

1

Shidhartha Das

Arm

Shidhartha.Das@arm.com

GeST: An Automatic Framework For Generating

CPU Stress-Tests

Abstract—This work presents GeST (Generator for Stress-Tests): a

framework for automatically generating CPU stress-tests. The

framework is based on genetic algorithm search and can be used to

maximize different target CPU metrics such as power, temperature,

instructions executed per cycle and dI/dt voltage noise. We

demonstrate the generality and effectiveness of the framework by

generating various workloads that stress the CPU power, thermal

and voltage margins more than both conventional benchmarks and

manually written stress-tests. The key framework strengths are its

extensibility and flexibility. The user can specify custom

measurement and fitness functions as well as the CPU instructions

that will be used in the genetic algorithm search. The paper

demonstrates the framework prowess by using it with simple and

complex fitness functions to generate stress-tests: a) for various

platform types ranging from low-power mobile ARM CPUs to high-

power x86 CPUs and b) with different measurement instruments

such as oscilloscopes and software accessible performance counters

and sensors.

Keywords: tool, framework, stress-test, virus, power, temperature,

dI/dt, genetic algorithms

I. INTRODUCTION

Stress-tests that maximize micro-architectural activity,

heat-dissipation, power-consumption and voltage-noise are

useful for numerous reasons that include among other: a)

benchmarking, b) testing system stability, c) margining

production systems, d) detecting performance bottlenecks or

weaknesses in the CPU power delivery network (PDN), and e)

testing the efficacy of energy-efficiency techniques such as

voltage-noise mitigation mechanisms [1][2][3][4][5][6][13].

Manually crafting such stress-tests is a time consuming and

tedious procedure. Consequently, previous work has proposed

automated frameworks for generating stress-tests

[1][2][3][4][5][6][7][8]. The basis of most of these approaches

is genetic algorithm search (GA) [9].

Despite the previous work on GA based stress-test

generation frameworks, to the best of our knowledge, there is

no publicly available tool for researchers and practitioners for

automatic stress-test generation. This work presents GeST

(Generator for Stress-Tests): a GA based framework that

researchers and designers can use for automatic stress-test

generation. GeST has already been used for industrial purposes

and in several research publications [22][23][24][25].

GeST, given a user-specified set of assembly instructions

and operands, attempts to find the instruction mix, order and

operands that maximize a target metric. GeST is extensible as

it offers an easy interface to build upon. A user can define the

instructions, which the optimization search uses, by only

changing input configuration parameters. This renders the

framework compatible with any ISA. Moreover, an

experimenter can script custom measurement procedures and

custom fitness functions (the function that drives the GA

optimization) in a plug-and-play fashion using the template

measurement and fitness software classes provided in the

framework. The user defined measurement scripts and fitness

functions are easy to integrate in the framework by simply

changing the configuration parameters without performing any

change in the framework’s core source code. We demonstrate

the power of the framework’s extensibility and flexibility by:

a) generating stress-tests that maximize different target metrics

such as power, temperature, and dI/dt voltage-noise, b) using

the framework with various measurement procedures and

optimization metrics such as software accessible counters (e.g.

performance counters) and external instruments (such as

oscilloscopes), c) generating stress-tests on mobile ARM and

server-grade ARM and x86 CPUs, d) generating stress-tests on

bare-metal and OS execution environments, and e) using both

simple as well as complex multi-objective fitness functions.

The rest of the paper is organized as follows: Section II

provides background discussion on stress-tests, Section III

presents GeST, Section IV discusses the experimental setup,

Section V demonstrates the capability of GeST to generate

stress-tests that maximize power consumption, temperature and

IPC. In Section VI, we highlight the framework’s capability to

generate dI/dt voltage noise stress-tests. Section VII discusses

previously proposed GA frameworks. Finally, we present

concluding remarks in Section VIII.

II. BACKGROUND ON STRESS-TESTS

For the purposes of this discussion, we classify stress-tests

into three categories: a) stress-tests that maximize specific

micro-architectural (uArch) metrics, such as memory

bandwidth, IPC and cache-misses, b) stress-tests that maximize

power consumption and temperature, commonly referred to as

“power-viruses”, and c) stress-tests that maximize voltage

noise, also known as “voltage-noise viruses” or “dI/dt-viruses”.

This work shows that GeST can successfully generate stress-

tests for all three categories. In particular, we use the

framework to generate stress-tests that maximize CPU IPC,

power, temperature and dI/dt voltage-noise. While this work

focuses on the CPU there is nothing fundamental that prevents

using GeST for other processor components as well, for

instance the last level cache (LLC) or an integrated accelerator.

A brief discussion on each of the three stress-tests categories

follows.

Zacharias Hadjilambrou

University of Cyprus

zhadji01@cs.ucy.ac.cy

Paul N Whatmough

Arm / Harvard University

Paul.whatmough@arm.com

David Bull

Arm

dbull@arm.com

Yiannakis Sazeides

University of Cyprus

yanos@cs.ucy.ac.cy

The final version of this paper appears in 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

© © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

2

Stress-tests for maximizing specific uArch metrics are

mainly useful for performance benchmarking purposes. The

AIDA test suite [15] is a good example of benchmarking

stress-test software that is commonly used to test desktop and

mobile system’s performance. This suite includes various

benchmarks to test the performance of specific CPU units (e.g.

floating-point unit) and specific functions (e.g. hashing). It also

includes memory latency and read/write bandwidth tests as

well as specific test benchmarks for GPUs and disks. Besides

performance testing, previous work has proposed using stress-

tests that target specific CPU parts (ALU, FPU, L1D, L1I, L2

and L3 caches) to characterize the CPU minimum operation

voltage (VMIN) [14] and to generate power-models and an

energy-per-instruction (EPI) profile [8].

 Power-viruses maximize both sustained power

consumption and heat-dissipation [5]. They are useful for

characterizing a system’s power and thermal margins as well as

the IR drop [10][11]. In addition, they can check thermal

stability, in particular, of overclocked systems (set to run at a

higher than nominal voltage and frequency). Power-viruses

usually maximize the micro-architectural activity by issuing

many instructions per cycle [4]. Prime95 [16] is a well-known

test program that maximizes power consumption and it is often

used to check the stability of over-clocked CPUs.

