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Abstract
In this paper we discuss methods and metrics for comparing
the performance of two simultaneous multithreading mi-
croarchitectures. We identify conditions under which the
instructions-per-cycle metric may be misleading for com-
paring two simultaneous multithreading microarchitectures
for the same amount of work. Part of the problem is isolated
to the definition of what is same work. When simulating a mix
of independent programs under the same initial conditions
on two different simultaneous multithreading microarchi-
tectures there are two approaches to ensure the work of the
two runs is same: constant-work-per-thread or variable-
work-per-thread. For both approaches the total number of
instructions in the run is constant, however, for the first, the
instructions from each thread is also constant, whereas for
the second is not.
We claim that:
(a) when simulating two microarchitectures with the
constant-work-per-thread approach, the instructions-per-
cycle is sufficient to compare them to establish the microar-
chitecture with the best performance,
(b) when variable-work-per-thread approach is used the
instruction-per-cycle may be inadequate for comparing
performance. We attribute this to the inability of the
instructions-per-cycle metric to account for differences in
the load-balance of the two runs.
A new performance metric, SMT-speedup, is proposed that
enables accurate comparison of the performance of two si-
multaneous multithreading microarchitectures for runs with
different load-balance. The new metric considers the load-
balance in terms of the size and performance of each thread.

In light of the insight gain in this paper we contend that
a simultaneous multithreading microarchitecture may need
to trade-off throughput and load-balance to achieve the best
performance.

1 Introduction
Microarchitectural simulation is an essential tool for the de-
sign of high performance processors because it provides an
inexpensive and effective mean to designers and researchers
to explore the design space. With simulation the perfor-
mance potential of a new mechanism can be established
without actually implementing it and a safe decision can be
made as to whether the mechanism should be incorporated
in a processor.

Typical microarchitectural simulation involves several
steps. Prior to simulation the workload that will be simulated

is selected. For each benchmark and data set in the workload
a representative region(s) is chosen. The same amount of
work is then simulated on two microarchitectures, without
and with the new mechanism, and performance metrics from
each run are recorded. The various metrics are then summa-
rized and analyzed to establish potential benefits/detriments
of the mechanism.

When investigating mechanisms aimed to improve per-
formance one of the most illuminating metrics is throughput
or Instructions per Cycle(IPC). The IPC for a given simula-
tion run is the length of the region over the latency - number
of cycles to execute the region. Suppose that a base mi-
croarchitecture has IPC x for a region and a new(modified)
microarchitecture has for the same region IPC y, one of the
following will then be true:
x � y, the new microarchitecture has higher performance
and hence the new mechanism is increasing performance,
x � y, the base is better indicating the mechanism is detri-
mental to performance,
x = y, the new mechanism is not influencing performance.
The speedup

y

x
is a deciding factor as to whether to consider

the mechanism further.
The above methodology is widely accepted and used by

designers and researchers to evaluate the performance po-
tential of mechanisms for a given microarchitecture. In
this paper we argue that although this methodology may be
dependable for single-threaded processors may not always
be for simultaneous multithreading(SMT) processors[1, 2,
3]. SMT is a processor microarchitecture distinguished by
its ability to exploit inter-thread and intra-thread parallelism
in the same execution cycle using a unified resource pool.

In particular, this work will show that when comparing
the IPC of simulations with a mix of independent programs,
the potential of a a new mechanism, and hence of a SMT
microarchitecture, may not be assessed correctly. Because
SMT mechanisms aim typically to adjust the load-balance
- the contribution from each thread - to achieve better per-
formance and the IPC metric ignores load-balance and only
considers the total number of instructions from all threads.
To overcome this we propose a SMT performance metric
(SMT-speedup) that considers load-balancing. The met-
ric takes into account the contribution from each thread in
terms of its size and single-thread performance. Central to
the problem of comparing SMT performance lies the defi-
nition of what is same work for two SMT simulations. Two
different definitions of same work are presented and their
ramifications are discussed.



1.1 Outline
The paper is organized as follows. In Section 2 we will
illustrate why may be problematic to compare two SMT
microarchitectures based on IPC. A new performance metric
that accounts for the workload composition is presented in
Section 3. Section 3 includes a discussion about how and
when to use the proposed metric. Related work is discussed
in Section 4 and the work concludes with Section 5.

2 Problem
Lets assume a base SMT microarchitecture and that a new
mechanism (e.g. new fetch thread-chooser) is considered
for it. Henceforth we assume that simulations on the base
and new microarchitecture have the same initial conditions,
equal clock, the mechanism under consideration has no in-
fluence on the single-thread performance, and the regions
simulated are representative of the programs behavior (we
revisit the issue of representative behavior in Section 3.2).

