption it is important to add a lot of 

branch instructions (10 instructions out of 50 are branches) 

while for Cortex-A15 only one branch is used. Also, Cortex-

A7 virus prefers slightly shorter latency integer instructions as 

compared to Cortex-A15 virus. A common observation for 

both viruses is that floating point/SIMD instructions are 

dominant. 

Next, we test GeST on the X-Gene2 ARM-based server 

CPU. We generate a virus that maximizes chip temperature 

(and hence the power) using chip temperature sensor feedback. 

We compare the temperature of the virus (denoted as 

powerVirus) with various benchmarks (Parsec and NAS suite) 

and a virus that maximizes IPC (denoted as IPCvirus) 

generated with the GA using perf Linux utility. Figure 7 shows 

the relative (normalized to bodytrack benchmark) chip 

temperature. The power virus outperforms all other workloads 

by reaching the highest chip temperature.  

The IPC virus also raises the chip temperature very high 

(but lower than power virus). IPC virus is expected to cause 

high temperature because it causes very high CPU activity. It is 

interesting to understand what characteristics make the power 

virus cause higher temperatures. Table IV provides a 

comparison of the IPC and the power viruses. The IPC virus 

achieves 12% higher IPC but also 12% lower power 

consumption than the power virus. As expected, the IPC virus 

does not contain any long latency integer instruction. Also, the 

IPC virus makes moderate use of memory operations. On the 

other hand, the power virus contains a few long-latency 

instructions and uses a lot of memory operations. Perhaps the 

modest use of long-latency instruction helps to increase the 

power consumption and temperature (which is the goal of the 

virus) by keeping active the issue queue and the dependency 

tracking logic. Also, the more frequent engagement of the 

memory subsystem results in a higher power consumption. 

While the use of long-latency operations and many memory 

instructions increases the temperature, it also reduces the IPC. 

This highlights an interesting tradeoff that the GA is capable to 

make to maximize the temperature. This analysis clearly shows 

that the highest IPC does not automatically convert to highest 

power consumption and temperature. A recipe for the highest 

power consumption and temperature (at least for the X-Gene2) 

seems to be a combination of high IPC (not the highest) with 

heavy use of memory instructions and modest use of long-

latency operations. 

A. Complex Fitness Functions 

We demonstrate the GeST capability to optimize a complex 

fitness function by generating a power-virus that achieves both 

high temperature and simplicity in terms of using less unique 

instructions (unique opcodes). Simplicity of the generated 

power-viruses is desired for various reasons such as for ease in 

isolating inefficiencies in initial chip samples, like hotspots, 

and instructions that are power-intensive. To optimize for both 

high-temperature and simplicity, we use the GeST interface for 

scripting custom fitness functions (presented in Section III.C). 

We use Equation 1 for calculating the individual’s fitness. The 

fitness can take values from 0 to 1 and the equation has two 

parts, with both parts contributing equally to the fitness value. 

The first part rewards high temperature. The contribution of the 

temperature part must be bounded to a 0-1 value range 

Table III. Instruction breakdown of Cortex-A15 and 

Cortex-A7 power viruses. 

GA virus 

Short 
Latency 

Int 

Long 
Latency 

Int 
Float/ 
SIMD Mem Branch 

Total  
Loop 

Instructions 

Cortex-A15 4 5 22 18 1 50 

Cortex-A7 8 6 16 10 10 50 

 

 
Figure 7. X-Gene2 chip temperature results. 
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Equation 1. Complex fitness function rewarding high 

temperature and instruction simplicity. 

  

 

F = (M_T – I_T) / (MAX_T – I_T) * 0.5 + 

 (T_I – U_I) / T_I * 0.5 
Fitness (F), M_T (measured temperature), I_T (idle 

temperature), MAX_T (max temperature), T_I (total 

instructions), U_I (unique instructions) 
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(temperature score), hence, we normalize the measured 

temperature with the maximum possible temperature. The 

maximum temperature can be obtained either from a previous 

GA run or from specifications e.g. TJMAX. An issue with the 

temperature score is that even during idle operation the 

temperature is not negligible because of ambient temperature. 

Thereby, we must subtract the idle temperature to avoid 

overestimation of the temperature score. The second part of the 

equation is the simplicity which rewards having less unique 

instructions. It is also bounded between a 0-1 value range. 

Assuming individuals of 50 instructions, an individual with 25 

unique instructions would be assigned a simplicity score of 0.5 

whereas an individual with 15 unique instructions would be 

assigned a simplicity score of 0.7 (without taking in account 

the 0.5 weight factor). 

We run the GA with the complex fitness function for the 

same number of populations as the GA that generated the 

power virus. The characteristics of the fittest individual 

(powerVirusSimple) are shown in Table IV. This virus has 

very similar characteristics with the original power virus. 