Voltage-noise viruses attempt to maximize CPU voltage

fluctuations [1][2] and they have different characteristics from

power-viruses. Rather than keeping a sustained high current (I)

consumption, dI/dt stress-tests attempt to cause sudden

transition from very low to very high current consumption.

Abrupt current increase causes the voltage to drop low.

Periodic current surges that match the CPU’s PDN 1
st
 order

resonance-frequency maximize the CPU voltage droops and

overshoots [1][2][12]. Since low voltage operation may lead to

malfunctioning [1][12], dI/dt viruses are very effective timing-

error stability-tests. Voltage-noise viruses typically cause

higher voltage drop than power-viruses because the dI/dt

component dominates over the IR drop. The lowest voltage at

which a dI/dt virus runs correctly can provide a good indication

of where to set the operating voltage of the CPU (for a given

operating frequency).

Typically, a dI/dt virus is a loop of assembly instructions

fine-tuned to cause current variations at a rate equal to the

PDN’s 1
st
 order resonance-frequency. To develop dI/dt viruses

high bandwidth voltage measurements are required to measure

the maximum voltage droop or the maximum peak-to-peak

voltage swing. This is achieved either through external

oscilloscope connected to on-package voltage sense points [1]

or internal on-chip voltage sensors [12].

III. GEST FRAMEWORK DESCRIPTION

GeST is written in Python 3 and takes as inputs xml files

that define configuration parameters. The framework high-

level overview is shown in Figure 1. The framework can be

broken down into 5 major parts: the inputs, the outputs, the GA

engine, the measurement component and the fitness evaluation

function. Next, we describe in detail each of these components.

A. Genetic Algorithm (GA) Engine

The GA engine is the heart of the GeST framework and

coordinates its execution. GAs optimize a target metric by

applying operators inspired by natural evolution such as

selection of fittest individual for breeding, exchange of genes

(crossover) and mutation. Previous work has shown that GAs

can generate workloads that stress the system worse or

comparably to manually written stress-tests with little human

guidance within few hours [1][3][4][5][6]. Our findings clearly

confirm the GA suitability and effectiveness for stress-test

generation. A typical GA flow is shown in Figure 2. A short

description of each GA step follows:

 Seed Population: The first step is to create an initial

seed population (generation). The population is a set of

assembly instruction sequences. In GA terminology,

each sequence of assembly instructions represents an

individual of the population. The seed population can

be either a new random initial population or a

population from a previous GA run. In the case of a

random initial population the individuals are randomly

Figure 1. Framework overview.

Genetic
Algorithm

Engine

Main configuration File
GA Engine parameters,

Instruction List,
Register List,

Immediate List

Template source
code

Measurement
Script

Measurement
Procedure

source code Fitness
Evaluation

Fitness
Function

Measurement
results

Fitness
value

Input Measurement Fitness evaluation

GA populations in
binary format,

Individual source
codes in ASCII

Output

Fitness
value

Inheritance Inheritance

Measurement.py measurement.xml
DefaultFitness.py

3

generated based on the user-specified instructions,

operands and loop-size.

 Measure Individuals: The second step involves

compiling each individual, executing the resulting

binary, measuring the metrics of interest during the

binary execution and assigning a fitness value to the

individual. In GeST the user defines the measurement

procedure and fitness function as shown in Figure 1.

 Creating next generation: The algorithm creates a

new population after all individuals are measured. The

new population is created by selecting the fittest

individuals as parents (e.g. the ones that scored the

highest average power), exchanging instructions

between the two parents (crossover) and performing

mutation. A mutation operation converts an instruction

or an instruction-operand (such as a register) into

another, with a conversion probability, referred to as

the “mutation rate”. For instance, if the mutation rate is

equal to 2%, then each instruction has a 2% probability

to be mutated.

Figure 3 demonstrates, with the help of an example, how

we generate a new population by applying tournament

selection, one-point crossover and mutation operators. The

procedure demonstrated in the figure is performed repeatedly

until the desired population size is reached. Note that for this

example each individual consists of only four instructions.

First, we randomly pick five individuals from the population

and select from them as “parent1” the fittest individual. The

same procedure is applied to select “parent2”. Then a random

point in the instruction stream is selected for the crossover

between the two parents. In the example the crossover point is

the 2nd instruction. This means that the “child1” will inherit

the first half from the “parent1” and the second half from

“parent2”, while “child2” will inherit the first part from

“parent2” and the second part from “parent1”. Finally, the

example demonstrates the mutation operator. Mutation can be

performed for a whole instruction i.e. the whole instruction is

randomly transformed to a new instruction, or an operand of

the instruction i.e. an operand is transformed to another

operand. For “child1” the r2 register of the SUB instruction

transforms to r5, while for “child2” the STR instruction

transforms to LSL and the LSL operands are randomly

generated.

Table I shows the GA related configuration parameters and

their values that we empirically found to work well in our

experiments. A key observation from our work is that

relatively few instructions are sufficient to stress the CPU.

Loop lengths of 50 instructions prove sufficient to cause large

power consumption or high IPC. Voltage noise optimization is

more sensitive to loop-length because the dI/dt noise is highly

related to the PDN resonance frequency. A rule of thumb that

is found to work well for dI/dt noise is to have the loop

instruction length equal to IPC x clock_frequency /

resonance_frequency (similar to what authors used in [3]). The

IPC should be roughly equal to MAX_THEORETICAL_IPC /

2 (the rationale behind this is that dI/dt should contain low and

fast activity phases hence the IPC should be somewhere in the

middle). In our experience, the aforementioned equation

typically results in loop lengths of 15 to 50 instructions.

Another recommendation, supported from experimental

findings, is that mutation rate should be low enough so that

only one or at-most two loop instructions are mutated at a time.

Higher mutation rate might impede the GA convergence. So, if

the target is one mutated instruction, then for loop lengths of 50

instructions we need 2% mutation rate, for 15 instructions we

need 8%. Finally, we have found that optimization search

converges faster if children preserve some of the instruction

order found in their parents (this is especially true for

maximum power and maximum dI/dt search) [8]. Hence, to

accelerate the GA convergence we prefer one-point crossover

that does a better job in preserving the instruction-order of

strong individuals compared to uniform-crossover (another

well-known crossover operator), where each instruction has an

equal probability to be swapped among the parents.