To evaluate the new mechanism we perform simulation
using a mix of two independent programs, B and R. The
simulations are for the same number of instructions. Note
that the choice for two threads is for illustration and that the
issues discussed here can be generalized to any number of
threads.
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Total Instructions = 100
Cycles = 31
IPC = 3.23
InstructionsB = 45
InstructionsR = 55

  1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

In
s
tr

u
c
ti
o
n
s
 P

e
r 

C
y
c
le

In
s
tr

u
c
ti
o
n
s
 P

e
r 

C
y
c
le

Total Instructions = 100
Cycles = 29
IPC = 3.45
InstructionsB = 30
InstructionsR = 70

BASE
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Figure 1: IPC Cycle Profile for two SMT runs

Fig. 1 is used to illustrate the problem that may arise when
comparing the performance of two SMT microarchitectures
based on throughput. The two SMT microarchitectures,
base and new, are simulated for the same amount of work,
100 instructions, from the two threads. The IPCs of the
two runs are 3.23 and 3.45 respectively. The IPC of the
new microarchitecture is (3.45/3.23 - 1) = 7% faster than
the base. However, the contribution of thread R(B) in the
first run is 55(45) instructions whereas in the second run is
70(30): the total load is the same, but the load-balance in
the two runs is different. We repeat that the initial conditions
for the two runs are the same, the different load-balance is
due to the new mechanism under evaluation.

We argue that is unclear for the above and analogous
scenarios which microarchitecture is better performing since

(a) the load-balance between the two runs is not invariant,
and (b) the IPC metric only considers the total number of
instructions and ignores the contribution from each thread.

  1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20

Total Instructions = 70
Cycles = 20
IPC = 3.5
InstructionsB = 0,
InstructionsR = 70
55 instructions in 18 cycles

  1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Total Instructions = 45
Cycles = 23
IPC = 1.96
InstructionsB = 45
InstructionsR = 0
30 instructions in 17 cycles
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Figure 2: IPC Cycle Profile for Single-Thread Runs

In Fig. 2 we show a possible cycle by cycle execution
profile for each of the threads R and B when executing in
single-thread mode for the same work as in Fig. 1. We can
conclude that if we were to execute back-to-back the work
from the two threads - 55 instructions of R, followed by
45 instructions from B - the total latency will be 18+23=41
cycles. Whereas if were to execute 70 instructions from R
followed by 30 from B the total latency will be 20+17=37
cycles. If we compare the latency of the multithread SMT
runs in Fig. 1 with the corresponding total latency of sin-
gle thread runs for the same workload - both in size and
composition - we can observe: that the base configuration
is ((18+23)/31 - 1)= 32% faster whereas the modified is
((20+17)/29 - 1) = 28% faster. This relation is opposite of
the IPC relation! So which SMT microarchitecture is best
performing?

We contend that the base microarchitecture is the best
performing provided all threads are having the same ex-
ecution priority. This is the case because while the new
microarchitecture favored the thread with high IPC (thread
R) and achieved overall higher IPC, it compromised the load-
balance at the expense of the slow thread (thread B). In con-
trast, the base microarchitecture offered a balanced execu-
tion from both threads with only slightly worse throughput.
Effectively, a SMT microarchitecture may need to trade-off
throughput and load-balance to achieve the best perfor-
mance.

The above suggest that SMT performance metrics that
overlook load-balance can be misleading. We believe
the problem with comparing SMT performance based on
IPC/throughputwas recognized before [2]: "Given our mea-
surement methodology, it is possible that the throughput in-
creases could be overstated if a fetch policy simply favors
those threads with most inherent ILP or the best cache be-
havior, thus achieving improvements that would not be seen
in practice." Consequently, we make a case for a perfor-
mance metric that considers the contribution from each
thread for comparing the performance of simulations with



different load-balance. We underline that this is a SMT pro-
cessor specific issue because is the first microarchitecture
with the distinctive ability of simultaneous execution from
multiple threads in the same cycle.

3 Proposed Metric
In this section we define a speedup metric suitable for mea-
suring SMT performance and then we discuss how to use it
for comparing the performance of two SMT microarchitec-
tures. The Section includes a discussion about the use and
limitations of the proposed metric.