Specifically, we observe the same characteristics we discussed 

in the previous paragraphs such as fairly high IPC, significant 

use of memory and modest use of long latency integer 

instructions. However, there is also a difference, the new 

power virus prefers to spend more instruction slots for floating 

point and long latency instructions at the expense of the short 

latency instructions. This has an impact on the IPC which is 

6% lower compared to the original power virus but this doesn’t 

affect its temperature and power consumption. The simple 

power virus achieves virtually the same power and the same 

temperature as the original power virus. The complex fitness 

optimization is considered successful as the simple power-virus 

achieves the same stress-level as the original power-virus while 

using only 13 unique instructions instead of 21. 

VI. VOLTAGE NOISE VIRUS GENERATION 

This section demonstrates the capability of GeST to 

generate voltage noise viruses and consequently stability-tests. 

For this study we use an AMD Athlon II X4 645 CPU hosted 

on an Asus M5A78L LE motherboard. This motherboard 

offers high bandwidth voltage sense points that can be used to 

monitor voltage noise. This is achieved by connecting an 

oscilloscope to the sense points through an active differential 

probe. The GA generates the dI/dt virus by optimizing towards 

maximum peak-to-peak voltage. The framework runs each GA 

generated binary for a few seconds. During the binary 

execution the minimum and maximum voltage observed on the 

oscilloscope are recorded. The binaries that achieve the highest 

difference between maximum and minimum recorded voltages 

are considered the fittest.   

Figure 8 shows the max-min voltage noise caused by 

various workloads compared to the GA generated virus. The 

GA dI/dt virus clearly outperforms the other workloads 

including well known stability-tests such as Prime95 and 

AMD’s own stability test. Since the dI/dt virus causes the 

highest voltage-noise it should stress the system’s stability 

better than the other workloads. A good stability-test must have 

high VMIN. To characterize the VMIN of a workload we run the 

workload multiple times and each time we lower the operating 

voltage in steps of 12.5mV. We keep the CPU frequency stable 

at the nominal value of 3.1GHz. The highest voltage at which a 

workload executes correctly (without corruption, error 

messages, crashes) is the workload’s VMIN.  Figure 9 shows the 

VMIN of the various workloads we tested on the AMD CPU. 

The dI/dt virus is the best stability-test because it causes 

instability at a higher voltage, even higher than the commonly 

used AMD stability test and Prime95.  

Our results show that workloads designed to draw very 

high power are not suitable stability-tests as they are not 

designed to drop the voltage very low and induce timing errors. 

Prime95 is a workload known to raise the CPU power 

consumption very high. Such workloads are a good choice for 

characterizing thermal stability and making sure that the 

temperature will not exceed a critical threshold during normal 

operation. But they are inadequate for characterizing the 

Table IV. Power virus, simple power virus and IPC virus comparison. 

GA virus ShortInt LongInt Float/SIMD Mem Branch 
Relative 

IPC 
Relative Plug 

Power (W) 
Relative Chip 

Temp. 
# of Unique 
Instructions 

powerVirus 22 5 9 12 2 1 1 1 21 

powerVirusSimple 16 7 13 11 3 0.94 0.99 1 13 

IPCvirus 26 0 15 6 3 1.12 0.88 0.94 13 

 

 

 
Figure 8. Voltage-noise results on AMD Athlon CPU. 
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susceptibility to timing errors. 

VII. RELATED WORK 

This section discusses and compares qualitatively GeST 

with previous GA frameworks for stress-test generation. Table 

V provides an overview of the state-of-the-art GA stress-test 

generation frameworks. 

We consider the pairs of works [1][3], and [6][7] as each 

representing the same framework. Particularly, the work in [3] 

has evaluated a dI/dt GA framework on  a simulated 

environment and subsequently on real multi-core hardware [1]. 

Similarly, the work in [7] generates GA power viruses for 

single-core CPUs and a latter extension on multi-core CPUs 

[6]. In a different line of work, Joshi et al. [4] evaluated a 

power-virus GA framework on an Alpha ISA single-core 

simulator and Polfliet et al. [5] evaluated a power-virus GA 

framework on real-hardware using x86 multi-cores. 

As shown in Table V, there are two dominant approaches 

in designing GA frameworks for stress-test generation: a) 

based on an abstract-workload model and b) based on 

instruction-level primitives (usually assembly instructions). In 

the abstract-model frameworks the individual is a vector of 

workload related parameters such as instruction-mix, register-

dependency distance, memory-stride profile, branch transition 

rates etc. The GA operators are performed on this abstract 

workload profile. A workload generator stochastically 

generates the assembly (or higher-level language) code based 

on the values of the abstract model parameters. On the other 

hand, for the instruction-level optimizations the individual is 

the actual source code of the virus. The GA performs the 

optimization directly on the source-code and has full-control 

on the instruction-mix, instruction-order and instructions’ 

operands. GeST as presented in Section III utilizes the 

instruction-level optimization approach. 