Table I. GA parameters.

Parameter Default Values

population_size 50

Individual Size (number of loop

instructions) 15-50

mutation_rate 0.02 - 0.08

crossover_operator one point crossover

elitism (Best individual promoted
to next generation) TRUE

parent_selection_method Tournament Selection

tournament_size 5

Figure 3. Demonstration of GA operators.

Parent2

ASR r0,r1,#31

STR r8, [r11,#4]

MLA r3,r4,r5

SUB r3,r1,r2

1-point crossover
Parent1

ADD r0,r1,r2

MUL r3,r4,r5

SUB r3,r1,r2

LDR r8, [r11,#4]

Child1

ADD r0,r1,r2

MUL r3,r4,r5

MLA r3,r4,r5

SUB r3,r1,r2

Child2

ASR r0,r1,#31

STR r8, [r11,#4]

SUB r3,r1,r2

LDR r8, [r11,#4]

Tournament selection

Select the strongest of

them to be the parent1

Randomly pick 5 individuals

from the current population

Select the strongest of

them to be the parent2

Randomly pick 5 individuals

from the current population

M utation

Child1

ADD r0,r1,r2

MUL r3,r4,r5

MLA r3,r4,r5

SUB r3,r1,r5

Child2

ASR r0,r1,#31

LSL r3,r1,#31

SUB r3,r1,r2

LDR r8, [r11,#4]

Figure 2. A typical GA flow.

Seed

Population

Measure

population
Parent

Selection

Parent

Crossover
Mutation

Create next population

4

B. GeST Inputs

The GeST inputs consists of the main configuration file and

the template source code. We describe in detail the format and

use of these files.

1) Main Configuration File

The main configuration file is a xml file that specifies: a)

the GA engine related input parameters shown in Table I, b)

the instructions and operands used in the GA search, and c)

various other parameters, such as, the directory where the

results will be saved and the names of the measurement and

fitness classes to be used by the GA search. GA engine related

configuration parameters (individual size, mutation rate etc.)

are explained in the previous subsection. The following

discussion focuses on how to specify the instructions and

operands used by the GA optimization search.

The registers, immediate values and instructions used by

the optimization are defined in the main configuration file.

Figure 4 shows an example of how a user can define an

instruction and its required operands. The instruction in the

example is the ARM ISA LDR (load from memory). The first

required parameter is the instruction name, it is used to identify

the instruction and must be unique. The second parameter is

the number of instruction operands. LDR has 3 operands: a) the

register where the result will be written, b) the register that

holds the base memory address, and c) an immediate value that

holds the memory offset. These operands must be separately

defined in the same configuration file (also shown in the

figure). The operand definition is described in detail in the next

paragraph. The instruction definition links to the operand

definitions through the operand ids. In our example, the third to

fifth instruction-definition parameters define the operand ids

which are “mem_result”, “mem_address_register” and

“immediate_value”. If the instruction definition contains an

undefined operand id, the framework will terminate the

execution. In addition, if the instruction definition contains

incompatible to the ISA specification operands, then generated

instructions sequences that contain this instruction will fail to

compile. Continuing with the instruction definition parameters,

the “format” parameter specifies the instruction format. It

prescribes to the framework how the instruction must be

printed in the generated output source code. The op1, op2 and

op3 keywords in the format specification will be replaced by

the corresponding operands. Finally, an instruction type is

specified, that is useful for various reasons. For example, it

allows analyzing the instruction breakdown of the generated

stress-tests in terms of integer, float, SIMD, memory and

branch instructions. It is worth noting that through the same

instruction specification interface the experimenter can specify

both individual-instructions as well as whole instructions

sequences that will be atomically included in the GA

optimization search.

Regarding operand definitions, both register operands and

immediate operands require their potential values to be

specified. For register type operands the values are specified

through the “values” parameter that accepts space separated

register names. In Figure 4, the user has specified that the LDR

result register can be anyone of the x2, x3 or x4 registers.

Regarding immediate operands, the potential values of an

immediate are expressed through maximum, minimum and

stride parameters. In the example the user allows the

immediate value to take 33 different values, from 0 to 256 in

strides of 8 i.e. 0,8,16,24…256. Essentially, in this example

there are 99 possible ways the GA can use the LDR instruction

(3 registers for memory result x 1 memory address register x

33 immediate values). The GA randomly generates any one of

the 99 possible forms when generating the initial random

population and when performing the mutation operation. As

the search is progressing, the GA will converge to the

instruction variation that maximizes the target metric. If none

of the evaluated instruction’s possible variations helps to

maximize the fitness value, then the instruction will likely stop

appearing in the GA generated source codes. For instance,

consider a long-latency instruction like integer division (DIV)

used in an IPC maximization search. After, few generations the

DIV instruction will most probably be eliminated from the

individuals because it does not contribute in generating fit

populations.

An operand definition, if desired, can be common for

multiple instructions. For instance, the

“mem_address_register” and “immediate_value” can be used

by other memory instructions that the user may want to define,

such as for the ARM ISA instructions LDP, STR, STP. The

instruction and operand specification interface can serve one

more purpose: as the means to force or explicitly avoid

instruction dependencies. For instance, if optimizing for

maximum instructions per cycle (IPC) it may be undesirable to

have short-latency integer instructions depending on memory

loads. Thereby, to avoid integer instructions depending on

memory loads the user can specify two disjoint sets of integer

register operands, one for memory destinations and one for

source operands of all other integer operations.

2) Template source code

The GA uses the instruction and operand definitions to

generate individuals during the optimization search. These

individuals are printed inside a template source code file (the

location of the template file is provided in the main

configuration file by the experimenter) that will be eventually

compiled in a binary. The template source file must contain an

empty loop body that is filled with the GA generated

Figure 4. Example of an instruction definition and its

necessary operands.