3.1 SMT-Speedup
Given a SMT microarchitecture, if we perform a simulation
using a mix of T threads for I instructions and the latency of
the run is L cycles, we define its SMT-speedup to be the ratio

L1�����LT
L

where Lj is the latency to execute Ij instructions from thread
j in single-thread mode. Note that

I = I1+ ... + IT , and if we define a weight Wj =
Ij

I
, then

I = I W1+ ... + I WT .
Given that IPC = I

L
and IPCj =

Ij

Lj
, then we can express

SMT-speedup as follows:

IPCx( W1
IPC1

+...+ WT

IPCT
)

The SMT-speedup gives the benefit obtained by executing
a workload in simultaneous multithreading mode as com-
pared to the total latency of the same workload (in size
and composition) in single-thread mode. The higher the
speedup the better the performance. The proposed metric
considers the load-balance by taking into account (a) the
relative contribution of each thread (weights Wj), and (b)
the threads single-thread performance (single-thread IPCj).
The first term is the IPC of the multithreaded run (SMT-IPC),
whereas the second is the inverse weighted harmonic IPC
for all single-thread runs (effective-single-thread IPC). Note
that based on our assumptions the above metric has value 1
when there is only one thread in the workload.

Two important implications of the above definition is that,
depending on the load-balance, different IPCs can corre-
spond to the same SMT-speedup and a single IPC may cor-
respond to different SMT-speedups. This supports our claim
that the IPC may be a misleading metric for comparing SMT
performance.

3.2 Comparing SMT-Speedups/Load Composition
When desired to compare the performance of a new mecha-
nism for an SMT microarchitecture then (a) we should simu-
late two microarchitectures with and without the mechanism
for the same amount of work and initial conditions(same
thread mix, same starting instruction count etc), (b) compute
their respective SMT-speedups, and (c) compare them to de-
termine the microarchitecture with the highest SMT-speedup
(best performance). In effect, we claim that the performance
comparison of two SMT microarchitectures should not be
through a direct comparison, but rather through an indirect
comparison that determines the SMT microarchitecture with
the best performance over single thread performance.
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Total Instructions = 100
Cycles = 32
IPC = 3.125
InstructionsB = 45
InstructionsR = 55

Figure 3: IPC Cycle Profile for SMT Run with Constrain in
Thread Size

The proposed metric is not useful to evaluate a mecha-
nism that affects single-thread performance because it may
influence both the SMT-IPC and effective-single-thread-
IPC. Thus, a SMT microarchitecture with higher(lower) IPC
may have lower(higher) SMT-speedup which makes SMT-
speedup comparisons ineffective.

Recall that although the total number of instructions in
two SMT simulations can be the same, the load-balance will
very likely be different(Section 2).
This difference in load-balance raises two questions that cor-
respond to two simulation approaches:
(a) can we ensure a comparison of two SMT microarchitec-
tures with identical workloads?
(b) if the workloads are different can it lead to misleading
assessment of results?
Next we discuss these two approaches.
Identical Workload (Constant-work-per-thread)
In general, we believe is unrealistic to expect identical load-
balance in two simulation runs with same initial conditions
when the two simulated SMT microarchitectures employ
different mechanism(s).

Instead of relying on mechanism properties to ensure iden-
tical workload for two simulation runs, we can introduce a
simulation constrain to enforce it. Specifically, given the
load-balance of a reference run, stop fetching instructions
from a thread in another run when the threads instruction
count in the reference run is reached. We refer to this
as constant-work-per-thread approach, since a thread will
contribute a constant number of instructions in both runs.
Since the workload composition of the two runs is identical
then is meaningful to compare directly the IPCs (note that
the corresponding SMT-speedups have the same effective-
single-thread-IPC).

To explicate see Fig. 3 where we use the base run in Fig.
1 as the reference for simulating the new microarchitecture.
When thread R in cycle 24 reached its threshold (55 instruc-
tions) no more instructions were fetched from it. And the
simulation continued until the remaining thread, B, reached
its threshold of 45 instructions in cycle 32. The IPC of the
run in Fig. 3 is 3.125. Since the load-balance is identical
we can compare the IPCs (3.23 vs 3.125) and determine that
the base is best performing. As seen in Fig. 3 the load is
not well distributed and thus the worse performance.

We believe the constant-work-per-thread approach is
“fair” because always compares performance for identical
work (note that running all threads to completion is a special
case of the constant-work-per-thread approach). Possibly
the only caveat of this approach is that may not be represen-
tative of the actual SMT execution behavior. For instance,
one could argue that for typical execution always the max-
imum number of threads will be running. Therefore, this



kind of approach will be meaningful when the % of time all
threads are running is dominant.
Different Workload (Variable-work-per-thread)
The discussion in Section 2 assumed simulation with same
total work but non-identical workloads - variable-work-per-
thread approach - and concluded that the IPC metric may be
insufficient for comparing SMT performance. The proposed
SMT-speedup metric was shown to account for load-balance
difference.