An advantage of the abstract workload model is that it 

reduces the design space. A disadvantage of the abstract model 

is that it fails in optimizing the instruction order and the 

instruction opcodes simply because these parameters are out of 

GA control. Previous work [8] reports that instruction-order 

can make up to 17% difference in power for the same activity 

factor and instruction-mix.  

Moreover, knobs typically found in abstract-workload 

frameworks that allow fine tuning memory accesses and 

branch behavior, through parameters such as memory stride 

and branch transition rate, seem not so relevant, at least, for 

high power and dI/dt workloads. As reported in previous work 

[4][7] and confirmed in this work, power-viruses are 

characterized by high IPC, very predictable branches and 

extremely high L1 hit rates. These characteristics can easily be 

achieved with instruction-level optimization. Regarding dI/dt 

optimization, all previous work utilized instruction-level 

optimizations [1][2][3]. This is the case since dI/dt 

optimization is very sensitive to the workload frequency that 

must match the PDN resonance frequency. For such 

optimization search, instruction-order is more important than 

disruptive events such as cache-misses and branch-

misprediction that cause non-determinism and limit the 

capacity to control the workload frequency [2]. 

Another design choice of a GA framework is the 

optimization language. Most frameworks prefer generating 

assembly code except [5] that prefers a high-level language 

like C. The advantage of using higher level language is that it 

makes the framework versatile to the hardware platform of 

interest. Using a higher-level language makes sense in 

conjunction with an abstract workload model. For instruction-

level optimization this is not so practical because it prevents 

GA to directly optimize the instruction type mix and order (the 

final instruction order and types depend on the compiler). For 

GeST we prefer the assembly instruction level optimization. 

The versatility of GeST that allows its use with any hardware 

platform stems from providing an interface to the experimenter 

to specify the instructions that will be used in the optimization. 

Thereby, this allows the experimenter to use GeST to 

customize and optimize for any ISA. 

Finally, another important GA framework aspect is the 

component it targets. Most works justifiably target the CPU as 

it is generally accepted that CPU is the most active and power-

hungry component. In [5] authors generated full-system stress-

tests that also stressed the network-interface-card and hard-

disk. This is achieved by adding a thread that sends network 

packets and a thread that performs disk reads, the invocation 

frequency of these threads is a parameter of the abstract-

workload-profile. GeST is as an instruction-level optimization 

framework that primarily targets CPU, but it is also applicable 

to any other component that can be stressed through a stream 

of instructions. For instance, with GeST is possible to stress 

LLC or DRAM by instructing the framework to optimize 

towards cache-misses and providing in the input file load/store 

instruction definitions with various strides, base memory 

registers and various min-max immediate values. We are 

currently investigating such extensions.  

 To conclude this discussion, to the best of our knowledge 

none of the other previously presented GA frameworks is 

publicly available. Also, we believe that GeST is the first work 

that targets user-friendliness, extensibility, flexibility and re-

usability. GeST achieves these features by providing a clean 

interface to experimenters for: a) scripting their own 

measurement procedures, b) writing custom fitness functions, 

Table V. Comparison of related work on GA frameworks. 

Framework OptimizationType 
Optimization-
Language Evaluated-On 

Metrics 
Evaluated 

Component 
Stressed References 

AUDIT Instruction-Level x86 ISA Real-Hardware / Simulator dI/dt CPU [1][3] 

MAMPO Abstract-Workload SPARC ISA Simulator power CPU+DRAM [7],[6] 

Joshi et al. Abstract-Workload Alpha ISA Simulator power CPU [4] 

Powermark Abstract-Workload C Real-Hardware  power Full-System [5] 

GeST Instruction-Level ARM,x86  Real-Hardware dI/dt,power CPU this work 
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and c) specifying instructions and operands that will be used in 

the GA search.  

VIII. CONCLUSION 

This work proposes GeST, a framework for automatic 

stress-test generation based on GA. While GA based automatic 

frameworks are not a novel concept, to the best of our 

knowledge there is no publicly available framework that 

researchers and practitioners can use. The framework presented 

in this paper has successfully been demonstrated in industrial 

platforms and has been used for various research publications 

[22][23][24][25]. The framework codebase is available in [26]. 

The key strengths of the framework are its flexibility and 

extensibility as it provides an easy interface to the 

experimenter that can be used for building upon the 

framework. We demonstrate the flexibility and the 

effectiveness of the framework by generating, among other, 

power and dI/dt stress-tests (viruses) on various CPUs with 

simple and complex fitness functions. The generated viruses 

stress the system more than conventional workloads and 

manually written stress-tests. 

While this paper demonstrates GeST on real hardware, 

there is no fundamental restriction that prevents the framework 

from being used for pre-silicon stress-test generation in 

conjunction with accurate power, temperature, performance 

and voltage-noise models/simulators. 
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