<operand

id="mem_result"

values="x2 x3 x4"

type="register" >

</operand>

<operand

id="mem_address_register"

values="x10"

type="register“>

</operand>

<operand

id=“immediate_value"

min="0"

max="256"

stride="8"

type=“immediate"

>

</operand>

<instruction

name="LDR"

num_of_operands="3

operand1=“mem_result"

operand2="mem_address_register"

operand3=“immediate_value“

"format="LDR op1,[op2,#op3]"

type="mem"

> </instruction>

5

individuals. To indicate where the individual will be printed,

the string “#loop_code” must be written within the empty loop

body. Before compiling an individual, the framework removes

the “#loop_code” string and prints the instruction sequence

starting from the indicated line. Within the template file the

user can also specify some fixed code that can be part of the

loop body across all individuals e.g. add NOP instructions for

padding. The template source file may also include user

specified initialization code that contains register and memory

initialization. We find that register values have considerable

effect on power consumption, so they must be initialized

judiciously. For this work, we have use checkerboard patterns

(e.g. 0xAAAAAAAA) since they increase bit switching that

helps in maximizing power or dI/dt voltage-noise.

It is worth mentioning that while this work performs GA

searches at assembly programming level, the instruction

definition interface and the template source file can be also

used to perform optimization at a higher-level language (e.g. at

a C code level).

C. Measurement and Fitness Evaluation

Each source code is compiled to a binary and measured on

the target machine (the GA framework if needed can run on a

separate workstation). This procedure typically involves

transferring the source file to the target machine, compiling the

binary on the machine, running the binary, measuring the

metric of interest through a measurement instrument (such as

multimeter, oscilloscope or software accessible counters) while

the binary is running, and, finally, stopping the binary

execution and calculating the fitness value based on the

measurements. An abstract Python class, refer to as the

“Measurement.py”, provides the template for scripting such

measurement procedures. Moreover, the class contains various

utility functions that can be useful for scripting these

procedures. For instance, the class contains functions for

communicating through ssh with the target machine such as

copying files over scp and executing any arbitrary command.

To create a custom measurement script the user must inherit

the Measurement.py class and overwrite the “init” and

“measure” functions. The “init” should contain specific to the

measurement procedure parameter initializations (e.g. number

of active CPU cores, number of measurement samples to take

etc.) and the “measure” function defines the actual

measurement procedure. The specific measurement parameters

initialized in “init” function should be defined in a xml

configuration file (not in the main configuration file). Both the

measurement class name and its corresponding configuration

file should be specified in the main configuration file. The

framework utilizes the Python language capability to

dynamically load a class. This means that the user defined class

is dynamically loaded by only specifying the class name in the

input configuration file. No other change in the source code is

required.

Eventually, a fitness value will be given on the generated

individual based on the measurement results. This is needed so

that the GA can rank the individuals and pick the fittest ones

that satisfy the most the optimization goal(s). An individual

can have many measurements associated with it, e.g. maximum

voltage droop and average power consumption. The framework

offers a default fitness class “DefaultFitness.py” that simply

uses the first measurement (in the list order) as the fitness

function. More complicated fitness functions might be desired,

for instance, maximize voltage droop while keeping average

power low. The framework offers the user the ability to define

such functions by writing a custom class that inherits from

“DefaultFitness.py” and overrides the “getFitness” function.

Similarly, to the measurement scripts, to use the custom fitness

class the user must specify the fitness class name in the main

configuration file.

D. Output

The framework’s output is the source code of all

individuals. Each source code is saved in a different file. The

name of the file includes: the population number, individual id

and an array of measurements. For example, for the individual

with id number 10 that belongs to population number 1 and

with measured average and peak power of 1.3W and 1.33W

respectively the file name would look like this

1_10_1.30_1.33.txt. By default, the first measurement is the

fitness value, this naming convention facilitates the quick

retrieval of the fittest individual using basic UNIX commands.

Moreover, each GA population is saved in a separate binary

file. This binary file contains the source code, the id, the parent

ids and the measurement values of each individual. These

binary files can be loaded in a Python script for advanced result

post-processing. As part of the framework release, there is a

Python script that reads the populations in binary format and

extracts statistics such as the fitness value of the fittest

individual per generation and instruction mix breakdown of

fittest individual per generation. Furthermore, the binary

population files can be used as seed population for a new GA

search (by default a new GA search starts with a randomly

generated population). In such case, the user must specify the

location of the seed population file in the main configuration

file.

Additionally, in the output directory of each GA run the

following are saved for record-keeping: the GA source code,

the configuration files and the template individual source file

used for the run.

IV. EXPERIMENTAL SETUP

We evaluate GeST on 4 different CPUs shown in Table II.

We generate power viruses for ARM Cortex-A15 and Cortex-

A7 running on a bare-metal environment (without OS). The

chips are hosted on a CoreTile Versatile Express evaluation

board [17]. The board offers external measurement points that

allow measuring CPU power, current and voltage. We hook an

ARM energy-probe [20] on the measurement points to read the

power. Next, we generate a power virus and an IPC virus for

the Ampere Computing X-Gene2 ARM-based server CPU

[18]. This server offers temperature sensor readings accessible

through the i2c interface [21]. We use the i2c interface to

generate the power virus by optimizing towards maximum

temperature. The IPC virus is generated by monitoring the IPC

from the perf Linux utility [19]. On the same system we

demonstrate the GeST ability to optimize complex fitness

6

functions (multi-objective) by generating a virus that targets

both high temperature and instruction stream simplicity (fewer

unique instructions). Lastly, we generate a dI/dt voltage noise

virus on an AMD desktop CPU hosted on an Asus M5A78L

LE motherboard. This motherboard offers high-bandwidth

voltage measurements through external power-pads. We hook

an active differential probe on the power-pads and measure the

peak-to-peak voltage-noise on an external Agilent MSO9254A

oscilloscope.

GA searches are performed on a single core. GeST can do

multi-core optimizations by launching multiple workload

instances but optimizing on single core has the advantage of

less measurement variability which helps the GA optimization

to converge faster. This is especially true when runs are

conducted within an OS environment. Despite the GA search

performed on a single core, a virus is tested by running it on all

cores. All results reported in this paper are measured with all

cores active with each core running a separate virus instance.

The viruses developed in this work do not make use of shared

resources (e.g. LLC). Hence, the generated viruses scale well

with multi-core execution because running multiple virus

instances is not causing performance interference. The other

workloads are also executed on all cores. For single-thread

benchmarks we execute multiple instances and for multi-thread

benchmarks (e.g. NAS, Parsec) we execute one instance with

multiple threads.