One may argue that comparing SMT-speedups with
variable-work-per-thread approach is as meaningless as
comparing IPCs (see Section 2) and hence can lead to erro-
neous interpretations. We believe this is not the case as long
as the instructions simulated from each thread in a mix is
representative of the benchmarks single-thread behavior.

Particularly, given a multithreadsimulation run witha mix
of T independent programs, and Ij is the instruction count
from a thread j, then for each thread its Ij should be equal to
the length of the representative region that was selected for
the benchmarks single-thread behavior.

The equality criterion may be difficult to satisfy but with
some relaxation should be feasible most of the time. For ex-
ample, when the instruction counts between a representative
region length and the simulated differ by a small amount,
one may consider the instructions simulated to be repre-
sentative. In such a case may be useful also to consider
other parameters in the equality criterion. A good indica-
tion that what is simulated is representative will be if the
effective-single-thread-IPC of the simulation run is equal to
the effective-single-thread-IPCof the representative regions.

If not all threads are exercised or the regions simulated are
non-representative then either the mechanism under consid-
eration is problematic and/or the simulation length should
be modified. If the representative behavior criterion can
not be satisfied, then remains an open issue as to how to
determine the best performing SMT microarchitecture with
variable-work-per-thread.

To the question whether both constant-work-per-thread
and variable-work-per-thread simulation approaches are
needed, we answer that empirical investigation of their be-
havior is needed to quantify their difference and similarities.
This represents an important subject for future work.

4 Related Work
SMT is a processor microarchitecture distinguished by its
ability to exploit inter-thread and intra-thread parallelism in
the same execution cycle using a unified resource pool[1, 2,
3].

A discussion on how to compare and summarize rates
and execution time can be found in [4]. The met-
ric used in previous SMT work for comparing the per-
formance was the IPC/throughput[1, 2]. Typically the
IPCs of two microarchitectures were compared for the
same amount of work but is unclear whether the load-
balance between runs was forced to be identical or not[1,
2]. The problematic of comparing SMT performance based
on IPC/throughput was mentioned before [2]. However, no
specific cause was suggested or solution was proposed to
overcome the problem.

The issues discussed in this paper are unique to SMT
processors since no previous microarchitecture has the abil-
ity for simultaneous issue of instructions across different
threads in the same cycle.

An orthogonal issue with important implications to this
work is the definition of regions that are representative of
a benchmark’s behavior[5]. This is critical, as described in
Section 3.2, for establishing whether the simulated region is
representative of the benchmarks behavior.
To the best of our knowledge this is the first work that:
(1) identified conditions for which may be problematic to
compare SMT microarchitectures based on IPC,
(2) argued that SMT processors may need to trade-off
throughput and load-balance to achieve best performance,
and
(3) proposed a SMT performance metric that considers load-
balance.

The relevance and utility of this work is stressed by the
implementation, until a late development phase, of the Alpha
EV8 SMT processor[6] and the recent disclosure by Intel that
SMT(hyper-threading) technology will be used in its future
processors[7].

5 Conclusions

In this paper we demonstrated that comparing the IPC of
two SMT microarchitectures may be not always dependable
method for establishing the best performing microarchitec-
ture. The problem is due (a) to the inabilityof the IPC metric
to take into account the load-balance in a run with a mix of
independent programs, and (b) the definition of same work.
We proposed a new performance metric, SMT-speedup, that
considers the load-balance in terms of the size and perfor-
mance of each thread. We presented two approaches for
simulating same work for SMT: constant-work-per-thread
and variable-work-per-thread and rationalize why the IPC is
more appropriate to compare the performance for the first
and the SMT-speedup for the second.

In light of the views in this paper we declare that for the
simulation of a simultaneous multithreading microarchitec-
ture: (a) with constant-work-per-thread approach,better per-
formance means higher throughput, and (b) with variable-
work-per-thread approach, better performance means a
trade-off between load-balance and throughput.

We anticipate the proposed metric to prove useful to de-
signers and researchers for establishing with more accu-
racy the performance potential of SMT processors. For
future work we plan to use the SMT-speedup metric to
evaluate previously proposed SMT mechanisms that were
selected(rejected) based on their IPC and variable-work-
per-thread approach. We are also planning to investigate
methods for selecting representative regions for SMT mi-
croarchitectural simulation. Finally, we plan to investigate
and compare the empirical behavior of the constant-work-
per-thread and variable-work-per-thread approaches.
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