We are aware of a previous work [6] that evaluates a GA

framework for power-virus generation on simulated multi-

cores and reports significant increase in power-consumption

when virus threads access shared memory. This increase in

power consumption is attributed to the high engagement of

network-on-chip, which in the simulated systems has a large

contribution in total power consumption (for some runs more

than 33% of the total power). In all CPUs we tested, we have

successfully generated effective power/thermal stress-tests that

exceed the fitness of the worst-case workload or manually-

written stress-test by at least 10% without using shared

memory. With that said, memory instructions that access

shared memory can be added to the GeST optimization. The

user must provide a template file that initializes shared-

memory and launches multiple workload threads (in case the

shared memory is defined in kernel then multiple process

instances instead of threads should also work). Moreover, the

user must define in the main configuration file the instructions

that access the shared-memory. This important extension is

beyond the scope of this work.

Regarding framework execution time, the GeST runtime is

defined by the following factors: a) time to measure each

individual, b) for how many generations the optimization is

performed, and c) how many individuals are measured per

generation (population size). In our experience GeST produces

stress-tests that exceed significantly conventional workloads

after 70-100 generations. Given 50 individuals per population

and 5 seconds per measurement (which is typical for power

optimization) the runtime is approximately 7 hours.

In the framework release we include measurement scripts

and fitness functions that can be used for power, IPC, dI/dt

noise and instruction-stream simplicity optimization for x86

and ARM ISA.

V. POWER VIRUSES GENERATION

We develop a power-virus for Cortex-A15 and Cortex-A7

in a bare-metal environment. The measurement function for

this optimization executes each GA generated binary for few

seconds and takes multiple power readings during the binary

execution. The fitness function calculates the average value of

all power samples. Fittest individuals are considered the ones

with the highest average power.

The relative (normalized to coremark benchmark) power-

results for Cortex-A15 and Cortex-A7 are shown in Figure 5

Table II. Experimental details.

CPU # of Cores Board Environment Stress-test developed Measurement Instrument

ARM Cortex-A15 2 CoreTile Versatile Express Bare Metal power-virus ARM energy probe

ARM Cortex-A7 3 CoreTile Versatile Express Bare Metal power-virus ARM energy probe

Ampere X-Gene 2 8 Validation Board Centos 7.2 power-virus and IPC virus
i2c temperature sensor readings, performance

counters

AMD Athlon II X4
645 4 Asus M5A78L LE Windows 8.1 dI/dt virus

External Oscilloscope hooked on voltage-sense
points

Figure 5. Cortex-A15 power results.

Figure 6. Cortex-A7 power results.

0

0.5

1

1.5

2

2.5

Re
la

ti
ve

 a
ve

ra
ge

 p
ow

er

0

0.5

1

1.5

Re
la

ti
ve

 a
ve

ra
ge

 p
ow

er

7

and Figure 6 respectively. First, it is worth noting that the GA

generated stress-test both on Cortex-A15 and Cortex-A7 cause

the highest power consumption and surpass the manually

written stress-tests (A15manual_stress_test,

A7manual_stress_test) as well as conventional bare-metal

workloads (coremark, imdct, fdct). This emphasizes the GA’s

ability to generate worst-case pathological scenarios that are

hard for humans to produce. The other interesting observation

is that Cortex-A7 GA virus is not a good stress-test for Cortex-

A15 and Cortex-A15 virus is not a good stress-test for Cortex-

A7. Different CPU designs require different stress-tests to

maximize their CPU power consumption. The need for

different stress-tests for dissimilar micro-architecture is also

evident by the differences in the instruction mix between the

Cortex-A15 and Cortex-A7 GA-power-viruses depicted in

Table III. The breakdown is shown in terms of short latency (1

cycle) integer instructions (e.g. ADD, SUB), multi-cycle

instructions (e.g. MUL), float or SIMD instructions, memory

instruction and branch instructions. Both stress-tests consist of

a loop of 50 instructions. The table shows that to raise the

Cortex-A7 power consumption it is important to add a lot of

branch instructions (10 instructions out of 50 are branches)

while for Cortex-A15 only one branch is used. Also, Cortex-

A7 virus prefers slightly shorter latency integer instructions as

compared to Cortex-A15 virus. A common observation for

both viruses is that floating point/SIMD instructions are

dominant.

Next, we test GeST on the X-Gene2 ARM-based server

CPU. We generate a virus that maximizes chip temperature

(and hence the power) using chip temperature sensor feedback.

We compare the temperature of the virus (denoted as

powerVirus) with various benchmarks (Parsec and NAS suite)

and a virus that maximizes IPC (denoted as IPCvirus)

generated with the GA using perf Linux utility. Figure 7 shows

the relative (normalized to bodytrack benchmark) chip

temperature. The power virus outperforms all other workloads

by reaching the highest chip temperature.

The IPC virus also raises the chip temperature very high

(but lower than power virus). IPC virus is expected to cause

high temperature because it causes very high CPU activity. It is

interesting to understand what characteristics make the power

virus cause higher temperatures. Table IV provides a

comparison of the IPC and the power viruses. The IPC virus

achieves 12% higher IPC but also 12% lower power

consumption than the power virus. As expected, the IPC virus

does not contain any long latency integer instruction. Also, the

IPC virus makes moderate use of memory operations. On the

other hand, the power virus contains a few long-latency

instructions and uses a lot of memory operations. Perhaps the

modest use of long-latency instruction helps to increase the

power consumption and temperature (which is the goal of the

virus) by keeping active the issue queue and the dependency

tracking logic. Also, the more frequent engagement of the

memory subsystem results in a higher power consumption.

While the use of long-latency operations and many memory

instructions increases the temperature, it also reduces the IPC.

This highlights an interesting tradeoff that the GA is capable to

make to maximize the temperature. This analysis clearly shows

that the highest IPC does not automatically convert to highest

power consumption and temperature. A recipe for the highest

power consumption and temperature (at least for the X-Gene2)

seems to be a combination of high IPC (not the highest) with

heavy use of memory instructions and modest use of long-

latency operations.

A. Complex Fitness Functions

We demonstrate the GeST capability to optimize a complex

fitness function by generating a power-virus that achieves both

high temperature and simplicity in terms of using less unique

instructions (unique opcodes). Simplicity of the generated

power-viruses is desired for various reasons such as for ease in

isolating inefficiencies in initial chip samples, like hotspots,

and instructions that are power-intensive. To optimize for both

high-temperature and simplicity, we use the GeST interface for

scripting custom fitness functions (presented in Section III.C).

We use Equation 1 for calculating the individual’s fitness. The

fitness can take values from 0 to 1 and the equation has two

parts, with both parts contributing equally to the fitness value.

The first part rewards high temperature. The contribution of the

temperature part must be bounded to a 0-1 value range

Table III. Instruction breakdown of Cortex-A15 and

Cortex-A7 power viruses.

GA virus

Short
Latency

Int

Long
Latency

Int
Float/
SIMD Mem Branch

Total
Loop

Instructions

Cortex-A15 4 5 22 18 1 50

Cortex-A7 8 6 16 10 10 50

Figure 7. X-Gene2 chip temperature results.

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
or

m
al

iz
ed

 C
hi

p
te

m
p

er
at

u
re

Equation 1. Complex fitness function rewarding high

temperature and instruction simplicity.

F = (M_T – I_T) / (MAX_T – I_T) * 0.5 +

 (T_I – U_I) / T_I * 0.5
Fitness (F), M_T (measured temperature), I_T (idle

temperature), MAX_T (max temperature), T_I (total

instructions), U_I (unique instructions)

8

(temperature score), hence, we normalize the measured

temperature with the maximum possible temperature. The

maximum temperature can be obtained either from a previous

GA run or from specifications e.g. TJMAX. An issue with the

temperature score is that even during idle operation the

temperature is not negligible because of ambient temperature.

Thereby, we must subtract the idle temperature to avoid

overestimation of the temperature score. The second part of the

equation is the simplicity which rewards having less unique

instructions. It is also bounded between a 0-1 value range.

Assuming individuals of 50 instructions, an individual with 25

unique instructions would be assigned a simplicity score of 0.5

whereas an individual with 15 unique instructions would be

assigned a simplicity score of 0.7 (without taking in account

the 0.5 weight factor).

We run the GA with the complex fitness function for the

same number of populations as the GA that generated the

power virus. The characteristics of the fittest individual

(powerVirusSimple) are shown in Table IV. This virus has

very similar characteristics with the original power virus.

Specifically, we observe the same characteristics we discussed

in the previous paragraphs such as fairly high IPC, significant

use of memory and modest use of long latency integer

instructions. However, there is also a difference, the new

power virus prefers to spend more instruction slots for floating

point and long latency instructions at the expense of the short

latency instructions. This has an impact on the IPC which is

6% lower compared to the original power virus but this doesn’t

affect its temperature and power consumption. The simple

power virus achieves virtually the same power and the same

temperature as the original power virus. The complex fitness

optimization is considered successful as the simple power-virus

achieves the same stress-level as the original power-virus while

using only 13 unique instructions instead of 21.

VI. VOLTAGE NOISE VIRUS GENERATION

This section demonstrates the capability of GeST to

generate voltage noise viruses and consequently stability-tests.

For this study we use an AMD Athlon II X4 645 CPU hosted

on an Asus M5A78L LE motherboard. This motherboard

offers high bandwidth voltage sense points that can be used to

monitor voltage noise. This is achieved by connecting an

oscilloscope to the sense points through an active differential

probe. The GA generates the dI/dt virus by optimizing towards

maximum peak-to-peak voltage. The framework runs each GA

generated binary for a few seconds. During the binary

execution the minimum and maximum voltage observed on the

oscilloscope are recorded. The binaries that achieve the highest

difference between maximum and minimum recorded voltages

are considered the fittest.

Figure 8 shows the max-min voltage noise caused by

various workloads compared to the GA generated virus. The

GA dI/dt virus clearly outperforms the other workloads

including well known stability-tests such as Prime95 and

AMD’s own stability test. Since the dI/dt virus causes the

highest voltage-noise it should stress the system’s stability

better than the other workloads. A good stability-test must have

high VMIN. To characterize the VMIN of a workload we run the

workload multiple times and each time we lower the operating

voltage in steps of 12.5mV. We keep the CPU frequency stable

at the nominal value of 3.1GHz. The highest voltage at which a

workload executes correctly (without corruption, error

messages, crashes) is the workload’s VMIN. Figure 9 shows the

VMIN of the various workloads we tested on the AMD CPU.

The dI/dt virus is the best stability-test because it causes

instability at a higher voltage, even higher than the commonly

used AMD stability test and Prime95.

Our results show that workloads designed to draw very

high power are not suitable stability-tests as they are not

designed to drop the voltage very low and induce timing errors.

Prime95 is a workload known to raise the CPU power

consumption very high. Such workloads are a good choice for

characterizing thermal stability and making sure that the

temperature will not exceed a critical threshold during normal

operation. But they are inadequate for characterizing the

Table IV. Power virus, simple power virus and IPC virus comparison.

GA virus ShortInt LongInt Float/SIMD Mem Branch
Relative

IPC
Relative Plug

Power (W)
Relative Chip

Temp.
of Unique
Instructions

powerVirus 22 5 9 12 2 1 1 1 21

powerVirusSimple 16 7 13 11 3 0.94 0.99 1 13

IPCvirus 26 0 15 6 3 1.12 0.88 0.94 13

Figure 8. Voltage-noise results on AMD Athlon CPU.

100
150
200
250
300
350
400

m
ax

 -
 m

in
 v

o
lt

ag
e

(m
V

)

workload
Figure 9. VMIN results on AMD Athlon CPU.

1150
1200
1250
1300
1350
1400

V
M

IN
 (

m
V

)

workload

9

susceptibility to timing errors.

VII. RELATED WORK

This section discusses and compares qualitatively GeST

with previous GA frameworks for stress-test generation. Table

V provides an overview of the state-of-the-art GA stress-test

generation frameworks.

We consider the pairs of works [1][3], and [6][7] as each

representing the same framework. Particularly, the work in [3]

has evaluated a dI/dt GA framework on a simulated

environment and subsequently on real multi-core hardware [1].

Similarly, the work in [7] generates GA power viruses for

single-core CPUs and a latter extension on multi-core CPUs

[6]. In a different line of work, Joshi et al. [4] evaluated a

power-virus GA framework on an Alpha ISA single-core

simulator and Polfliet et al. [5] evaluated a power-virus GA

framework on real-hardware using x86 multi-cores.

As shown in Table V, there are two dominant approaches

in designing GA frameworks for stress-test generation: a)

based on an abstract-workload model and b) based on

instruction-level primitives (usually assembly instructions). In

the abstract-model frameworks the individual is a vector of

workload related parameters such as instruction-mix, register-

dependency distance, memory-stride profile, branch transition

rates etc. The GA operators are performed on this abstract

workload profile. A workload generator stochastically

generates the assembly (or higher-level language) code based

on the values of the abstract model parameters. On the other

hand, for the instruction-level optimizations the individual is

the actual source code of the virus. The GA performs the

optimization directly on the source-code and has full-control

on the instruction-mix, instruction-order and instructions’

operands. GeST as presented in Section III utilizes the

instruction-level optimization approach.

An advantage of the abstract workload model is that it

reduces the design space. A disadvantage of the abstract model

is that it fails in optimizing the instruction order and the

instruction opcodes simply because these parameters are out of

GA control. Previous work [8] reports that instruction-order

can make up to 17% difference in power for the same activity

factor and instruction-mix.

Moreover, knobs typically found in abstract-workload

frameworks that allow fine tuning memory accesses and

branch behavior, through parameters such as memory stride

and branch transition rate, seem not so relevant, at least, for

high power and dI/dt workloads. As reported in previous work

[4][7] and confirmed in this work, power-viruses are

characterized by high IPC, very predictable branches and

extremely high L1 hit rates. These characteristics can easily be

achieved with instruction-level optimization. Regarding dI/dt

optimization, all previous work utilized instruction-level

optimizations [1][2][3]. This is the case since dI/dt

optimization is very sensitive to the workload frequency that

must match the PDN resonance frequency. For such

optimization search, instruction-order is more important than

disruptive events such as cache-misses and branch-

misprediction that cause non-determinism and limit the

capacity to control the workload frequency [2].

Another design choice of a GA framework is the

optimization language. Most frameworks prefer generating

assembly code except [5] that prefers a high-level language

like C. The advantage of using higher level language is that it

makes the framework versatile to the hardware platform of

interest. Using a higher-level language makes sense in

conjunction with an abstract workload model. For instruction-

level optimization this is not so practical because it prevents

GA to directly optimize the instruction type mix and order (the

final instruction order and types depend on the compiler). For

GeST we prefer the assembly instruction level optimization.

The versatility of GeST that allows its use with any hardware

platform stems from providing an interface to the experimenter

to specify the instructions that will be used in the optimization.

Thereby, this allows the experimenter to use GeST to

customize and optimize for any ISA.

Finally, another important GA framework aspect is the

component it targets. Most works justifiably target the CPU as

it is generally accepted that CPU is the most active and power-

hungry component. In [5] authors generated full-system stress-

tests that also stressed the network-interface-card and hard-

disk. This is achieved by adding a thread that sends network

packets and a thread that performs disk reads, the invocation

frequency of these threads is a parameter of the abstract-

workload-profile. GeST is as an instruction-level optimization

framework that primarily targets CPU, but it is also applicable

to any other component that can be stressed through a stream

of instructions. For instance, with GeST is possible to stress

LLC or DRAM by instructing the framework to optimize

towards cache-misses and providing in the input file load/store

instruction definitions with various strides, base memory

registers and various min-max immediate values. We are

currently investigating such extensions.

 To conclude this discussion, to the best of our knowledge

none of the other previously presented GA frameworks is

publicly available. Also, we believe that GeST is the first work

that targets user-friendliness, extensibility, flexibility and re-

usability. GeST achieves these features by providing a clean

interface to experimenters for: a) scripting their own

measurement procedures, b) writing custom fitness functions,

Table V. Comparison of related work on GA frameworks.

Framework OptimizationType
Optimization-
Language Evaluated-On

Metrics
Evaluated

Component
Stressed References

AUDIT Instruction-Level x86 ISA Real-Hardware / Simulator dI/dt CPU [1][3]

MAMPO Abstract-Workload SPARC ISA Simulator power CPU+DRAM [7],[6]

Joshi et al. Abstract-Workload Alpha ISA Simulator power CPU [4]

Powermark Abstract-Workload C Real-Hardware power Full-System [5]

GeST Instruction-Level ARM,x86 Real-Hardware dI/dt,power CPU this work

10

and c) specifying instructions and operands that will be used in

the GA search.

VIII. CONCLUSION

This work proposes GeST, a framework for automatic

stress-test generation based on GA. While GA based automatic

frameworks are not a novel concept, to the best of our

knowledge there is no publicly available framework that

researchers and practitioners can use. The framework presented

in this paper has successfully been demonstrated in industrial

platforms and has been used for various research publications

[22][23][24][25]. The framework codebase is available in [26].

The key strengths of the framework are its flexibility and

extensibility as it provides an easy interface to the

experimenter that can be used for building upon the

framework. We demonstrate the flexibility and the

effectiveness of the framework by generating, among other,

power and dI/dt stress-tests (viruses) on various CPUs with

simple and complex fitness functions. The generated viruses

stress the system more than conventional workloads and

manually written stress-tests.

While this paper demonstrates GeST on real hardware,

there is no fundamental restriction that prevents the framework

from being used for pre-silicon stress-test generation in

conjunction with accurate power, temperature, performance

and voltage-noise models/simulators.

ACKNOWLEDGMENT

This work is funded by the H2020 Framework Program of the

European Union through the UniServer Project (Grant Agreement

688540) – http://www.uniserver2020.eu. Part of this work has been

conducted during an internship of the first author at Arm Research.

REFERENCES

[1] Kim, Youngtaek, Lizy Kurian John, Sanjay Pant, Srilatha Manne,

Michael Schulte, William Lloyd Bircher, and Madhu Saravana Sibi
Govindan. "AUDIT: Stress testing the automatic way." In
Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM
International Symposium on, pp. 212-223. IEEE, 2012.

[2] Bertran, Ramon, Alper Buyuktosunoglu, Pradip Bose, Timothy J.
Slegel, Gerard Salem, Sean Carey, Richard F. Rizzolo, and Thomas
Strach. "Voltage noise in multi-core processors: Empirical
characterization and optimization opportunities." In Microarchitecture
(MICRO), 2014 47th Annual IEEE/ACM International Symposium on,
pp. 368-380. IEEE, 2014.

[3] Kim, Youngtaek, and Lizy Kurian John. "Automated di/dt stressmark
generation for microprocessor power delivery networks." In Proceedings
of the 17th IEEE/ACM international symposium on Low-power
electronics and design, pp. 253-258. IEEE Press, 2011.

[4] Joshi, Ajay M., Lieven Eeckhout, Lizy K. John, and Ciji Isen.
"Automated microprocessor stressmark generation." In High
Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th
International Symposium on, pp. 229-239. IEEE, 2008.

[5] Polfliet, Stijn, Frederick Ryckbosch, and Lieven Eeckhout. "Automated
full-system power characterization." IEEE Micro 31.3 (2011): 46-59.

[6] Ganesan, Karthik, and Lizy K. John. "MAximum Multicore POwer
(MAMPO): an automatic multithreaded synthetic power virus
generation framework for multicore systems." Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2011.

[7] Ganesan, Karthik, Jungho Jo, W. Lloyd Bircher, Dimitris Kaseridis,
Zhibin Yu, and Lizy K. John. "System-level Max Power (SYMPO)-A
systematic approach for escalating system-level power consumption
using synthetic benchmarks." In Parallel Architectures and Compilation
Techniques (PACT), 2010 19th International Conference on, pp. 19-28.
IEEE, 2010.

[8] Bertran, R., Buyuktosunoglu, A., Gupta, M. S., Gonzalez, M., & Bose,
P. (2012, December). Systematic energy characterization of cmp/smt
processor systems via automated micro-benchmarks. In
Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM
International Symposium on (pp. 199-211). IEEE.

[9] Mitchell, Melanie. An introduction to genetic algorithms. MIT press,
1998.

[10] Zu, Yazhou, Charles R. Lefurgy, Jingwen Leng, Matthew Halpern,
Michael S. Floyd, and Vijay Janapa Reddi. "Adaptive guardband
scheduling to improve system-level efficiency of the POWER7+." In
Proceedings of the 48th International Symposium on Microarchitecture,
pp. 308-321. ACM, 2015.

[11] Das, Shidhartha, Paul Whatmough, and David Bull. "Modeling and
characterization of the system-level Power Delivery Network for a dual-
core ARM Cortex-A57 cluster in 28nm CMOS." Low Power Electronics
and Design (ISLPED), 2015 IEEE/ACM International Symposium on.
IEEE, 2015.

[12] Whatmough, Paul N., Shidhartha Das, Zacharias Hadjilambrou, and
David M. Bull. "14.6 An all-digital power-delivery monitor for analysis
of a 28nm dual-core ARM Cortex-A57 cluster." In Solid-State Circuits
Conference-(ISSCC), 2015 IEEE International, pp. 1-3. IEEE, 2015.

[13] Grenat, Aaron, Sanjay Pant, Ravinder Rachala, and Samuel Naffziger.
"5.6 adaptive clocking system for improved power efficiency in a 28nm
x86-64 microprocessor." In Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014 IEEE International, pp. 106-107. IEEE,
2014.

[14] Papadimitriou, G., Chatzidimitriou, A., Kaliorakis, M., Vastakis, Y., &
Gizopoulos, D. (2018, April). Micro-Viruses for Fast System-Level
Voltage Margins Characterization in Multicore CPUs. In Performance
Analysis of Systems and Software (ISPASS), 2018 IEEE International
Symposium on (pp. 54-63). IEEE.

[15] https://www.aida64.com/

[16] https://www.mersenne.org/

[17] http://infocenter.arm.com/help/topic/com.arm.doc.ddi0503i/DDI0503I_v
2p_ca15_a7_tc2_trm.pdf

[18] https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-
11-day1-epub/HC26.11-4-ARM-Servers-epub/HC26.11.430-X-Gene-
Singh-AppMicro-HotChips-2014-v5.pdf

[19] https://perf.wiki.kernel.org/index.php/Tutorial

[20] https://developer.arm.com/products/software-development-tools/ds-5-
development-studio/streamline/arm-energy-probe

[21] https://linux.die.net/man/8/i2cget

[22] Whatmough, Paul N., Shidhartha Das, Zacharias Hadjilambrou, and
David M. Bull. "Power integrity analysis of a 28 nm dual-core arm
cortex-a57 cluster using an all-digital power delivery monitor." IEEE
Journal of Solid-State Circuits 52, no. 6 (2017): 1643-1654.

[23] Hadjilambrou, Zacharias, Shidhartha Das, Marco A. Antoniades, and
Yiannakis Sazeides. "Leveraging CPU Electromagnetic Emanations for
Voltage Noise Characterization." In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 573-585.
IEEE, 2018.

[24] Hadjilambrou, Z., Das, S., Antoniades, M. A., & Sazeides, Y. (2018).
Sensing CPU voltage noise through Electromagnetic Emanations. IEEE
Computer Architecture Letters, 17(1), 68-71.

[25] Tovletoglou K, Mukhanov L, Karakonstantis G, Chatzidimitriou A,
Papadimitriou G, Kaliorakis M, Gizopoulos D, Hadjilambrou Z,
Sazeides Y, Lampropulos A, Das S. Measuring and Exploiting
Guardbands of Server-Grade ARMv8 CPU Cores and DRAMs. In 2018
48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W) 2018 Jun 25 (pp. 6-9).
IEEE.

[26] https://github.com/toolsForUarch/GeST

https://www.aida64.com/
https://www.mersenne.org/
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0503i/DDI0503I_v2p_ca15_a7_tc2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0503i/DDI0503I_v2p_ca15_a7_tc2_trm.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-11-day1-epub/HC26.11-4-ARM-Servers-epub/HC26.11.430-X-Gene-Singh-AppMicro-HotChips-2014-v5.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-11-day1-epub/HC26.11-4-ARM-Servers-epub/HC26.11.430-X-Gene-Singh-AppMicro-HotChips-2014-v5.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-11-day1-epub/HC26.11-4-ARM-Servers-epub/HC26.11.430-X-Gene-Singh-AppMicro-HotChips-2014-v5.pdf
https://perf.wiki.kernel.org/index.php/Tutorial
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe
https://linux.die.net/man/8/i2cget

11

